
Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2009, Article ID 859371, 13 pages
doi:10.1155/2009/859371

Research Article

Adaptive Edge-Oriented Shot Boundary Detection

Don Adjeroh,1 M. C. Lee,2 N. Banda,1 and Uma Kandaswamy1

1Video and Image Processing Laboratory, Lane Department of Computer Science and Electrical Engineering,
West Virginia University, Morgantown, WV 26505, USA

2Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong

Correspondence should be addressed to Don Adjeroh, don@csee.wvu.edu

Received 20 August 2008; Revised 11 April 2009; Accepted 18 May 2009

Recommended by Alberto Del Bimbo

We study the problem of video shot boundary detection using an adaptive edge-oriented framework. Our approach is distinct in
its use of multiple multilevel features in the required processing. Adaptation is provided by a careful analysis of these multilevel
features, based on shot variability. We consider three levels of adaptation: at the feature extraction stage using locally-adaptive
edge maps, at the video sequence level, and at the individual shot level. We show how to provide adaptive parameters for the
multilevel edge-based approach, and how to determine adaptive thresholds for the shot boundaries based on the characteristics
of the particular shot being indexed. The result is a fast adaptive scheme that provides a slightly better performance in terms of
robustness, and a five fold efficiency improvement in shot characterization and classification. The reported work has applications
beyond direct video indexing, and could be used in real-time applications, such as in dynamic monitoring and modeling of video
data traffic in multimedia communications, and in real-time video surveillance. Experimental results are included.

Copyright © 2009 Don Adjeroh et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Video shot boundary detection (also called video parti-
tioning or video segmentation) is a fundamental step in
video indexing and retrieval, and in general video data
management. The general objectives are to segment a given
video sequence into its constituent shots, and to identify
and classify the different shot transitions in the sequence.
Different algorithms have been proposed, for instance, based
on simple color histograms [1, 2], pixel color differences
[3], color ratio histograms [4], edges [5], and motion [6–
8]. In this work, we study the problem of video partitioning
using an edge-based approach. Unlike ordinary colors, edges
are largely invariant under local illumination changes and
are much less affected by the possible motion in the video.
To ensure robustness, we use both edge-based and color-
based features under a multilevel decomposition framework.
With the multiple decompositions, we can avoid the time-
consuming problem of motion estimation by a careful choice
of the decomposition level to operate at. Improvements
in video partitioning have been recorded by performing a
dynamic classification of the shots as the video is being
analyzed, and then adaptively choosing the shot partitioning

parameters based on the predicted class of the shot [9]. Auto-
matic shot classification can also serve as an important step
in approaching the elusive problem of capturing semantics
or meaning in the video sequence (see, e.g., [14]).

We note that the problem of video shot partitioning
(or segmentation) is not only relevant to video indexing
and video data management. (See [11–14] for discussion
on video query, browsing, and video object management).
It is also an important issue in other areas of video
communication, such as video compression and video traffic
modeling [15]. In particular, for problems such as video
traffic characterization and modeling, shot-level adaptation
becomes mandatory, if the network is to dynamically allocate
limited network resources in response to changing video data
traffic.

In this work, we introduce adaptation at different stages
in the video analysis process—both at the feature extraction
stage and at the later stage of frame difference comparison.
We propose a new method for fast shot characterization and
classification required for such adaptation, using a new set of
edge-based features. We introduce a method for automated
threshold selection for adaptive scene partitioning schemes.
In the next section, we describe recent reported work

2 EURASIP Journal on Image and Video Processing

that is closely related to our approach. Section 3 presents
the multilevel edge-response vectors, the basic features we
propose for video partitioning. Shot characterization and
adaptation in video partitioning in the context of the edge-
based features is described in Section 4. Section 5 presents
results on real video sequences. We conclude the paper in
Section 6.

2. RelatedWork

The first step in content-based video data management
is shot boundary detection. Simply put, it is the process
of partitioning a given video sequence into its constituent
shots. The purpose is to determine the beginning (and/or
end) of different types of transitions that may occur in
the sequence. The problem of video partitioning is com-
pounded by the various changes that might occur in the
video, (say due to illumination, motion and/or occlusion),
and by the different types of shot transitions (such as
fades and dissolves). The inherent variability in video shot
characteristics, even for shots from the same sequence
introduces further complication. The partitioning algorithm
depends on the specific features used, and the similarity
evaluation functions adopted. Earlier methods for video shot
partitioning are described in [2–4, 16–18]. See [19–21] for
a survey.

Most approaches to video partitioning make use of
the color (or gray level) information in the video. The
limitations of color in video partitioning are the problems
of illumination variation and motion-induced false alarm.
Edge based methods have thus been proposed to reduce
the problem of invariance due to illumination and motion.
Zabih et al. [5] made explicit use of edges in video indexing,
and showed how the exiting and entering edges can be used to
classify different types of shot breaks. Related methods that
exploit edge information for shot detection directly in the
compressed domain were proposed in [4, 18, 22, 23]. In [4]
color ratio features were proposed as an alternative to color
histograms, and were used to identify different types of shot
changes without decompressing the video. The motivation
was that color ratios capture the color boundaries or color
edges in the frames. In [18, 23] methods were proposed to
extract edges directly from the DCT coefficients, which can
then be used for video partitioning. In [22], Abdel-Mottaleb
and Krishnamachari described the edge-based information
used as part of the descriptions in MPEG-7. Edge descriptors
were given as 4-bin histograms, where each bin is for one
of the four directions: vertical, horizontal, left-diagonal, and
right-diagonal. Other related compressed domain methods
are reported in [9, 13, 16].

More recent approaches to the video partitioning prob-
lem have been proposed in [9, 24–27]. Li and Lai [28]
described methods for video partitioning using motion
estimation, where the motion vectors are extracted using
optical flow computations. To account for potential changes
in the lighting conditions, the optical flow computations
included a parameter to model the local illumination
changes during motion estimation. Cooper et al. [25, 29]

partitioning techniques that exploit possible self-similarity
in the video, by classifying temporal patterns in the video
sequence using kernel-based correlation. Li and Lee [26]
studied video partitioning, with special emphasis on gradual
transitions. Yoo et al. [27] studied both gradual and abrupt
shot transitions, and proposed methods based on localized
edge blocks. For abrupt shot boundaries, they proposed a
correlation-based method, based on which localized edge
gradients are then used for detecting gradual shot transitions.

The need for adaptation in the video indexing process
was first identified in [30] (see also [9]), where they showed
that video shots vary considerably from one shot to the other,
even for shots that come from the same video sequence.
They thus suggested that the results of an indexing scheme
could be improved by treating different shots differently, for
instance, by use of a different set of analysis parameters. Since
then, there has been an increasing attention to the prob-
lem. In [31], detailed experiments were carried out using
television news video. It was concluded that the selection of
similarity thresholds was a major problem, and hence there
is a need for adaptive thresholds to capture the different
characteristics of broadcast news video. Vansconcelos and
Lippman [10, 32] considered the duration of video shots,
and showed that the shot duration can be used to predict
the position of a new shot partition, and that the short
duration depends critically on the video content. They used
a statistical model of the shot duration to propose shot break
thresholds. By classifying video shots in terms of the shot
complexity and shot duration, and then performing indexing
adaptively based on the video shot classes, it was shown in [9,
30] that, indeed, adaptation could be used to improve both
the precision and recall simultaneously, without introducing
an intolerable amount of extra computation. Dawood and
Ghanbari [15] used a similar classification to model MPEG
video traffic. The problem of video indexing and retrieval
is very closely related to that of image indexing. Surveys on
video (and/or image) indexing and retrieval can be found in
[19, 21, 33, 34]. Video partitioning or segmentation has been
reviewed in [20].

In this paper, we study the use of both color and edges
in adaptive video partitioning. Our approach is distinct in its
use of multilevel edge-based features in video partitioning,
and in the provision of adaptation by a careful analysis
of these multilevel features, based on the notion of shot
variability. Adaptation is provided at three levels—at the
feature extraction stage for the locally-adaptive edge maps,
at the video sequence level, and at the individual shot level.

3. Multilevel Edge-Response Vectors

In our approach, we place emphasis on the structural
information in the video, as these are generally invariant
under various changes in the video, such as illumination
changes, translation, and partial occlusion. Thus, in addition
to the intensity values, we also make use of the edges in
computing the features to be used. In particular, we use multi
scale edges, since these can more easily capture localized
structures in the video frames.

EURASIP Journal on Image and Video Processing 3

3.1. Multilevel Image Decomposition. Let I(x, y) be an M1 ×
M2 image, with x = 1, 2, . . . ,M1; y = 1, 2, . . . ,M2. Given
I(x, y), we decompose it into different blocks. For each block,
we consider its content at different scales, and compute edge-
based features at each of these scales. We then use the features
to compare two adjacent frames in the video sequence. For
simplicity in the discussion, we assume images are square,
that is, M1 = M2 = M. We also assume M = 2p, for some
integer p. The ideas can easily be extended for the general
rectangular image.

Let b be the number of blocks at a given decomposition
level. We choose k, the level of decomposition, such that
b = 1, 4, 16, . . . , 22k, k = 0, 1, 2, . . . , log2M. Let s be the scale,
s = 0, 1, 2, . . . , S. Then, given the original image, I(x, y), we
can select relevant areas of the image at different scales, s.
Let Is(i, j) be the sub image part selected at scale s, where
i, j = 1, 2, . . . , (M/2)(1 + (1/2s)). At the lowest scale (s = 0),
we will have the entire image, viz:

I
(
x, y

) = I0(x, y
) = I0(x0 + x, y0 + y

)
, (1)

where x = 1, 2, . . . ,M; y = 1, 2, . . . ,M, and x0, y0 are
starting positions (typically, x0 = y0 = 0). Let xs0, ys0 be
the corresponding starting positions at scale s (these are with
respect to x0, y0 in I(x, y)). Then we have:

Is
(
x′, y′

) = I0(xs0 + i, ys0 + j
)
, (2)

where,

x′ = xs0 + i; i = 1, 2, . . . ,
M

2

(
1 +

1
2s

)
,

y′ = ys0 + j; j = 1, 2, . . . ,
M

2

(
1 +

1
2s

)
.

(3)

At a given scale s, the starting positions are computed as

xs0 = x0 +
M

2

(
1− 1

2s

)
,

ys0 = y0 +
M

2

(
1− 1

2s

)
.

(4)

The size of the image block selected at scale s will therefore
be ms × ms, where ms = (M/2)(1 − 1/2s). For a given
decomposition level, we consider each of the ms × ms-sized
blocks and compute the required image features. If we fix
the number of scales to 1 (i.e., s = 0) at each level k, (i.e.,
at each level, we select all the image positions within the
block to compute the feature), then the multi scale scheme
defaults to a simple multilevel representation of the image.
Thus, using s = 0 with L maximum number of levels (i.e.,
k = 0, 1, 2, . . . ,L− 1), we will have an N-dimensional feature
vector, where

N =
L−1∑

k=0

22k = 1
3

(
4L − 1

)
. (5)

Clearly, the number of features grows quickly with increasing
L (e.g., at L = 4, N = 85; at L = 5, N = 341). For
the multi scale representation, we have more than one scale

per level. With S as the number of scales per level (i.e.,
s = 0, 1, 2, . . . , S − 1), we will have S · N feature values for
each particular feature. In the following, we will assume a
single scale (i.e., S = 1, and s = 0). Figure 1 shows schematic
diagram of an image at different levels of decomposition, and
a tree representation of the individual blocks from each level.

3.2. Edge-Oriented Features. To reduce the possible effect of
noise in the video, we first apply Gaussian smoothening on
the input image before computing the edge-based features.
Given the image I(x, y), the edge gradients are defined as
Gx(x, y) = ∂I/∂x, Gy(x, y) = ∂I/∂y. The gradients are
obtained using appropriate edge kernels:

Gx
(
x, y

) = I
(
x, y

)∗Hx
(
x, y

)
,

Gy
(
x, y

) = I
(
x, y

)∗Hy
(
x, y

)
,

(6)

where Hx and Hy are the horizontal and vertical gradient
masks, respectively, and ∗ represents convolution. The
gradient amplitude is given by

GA
(
x, y

) =
√
G2
x

(
x, y

)
+ G2

y

(
x, y

)
, (7)

which can be approximated using the simple absolute sum:

GA
(
x, y

) = ∣∣Gx
(
x, y

)∣∣ +
∣
∣
∣Gy

(
x, y

)∣∣
∣. (8)

The phase angle is given by

Gφ
(
x, y

) = tan−1

(
Gy
(
x, y

)

Gx
(
x, y

)

)

. (9)

These will be calculated once for each frame, but will be used
at different levels of decomposition.

3.2.1. Locally Adaptive-Edge Map. The major motivation
for a multilevel approach is that certain variations in an
image, such as those due to edges are local in nature, and
hence will be better captured by use of local (rather than
global) information. For video in particular, this becomes
very important. Although some variations (such as panning,
tilting, and illumination) in the video could be global with
respect to a particular frame, object motion and some
other camera operations (such as zooming) are more easily
modeled as a local phenomenon. (Note, although zooming
could also be global over the video frame, the direction of
the motion vectors will vary from one area of the image to the
other). We capture global information by using information
from the lower levels of decomposition (smaller values of k).
With higher levels, we can obtain information about more
localized structures in the frame. Such localized structures
could be treated differently for improved performance.

We use locally adaptive thresholds to define the edge map
at different decomposition levels. Each block is considered
using it’s own local threshold. For a given block r, at the kth
level (r = 1, 2, 3, . . . , 22k), we define the edge map as follows:

Ek
r

(
x, y

) =
⎧
⎨

⎩

1, Gk
A,r

(
x, y

)
> τkr ,

0, otherwise,
(10)

4 EURASIP Journal on Image and Video Processing

r = 1 r = 1 r = 2

r = 3 r = 4

r = 1

r = 11 r = 12

r = 15 r = 16

Level k = 0 (1 block) Level k = 1 (4 blocks) Level k = 2 (16 blocks)

Original image

(a)

k = 0

k = 1

k = 2

k = 3

k = 4

Multilevel decomposition Tree representation for resultant sub-image blocks
M/20(k = 0)

M/23

M/21(k = 1)

M/22

(k = 2)

(b)

Figure 1: Multilevel decomposition (a) an image at three levels of decomposition; (b) tree representation of the decomposition.

where Gk
A,r is the corresponding gradient response in the rth

block at level k, and τkr is a local threshold. We can choose the
threshold simply as

τkr =
α

(
mk

r

)2

mk
r∑

x=1

mk
r∑

y=1

Gk
A,r

(
x, y

)
, (11)

where (mk
r)

2
is the size of the rth block at level k, α is

a constant. While the above approach to local thresholds
is simple and conceptual, it however considers each block
independent of the other blocks in the frame. It might be
advantageous to consider the local threshold with respect to
the global image variations [35]. At a given k, we can write
mk

r = mk, ∀r since the block size would all be the same for
any block, r.

Define the overall global image threshold as

τg = τo1 =
α

M2

M∑

x=1

M∑

y=1

GA
(
x, y

)
, (12)

where α is a constant (which can be determined empirically).

The local threshold for a given block r at each level k is
then given by

τkr =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

1− σke,r

μke,r

)

.τg , μke,r < μ0
e,1,

(
σke,r

μke,r

)

.τg , μke,r ≥ μ0
e,1, σke,r > μke,r ,

(

1 +
σke,r

μke,r

)

.τg , μke,r ≥ μ0
e,1, σke,r ≤ μke,r ,

(13)

where μke,r , σ
k
e,r are, respectively, the edge response mean and

standard deviation for block r, at level k.

3.2.2. Edge-Based Features. At a given level k, and for each
given block r, we compute the following features.

(i) Color, μkc,r , σ
k
c,r : color mean and standard deviation

using I(x, y).

EURASIP Journal on Image and Video Processing 5

(ii) Edge response, μke,r , σke,r : edge response mean and
standard deviation using GA(x, y):

μkr =
α

(
mk

r

)2

mk
r∑

x=1

mk
r∑

y=1

Gk
A,r

(
x, y

)
;

σke,r =

⎡

⎢
⎣

α
(
mk

r

)2 − 1

mk
r∑

x=1

mk
r∑

y=1

(
Gk
A,r(x, y)− μkr

)2

⎤

⎥
⎦

1/2
(14)

(iii) Phase angle, μkϕ,r , σ
k
ϕ,r : mean phase angle and standard

deviation using Gφ(x, y).

(iv) Edge length, μkλ,r : edge length using the edge map,

Ek
r (x, y), where μkλ,r =

∑
x,y E

k
r (x, y).

(v) Edge response at the edge points, μkp,r , σkp,r : edge
response mean and standard deviation computed
only at the edge points, as defined by the edge maps.

The edge points are the pixel positions that lie on the edges—
as determined by the thresholds above. We call the combined
features including the color features multilevel edge-response
vectors (MERVs).

3.3. Similarity Evaluation Using MERVs. Having extracted
the features, the next question is how to find appropriate
metrics to compare two video frames using these features.
Given two images I1(x, y) and I2(x, y), we can compute
the distance between them using the general Minkowski
distance, or some other metrics. In the following we use the
simple city-block distance.

For the edge length, there will be no standard deviation,
hence the distance will be

dλ(I1, I2) =
∑

k

∑

r

∣
∣∣μk,1

λ,r − μk,2
λ,r

∣
∣∣. (15)

For the other features, we need to consider both the mean
and the standard deviation. For example, for the edge
response feature, we will have

de(I1, I2) =
∑

k

∑

r

(∣∣
∣μk,1

e,r − μk,2
e,r

∣
∣
∣ +

∣
∣
∣σk,1

e,r − σk,2
e,r

∣
∣
∣
)
. (16)

Similarly, we obtain the corresponding distance dc(·), dϕ(·),
and dp(·) for color, phase angle, and edge response at edge
points, respectively. The overall distance between the two
images is then determined as a simple weighted-average of
the individual distances from the different features:

D(I1, I2) = wcdc(I1, I2) + wede(I1, I2) + wpdp(I1, I2)

+ wϕdϕ(I1, I2) + wλdλ(I1, I2),
(17)

where wc + we + wp + wϕ + wλ = 1.
The parameters wc, we, wϕ, wλ, wp are respective

weights for features based on the color, edge response, phase
angle, edge length, and edge response at edge points. By
simply varying the weights, we can completely ignore the
contribution of any particular feature. For the weights above

to be meaningful however, we need to be sure that the range
of values for the individual distances will be similar. Thus, we
either have to normalize all the features to the same range of
values, or we can compute the distance such that the overall
distance from each feature is normalized. We take the later
approach, and perform normalization at the time of distance
computation, based on the model-data feature pairs

dλ(I1, I2) =
∑

k

∑

r

⎛

⎝

∣
∣
∣μk,1

λ,r − μk,2
λ,r

∣
∣
∣

1 + μk,1
λ,r + μk,2

λ,r

⎞

⎠,

de(I1, I2) =
∑

k

∑

r

⎛

⎝wμ

∣
∣
∣μk,1

e,r − μk,2
e,r

∣
∣
∣

1 + μk,1
e,r + μk,2

e,r
+ wσ

∣
∣
∣σk,1

e,r − σk,2
e,r

∣
∣
∣

1 + σk,1
e,r + σk,2

e,r

⎞

⎠,

(18)

where again wμ and wσ are weights, with wμ + wσ = 1. The
normalized distances can then be used with the weights in
(17) to obtain the overall distance between the frames.

Another important issue is the effect of each individual
block in the overall difference. Let wk

f ,r be the weight of
feature f from the rth block at level k. That is, f ∈
{c, e,ϕ, λ, p}, where c, e,ϕ, λ, p denote respective features
based on color, edge response, phase angle, edge length, and
edge response at edge points. A simple approach is to adopt a
method whereby for a chosen feature f, the contribution from
every block at each level is given an equal weight. Effectively,
wk

f ,r = 1/N , ∀r, k, where N = ∑L
k=0 Nk =

∑L
k=0 22k. Nk

is simply the number of blocks at the kth level. This makes
the features from the lower levels of the decomposition to
become more important. As the number of decomposition
levels L increases, the lower-level features will dominate in
the computation of the overall difference, and hence this
will become very sensitive to small spatial differences in the
frames. This will hence be more susceptible to noise and
minute motion variations in the video. For shot classification
however, this can be beneficial, since the domination of
global movement or features in the video can be avoided.

A better approach could be to divide up the contribution
to the overall difference amongst the k levels. The blocks
that make up the kth level will then share the contribution
allocated to that level. A simple way to do this will be by using
an equal distribution of the contribution to all the levels:

wk
f ,r =

1
L

(
1

22k

)
. (19)

In all cases, we must have
∑

r

∑
k w

k
f ,r = 1. The effect of

the weights using the two cases considered above can be
appreciated from Table 1.

Considering the weights at each level, the distance
between adjacent frames can be computed:

de(I1, I2) =
∑

k

∑

r

(∣∣
∣μk,1

e,r − μk,2
e,r

∣
∣
∣ +

∣
∣
∣σk,1

e,r − σk,2
e,r

∣
∣
∣
)
wk
e,r , (20)

or in weighted and normalized form:

de(I1, I2)=
∑

k

∑

r

⎛

⎝wμ

∣∣
∣μk,1

e,r −μk,2
e,r

∣∣
∣

1+μk,1
e,r +μk,2

e,r
+ wσ

∣∣
∣σk,1

e,r −σk,2
e,r

∣∣
∣

1+σk,1
e,r +σk,2

e,r

⎞

⎠.wk
e,r .

(21)

6 EURASIP Journal on Image and Video Processing

Table 1: Weights for two choices for the contribution from each decomposition level (L = 4).

SCHEME 1 SCHEME 2

k Nk One block wk
f ,r

All blocks from
level k:

∑
r w

k
f ,r

One block wk
f ,r

All blocks from
level k:

∑
r w

k
f ,r

0 1
1

85
1

85
1
4

1
4

1 4
1

85
4

85
1

16

1
4

2 16
1

85
16
85

1
64

1
4

3 64
1

85
64
85

1
256

1
4

4. Adaptive Video Partitioning

When the distance D(·) is computed for a series of
adjacent video frames, the result will be a sequence of
frame differences, FD-sequence for short. The actual video
partitioning is performed by a further analysis of the FD-
sequence. Let Di = D(fi, fi+1) be the difference between two
adjacent frames, fi and fi+1. The FD-sequence is defined as
FD = D1,D2, . . . ,Dn−1, where n is the number of frames
in the video. The FD-sequence is usually characterized by
significant peaks at frame positions where a shot change
has occurred. With the FD-sequence, the video partitioning
problem then becomes that of determining appropriate
thresholds to isolate these “significant peaks” from other
peaks that might occur in the sequence. The shot threshold
is defined as τs = τ · maxi{D(fi, fi+1)}. We declare a
shot partition at frame t whenever the distance exceeds the
threshold: that is, whenever Dt = FD(t) > τS.

4.1. Adaptation at the Video Sequence Level. The description
above assumes that video sequences are homogeneous,
and hence can all be considered using the same set of
parameters. However, video sequences vary considerably
from one sequence to the other. First we consider adapting
the video analysis algorithm based on the entire video
sequence. That is, for each video sequence, we determine the
set of analysis parameters that will produce the best results.
This set of parameters is then used to analyze all the frames
or shots in the video sequence.

Given the weights on the multilevel features (see (17)),
we can parameterize the analysis algorithm in terms of these
weights, w = (wc,we,wp,wϕ,wλ) and the threshold, τ. For
adaptation at the sequence level, rather than considering all
the features for the distance calculation, we consider only
the features that are relevant to the video being analyzed.
Thus, based on the particular video, we can determine the
best (w, τ) pair for segmenting the video.

To check the effect of the weights and the thresholds
on different video sequences, we used a combination of the
weights at different thresholds. Based on empirical analysis,
we chose 32 combinations of the weights (Table 2) and 9
thresholds (Table 3).

We observed that different videos may require different
contributions from each feature (i.e., different weights, w)
for best results. Also, at a given w, different thresholds could
produce different results. (See Table 6, Section 5). Similarly,
for a given video sequence, various sets of weights can
produce the same (best) results, but at different thresholds.
Conceptually, adaptation at the sequence level should be
simple. But there are several problems. First, at the sequence
level, the video is still being considered at a very coarse
granularity. Video shots are known to vary greatly, even
for shots in the same video. Hence, different shots in the
same video sequence could be very different in content.
More importantly, automated mapping of the (w, τ) pair for
each given video is a major problem, requiring a two-pass
approach. This makes sequence-level adaptation unsuitable
for real-time applications, or for network applications, where
dynamic modeling of video data traffic is required.

4.2. Shot-Level Adaptation. The above problems can be
addressed by considering the individual shots that make
up the video. In [9], shots were characterized based on
the activity and motion in the shots, and the respective
shot duration. Using the characterization, video shots were
grouped into nine classes, based on which video partitioning
was performed by adaptively choosing different thresholds
for each shot class. In the current work, we take a different
approach for the problems of video characterization and
classification.

4.2.1. Estimating Video Shot Complexity. To make the thresh-
olds sensitive to the different shot classes, we need some
methods to make such thresholds locally adaptive. The
overall video shot complexity depends on the activity and the
motion, while the shot class depends on both the complexity
and the duration of the shot. The shot duration has a strong
correlation with the amount of motion in the video. The
length of the shot is typically inversely proportional to the
amount of motion in the video [9]. We can determine the
temporal duration as we analyze the shot. We could also
determine the motion complexity by computing the motion
vectors using motion estimation techniques [36]. However,
motion estimation is very computationally intensive.

EURASIP Journal on Image and Video Processing 7

Table 2: Parameter sets used in video analysis (weights, w). ID’s are from 1 to 32.

id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

wc 0 0 0 0 1 0 0 0 0 0 0
1
2

1
2

1
2

1
2

0 0 0 0
1
3

1
3

1
3

1
3

1
3

1
3

0
1
4

1
4

1
4

1
4

1
5

1
4

we 0 0 0 1 0 0 0 0
1
2

1
2

1
2

0 0 0
1
2

0
1
3

1
3

1
3

0 0 0
1
3

1
3

1
3

1
4

0
1
4

1
4

1
4

1
5

1
8

wp 0 0 1 0 0 0
1
2

1
2

0 0
1
2

0 0
1
2

0
1
3

0
1
3

1
3

0
1
3

1
3

0 0
1
3

1
4

1
4

0
1
4

1
4

1
5

1
4

wϕ 0 1 0 0 0
1
2

0
1
2

0
1
2

0 0
1
2

0 0
1
3

1
3

0
1
3

1
3

0
1
3

0
1
3

0
1
4

1
4

1
4

0
1
4

1
5

1
4

wλ 1 0 0 0 0
1
2

1
2

0
1
2

0 0
1
2

0 0 0
1
3

1
3

1
3

0
1
3

1
3

0
1
3

0 0
1
4

1
4

1
4

1
4

0
1
5

1
8

Table 3: Parameter sets used in video analysis (thresholds, τ).

Threshold ID 1 2 3 4 5 6 7 8 9

Threshold τ 0.15 0.18 0.22 0.26 0.30 0.33 0.37 0.41 0.45

Since we do not need accurate motion estimation to
classify the shots or for adaptive indexing, an estimate
of the amount of motion in the shot is enough. Thus,
we can approximate the amount of motion using the
differences between adjacent frames (e.g., by analyzing
the FD-sequence), rather than direct computation of the
motion vectors. A similar observation has been made by
Tao and Orchard [37], where they noticed that the residual
signal generated after motion-compensated predication is
highly correlated with the gradient magnitude: the motion
compensated error is larger for pixels with larger gradient
magnitude on average. They thus suggested that the gradient
(from one frame to the other) could be estimated from
the reconstructed image using the motion estimates. In this
work, we are interested in the reverse procedure; given the
gradient information (as captured by the edge response
vectors), we wish to estimate the amount of motion in the
shot, without explicit motion estimation.

We can estimate both the image activity and the motion
by using the already available multilevel edge response
vectors, with appropriate weights. For example, if we use
∀i,wi = 1/N (e.g., wi = 1/85, for 4 decomposition levels),
or if we ignore the global averages altogether, (i.e., the
contributions from level k = 0), then the lower-level features
(which are increasingly localized) can be used to predict the
amount of motion. We could also ignore further higher level
features, for instance, levels at k ≤ L/2. We can estimate the
activity by using the MERVs from just one frame in a given
shot.

The motion and activity will generally result in an overall
variability of the shot. The shot complexity depends directly
on this shot variability. To estimate the shot variability, we
use the mean and standard deviation of the frame-difference
sequence (the FD-sequence) within the shot. We compute
this for each of the MERV features, and use a weighted
average to determine the shot variability. Given two time
instants, t1 and t2, (t2 > t1), we compute the shot variability

as follows. Let T = t2 − t1 be the duration. Let FDλ be
the frame difference sequence using a particular multilevel
feature, say λ:

μλ(t1, t2) = 1
t2 − t1

t2∑

t=t1
FDλ(t) = 1

T

t2∑

t=t1
FDλ(t),

σ2
λ (t1, t2) = 1

T − 1

t2∑

t=t1

(
FDλ(t)− μλ(t1, t2)

)2
.

(22)

Similarly, we compute for color, edge response, edge-
response at edge points, and the phase angle. Then, as with
the between-frame distances, we obtain the shot-variability
using a weighted combination from all the features:

μ(t1, t2) = wcμc(t1, t2) + weμe(t1, t2) + wpμp(t1, t2)

+ wϕμϕ(t1, t2) + wλμλ(t1, t2),

σ(t1, t2) = wcσc(t1, t2) + weσe(t1, t2) + wpσp(t1, t2)

+ wϕσϕ(t1, t2) + wλσλ(t1, t2).

(23)

The weights here may not necessarily be the same as those
used for the distances.

In [4, 9], different methods were proposed for computing
the motion and image complexities, for instance, using
the spectral entropy, and other metrics. With the above
approach, one problem will be computing the standard
deviation at each frame as the shot is progressing. This
problem can be solved by doing the computations at only
defined periodic intervals (the periods could also be chosen
adaptively). However, one advantage of using the shot
variability defined above is that the parameters required can
be computed incrementally, using the preceding values. We
can do this from the general definition of mean and standard
deviation.

8 EURASIP Journal on Image and Video Processing

Given a data ensemble, X = x1, x2, x3, . . . , xk−1, xk,
xk+1, . . ., and the mean of the first k items, μk = μ(x1, xk) =
(1/k)

∑k
i=1 xi, we can estimate the mean when the (k + 1)th

item is added:

μk+1 =
kμk + xk+1

k + 1
. (24)

Similarly, for the variance (or standard deviation), we have

(k − 1)σ2
k =

k∑

i=1

(
xi − μk

)2

(k + 1− 1)σ2
k+1 =

k+1∑

i=1

(
xi − μk+1

)2

=
k∑

i=1

(
xi − μk+1

)2 +
(
xk+1 − μk+1

)2
.

(25)

Solving (25) simultaneously, we obtain the incremental
formula

σ2
k+1 =

(k − 1)σ2
k + k

(
μk − μk+1

)2 +
(
xk+1 − μk+1

)2

k
. (26)

We can use these to incrementally estimate the shot vari-
ability using the available FD-sequence. Based on the shot
variability, we classify the shots into nine classes, as follows.
Given μ(t1, t2) and σ(t1, t2) for a given shot, we classify
each into three classes, namely, low (I), medium (II), and
high (III), based on an equi probability classification. Let
μc(t1, t2) ∈ {I , II , III} be the classification due to μ(t1, t2).
Similarly, let σc(t1, t2) ∈ {I , II , III} be the classification due
to σ(t1, t2). Using the classifications from the two dimensions
of shot variability, we define a simple mapping function f (·)
to determine the overall shot class, viz:

Sc = f
(
μc(t1, t2), σc(t1, t2)

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I ,
(
μc, σc

) = (I , I),

II ,
(
μc, σc

) = (II , I),

III ,
(
μc, σc

) = (I , II),

IV ,
(
μc, σc

) = (III , I),

V ,
(
μc, σc

) = (I , III),

VI ,
(
μc, σc

) = (II , II),

VII ,
(
μc, σc

) = (III , II),

VIII ,
(
μc, σc

) = (II , III),

IX ,
(
μc, σc

) = (III , III).
(27)

Table 4 shows the classification results for the test video
sequence, based on the above scheme.

4.2.2. Adaptive Shot Thresholds. Having characterized and
classified the shots based on the shot variability, the next
question is to determine the parameters for video shot

partitioning for a given shot. Ideally, given the FD sequence,
(and assuming that it was obtained from a distance (and
not a similarity) measure), we expect that the threshold for
shot changes should decrease with increasing shot length,
but increase with increasing shot complexity (or variability).
Formally, given a video shot s j , we classify it into a certain
shot class, ci ∈ {I , II , III , . . . , IX}. The problem of shot-level
adaptation then is to determine the parameter set (i.e., the
(w, τ) pair) that will produce the best results for all shots,
s j ∈ ci, ∀i, j. Here, best results are defined in terms of
information retrieval measures of precision and recall.

We take a pragmatic approach to the problem of
determining the parameters. Using a training set of video
shots, we use a simple clustering technique to determine the
(w, τ) pairs that produce the best results for each shot class
in the training set. We then use these pairs for analysis of the
test video sequences.

Let P = (w, τ) be the weight-threshold pair that defines
the parameter set for video segmentation. Let V be the
number of video sequences used for the training set. We use
the edge-response vectors to analyze the video shots in the
training set, using all the available weights and thresholds
(i.e., 32 weights and 9 thresholds in all, see Tables 2 and 3.
Let Pc

j denote the set of (w, τ) pairs that produced correct
partitioning results for the class c shots in video sequence j.
To select the best (w, τ) pair for a given shot class, c, all we
need is the intersection of Pc

j , for all the V sequences:

Pc = Pc
1 ∩ Pc

2 ∩ Pc
3 · · · ∩ Pc

V . (28)

When we have |Pc| > 1, then any member of Pc can be used
as the best parameter set. The major problem is when Pc =
∅, that is, the intersection is empty, implying that no single
parameter set always produced correct results for all the class
c shots in the training sequences. Two approaches can be used
to address this problem.

For each shot in a given video sequence, we define an
array ai, j , i = 1, 2, . . . ,wmax, j = 1, 2, . . . , τmax, such that
ai, j = 1 if the shot is correctly partitioned with the parameter
set (i, j) pair, and ai, j = 0 otherwise. We use wmax = 32,
τmax = 9 in our implementation. Let aci, j(q) denote the
cumulative value in the ai, j arrays for all the class c shots in
video sequence q. Then, the best parameter set for the class c
shots is determined as

Pc = arg max
i, j

{
aci, j
}

, (29)

where, aci, j =
∑V

q=1 a
c
i, j(q).

The above selects the parameter set that produced the
best overall result, over all the shots of a given class in the
training set. This could be dominated by one video sequence
that has many shots of the given type. A variation could be to
use the parameter set that produced the best result over the
shots of a given class from most of the sequences, although
it may not necessarily produce the best results over all shots.
Thus,

Pc = arg max
q

{
Pc
(
q
)}

, (30)

where, Pc(q) = argmaxi, j{aci, j(q)}.

EURASIP Journal on Image and Video Processing 9

Table 4: Shot classification results based on shot variability.

Class Antelope Canyon Crops Culture Journal LAS Total

I 20 4 6 28 15 34 107

II 0 1 0 0 0 0 1

III 9 0 5 4 40 7 65

IV 0 2 0 0 1 0 3

V 2 0 1 0 5 2 10

VI 0 4 0 1 2 0 7

VII 0 5 0 0 3 0 8

VIII 1 0 0 0 0 1 2

IX 0 2 1 0 1 0 4

Total 32 18 13 33 67 44 211

Table 5: Effectiveness of MERVs for non-adaptive video partitioning.

Video Shots Retrieved Correct False Miss Pr Rc

Antelope 32 37 30 7 2 0.81 0.94

Canyon 18 18 18 0 0 1.00 1.00

Crops 13 16 13 3 0 0.81 1.00

Culture 33 21 20 1 13 0.95 0.61

Journal 67 70 65 5 2 0.93 0.97

LAS 44 35 35 0 7 1.00 0.83

Average 0.92 0.89

5. Results

To test the performance of the proposed edge-based adaptive
method, we ran some experiments using two sets of video
sequences. The first set had 6 sequences taken from standard
MPEG-7 sequences, and from available online video sources
[31]. For each video sequence, the frame size was fixed at
352 × 288. The second set had 5 sequences taken from
the US National Institute of Standards (NIST) benchmark
TRECVID 2001 test sequences. The frame size for sequences
in this set was 320 × 240. The experiments were carried out
in a MATLAB Version 7.3.0.267 (R2006b) environment using
a personal computer with Intel(R) CPU T2400, running
at 1.83 GHz with 1.99 GB RAM. We measure performance
in terms of the information retrieval measures of precision
and recall. We use the following notation: D = set of all
positions of true scene cuts in a test video sequence, B = set
of all positions of scene cuts returned by the system, C =
subset of B that are true scene cuts (i.e., correct detection,
or C = B ∩ D). Then, precision Pr = |C|/|B|, and recall
Rc = |C|/|D|.

5.1. Effectiveness of MERVs on Non-Adaptive Partitioning.
First, we tested the effectiveness of the proposed edge-
response vectors in video partitioning, without consideration
for adaptation. This is important, since the results of the
adaptive schemes will also be influenced by the inherent
robustness of the edge-based features. The results are shown
in Table 5. As can be seen, the edge-oriented approach
produced about 90% in terms of precision and recall.

5.2. Adaptive Partitioning. Table 6 shows the results for
adaptation at the video sequence level. The last two columns
show the weight-threshold parameter pairs that were used
to produce the indicated results. Where there are more than
two entries, it means that the indicated entries all produced
the same result. The table shows a significant improve-
ment over the non-adaptive approach. The sequence-level
adaptation is a two-pass method. That is, it needs a first
pass on the data to determine the analysis parameters,
and a second pass to perform the analysis. For some
applications, such as real-time video streaming, the two-
pass approach may not be applicable. Shot-level adaptation
avoids the two-pass problem. Table 7 shows that results for
shot-level adaptation, based on shot characterization and
classification using the proposed shot variability measure.
The results are a little worse than the two-pass method using
sequence-level adaptation, but generally better than the static
approach.

5.3. Comparative Results. We performed a comparative
experiment using other popular techniques. Table 8 shows
the results. For color histograms, we used region-based
histograms with 16 blocks ((M1/4) × (M2/4) regions) per
frame, where M1 and M2 are the frame dimensions. Analysis
using motion-vector-based methods [28] are based on 20 ×
20 sub blocks. The specific kernel size used for Cooper
et al.’s DCT-based method [25] are also indicated in the
table, as this varied significantly from sequence to sequence.
In all cases, we have reported results using the parameters
that gave the best overall result for a given video sequence,

10 EURASIP Journal on Image and Video Processing

Table 6: Results for proposed sequence-level adaptive partitioning.

Video Shots Retrieved Correct False Miss Pr Rc Weight, w Threshold, τ

Antelope 32 31 30 1 2 0.97 0.94 12 0.26

Canyon 18 18 18 0 0 1.00 1.00 15, 18, 25, 29 0.26

Crops 13 13 13 0 0 1.00 1.00 15 0.37

Culture 33 33 33 0 0 1.00 1.00 9, 23 0.18

Journal 67 71 67 4 0 0.94 1.00 23 0.3

LAS 44 45 44 1 0 0.98 1.00 23, 27, 28 0.18

Average 0.98 0.99

Table 7: Results for adaptive partitioning using proposed shot variability measure.

Video Shots Retrieved Correct False Miss Pr Rc

Antelope 32 35 31 4 1 0.89 0.97

Canyon 18 19 18 1 0 0.95 1.00

Crops 13 13 12 0 1 1.00 0.92

Culture 33 27 26 1 7 0.96 0.78

Journal 67 60 59 1 8 0.98 0.88

LAS 44 44 44 0 0 1.00 1.00

Average 0.96 0.93

or for the test video set used. Apart from the results in
[9], none of the other methods used adaptive partitioning.
Thus, we can compare the performance of the static (non-
adaptive) method using the proposed MERVs as features
with the results from the other schemes. The table shows that
MERV features are very competitive, having a comparable
performance with the correlation-based method [27], the
best performing technique of the other schemes tested. While
simple color histogram did well on some video sequences, it
produced poor performance on CROPS and CANYON video
sets. This is mainly because these two sequences have both
indoor and outdoor scenes involving significant variation in
illumination. Obviously color features are easily affected by
this variation, and hence the precision of the color-histogram
based method was quite low for these sequences. The same
explains the poor performance of the motion-vector-based
method. Illumination variation between frames often leads
to poor motion detection and thus a significant error in
the motion vectors (even with the special parameter for
illumination handling used in [28]). Overall, the results from
the adaptive schemes are generally better than those from
the non-adaptive schemes. This can be explained by the
fact that the adaptive schemes spend time to analyze each
shot first, before deciding on the analysis parameters. Thus,
they are able to adapt better to the changing nature of shot
characteristics as we move along in the video sequence.

We then tested the methods on another set of video
sequences, this time using five sequences from the NIST
benchmark TRECVID 2001 video sequences. The sequences
and annotations by NIST, such as positions of true
scene cuts are available via the NIST TRECVID website
(http://www-nlpir.nist.gov/projects/trecvid/revised.html).
(We could not get access to more recent sequences used in

the TRECVID series. The most recent versions are available
only for competitors in the TRECVID challenge. All the
same, we believe that the 2001 data still provides another
independent data set suitable for testing the algorithms). The
results on the TRECVID sequences are shown in Table 9.
The overall result is not too different from those of Table 8.
Both the proposed method and the correlation method
produced better results than the others. Both had about the
same average recall, with the proposed method performing
slightly better in recall (0.922 versus 0.906).

We also compared the proposed adaptive scheme with
the scene-adaptive method proposed in [9]. The major
difference was in terms of scene characterization. After
characterization, we then used the same MERV features to
perform video partitioning. Thus, this essentially compares
the performance of the proposed shot variability measure
for video shot characterization and classification against that
of characterization using explicit motion and activity. Using
shot variability for shot characterization and classification
is slightly superior to using motion and activity complexity
measures [9], with (precision, recall) values of (0.96, 0.93)
versus (0.94, 0.91). A more striking difference, however, can
be observed by considering the computational requirements
for the two approaches. Using shot variability as a shot
complexity measure is about 5 times faster than using motion
and activity. The shot variability measure does not involve
explicit motion estimation and activity characterization, but
rather uses the same features (i.e., the FD-sequence) that
were used in the analysis. Thus, it is generally more efficient
than using motion and activity. Table 10 shows the overall
time taken by the different methods in video partitioning.
The reported time represents the average feature extraction
time per frame required in analyzing a given video sequence.

EURASIP Journal on Image and Video Processing 11

Table 8: Comparative results with other video partitioning algorithms. The last three schemes are propsoed in this work.

Video Other Proposed Techniques Methods Proposed in this Work

Color Motion-vector Correlation- Kernel-correlation Non-adaptive Sequence-level Shot-level

histograms likelihoods [28] based [27] [25] MERVs adaptation adaptation

Pr Rc Pr Rc Pr Rc Pr Rc BestKernel Pr Rc Pr Rc Pr Rc

Antelope 0.91 0.97 0.50 0.71 0.91 0.94 0.68 0.84 5× 5 0.81 0.94 0.97 0.94 0.89 0.97

Canyon 0.53 1.00 0.78 0.60 1.00 0.94 0.74 1.00 6× 6 1.00 1.00 1.00 1.00 0.95 1.00

Crops 0.31 1.00 0.35 0.84 1.00 1.00 0.71 1.00 4× 4 0.81 1.00 1.00 1.00 1.00 0.92

Culture 0.89 0.97 0.32 0.73 0.89 1.00 0.76 0.84 5× 5 0.95 0.61 1.00 1.00 0.96 0.78

Journal 0.98 0.72 0.36 0.76 0.67 0.94 0.78 0.54 5× 5 0.93 0.97 1.00 0.97 0.98 0.88

LAS 0.97 0.82 1.00 0.53 0.84 0.84 0.78 0.89 4× 4 1.00 0.83 1.00 0.99 1.00 1.00

Average 0.77 0.91 0.55 0.70 0.89 0.94 0.74 0.85 0.92 0.89 1.00 0.98 0.96 0.93

Table 9: Comparative results with other video partitioning algorithms on TRECVID 2001 dataset.

Number Color Motion-vector Correlation- Kernel-correlation Kernel-correlation Proposed

Sequence of shots histograms likelihoods [28] based [27] [25] (5× 5 kernel) [25] (6× 6 kernel) method

Pr Rc Pr Rc Pr Rc Pr Rc Pr Rc Pr Rc

anni005 38 0.64 0.83 0.46 0.53 0.87 0.89 0.71 0.64 0.72 0.64 0.87 0.91

anni006 41 0.78 0.70 0.57 0.56 0.84 0.88 0.71 0.68 0.79 0.69 0.82 0.89

anni009 38 0.84 0.71 0.59 0.62 0.86 0.94 0.81 0.78 0.83 0.81 0.87 0.93

BOR08 197 0.78 0.78 0.24 0.64 0.85 0.88 0.60 0.83 0.69 0.81 0.86 0.91

NAD53 83 0.69 0.62 0.46 0.73 0.79 0.94 0.69 0.84 0.75 0.80 0.81 0.97

Average 0.75 0.73 0.46 0.62 0.84 0.91 0.71 0.75 0.76 0.75 0.85 0.92

Table 10: CPU time taken for feature extraction for different
methods.

Method CPU Time (sec)

Color histogram 0.0180

Motion-vector likelihoods [28] 0.3991

Correlation-based [27] 0.0270

Kernel-correlation [25] (with 5× 5 kernel) 0.9515

Proposed adaptive scheme 0.1210

6. Discussion and Conclusion

Although video partitioning is an actively researched area,
recent publications [9, 20, 24–28] show that the problem
is far from being completely resolved. The major contri-
butions of this paper are on two aspects of the video
partitioning problem. The first is the proposed new set of
features (the multilevel edge response vectors (MERVs)) for
video partitioning. The edge-based nature of the features
makes them particularly suitable in handling significant
illumination variations in the video, while the multilevel
decomposition framework makes it possible to adapt the
features to the nature of the video frames being considered.
The second contribution is on adaptive video partitioning.
While adaptive video partitioning was first described in
[9, 30], here we propose a new and more efficient method
for performing the scene characterization required for scene
partitioning, and a method for automated determination of
thresholds based on the video shot classes. The proposed

method is online—performing scene characterization and
classification as the frames in a given shot are being observed,
rather than waiting until the end of a given shot (as was done
in [9]). This feature, coupled with the improved efficiency
in shot characterization makes the approach particularly
suitable for fast and online characterization of the video,
which is important in both video retrieval, and in video
traffic modeling for adaptive network resource allocation
[15]. We mention that, while we have provided adaptation
based on the MERV features proposed, the general idea of
adaptation in video analysis is independent of the specific
features being used. For any given feature, the idea of
adaptation can be applied by a careful study of the feature
in question, and then adapting the analysis parameters
using this feature based on the nature of the shot being
analyzed.

In conclusion, we have studied the problem of video
segmentation, using an adaptive edge-oriented framework.
Adaptation is provided by an analysis of the video shot
characteristics using the frame difference sequence. In par-
ticular, we defined the shot variability measure, based on
which the video shots are characterized and then classified.
To provide adaptation in the analysis, we determine the
best set of parameters for each given shot class, and then
analyze the shots that belong to the given class using only
these parameter sets. An algorithm for determining the
best parameters for each given shot class is presented. We
described adaptation at three levels: at the feature extraction
stage for the locally-adaptive edge maps, at the video
sequence level, and at the individual shot level.

12 EURASIP Journal on Image and Video Processing

Experimental results show that the proposed multilevel
edge-based features provide a performance of about 90%
in terms of average precision and recall. In comparison
with traditional approaches, the adaptive schemes provide a
better performance over non-adaptive approaches, using the
same multilevel edge-based features—with video sequence
level adaptation producing about 99% performance. Further,
the use of shot variability as a measure of shot complexity
resulted in a slightly superior performance (about 2%
improvement in precision) over a previously proposed
method of explicit motion estimation and shot activity
analysis. However, in terms of efficiency, using the shot
variability led to a five fold improvement in efficiency. The
reported work has applications beyond video indexing and
retrieval. In particular, given the significant reduction in
computations, the approach becomes attractive for real-time
applications, such as in dynamic monitoring, characteriza-
tion and modeling of video data traffic, and in real-time
video surveillance.

References

[1] M. J. Swain and D. H. Ballard, “Color indexing,” International
Journal of Computer Vision, vol. 7, no. 1, pp. 11–32, 1991.

[2] A. Nagasaka and Y. Tanaka, “Automatic video indexing and
full-video search for object appearances,” in Visual Database
Systems II, E. Knuth and L. M. Wegner, Eds., pp. 113–127,
Elsevier, 1992.

[3] H. Zhang, A. Kankanhalli, and S. W. Smoliar, “Automatic
partitioning of full-motion video,” Multimedia Systems, vol. 1,
no. 1, pp. 10–28, 1993.

[4] D. A. Adjeroh and M. C. Lee, “Robust and efficient transform
domain video sequence analysis: an approach from the gen-
eralized color ratio model,” Journal of Visual Communication
and Image Representation, vol. 8, no. 2, pp. 182–207, 1997.

[5] R. Zabih, J. Miller, and K. Mai, “A feature-based algorithm
for detecting and classifying production effects,” Multimedia
Systems, vol. 7, no. 2, pp. 119–128, 1999.

[6] J. D. Courtney, “Automatic video indexing via object motion
analysis,” Pattern Recognition, vol. 30, no. 4, pp. 607–625, 1997.

[7] P. Bouthemy, M. Gelgon, and F. Ganansia, “A unified approach
to shot change detection and camera motion characteriza-
tion,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 9, no. 7, pp. 1030–1044, 1999.

[8] S. Dagtas, W. Al-Khatib, A. Ghafoor, and R. L. Kashyap,
“Models for motion-based video indexing and retrieval,” IEEE
Transactions on Image Processing, vol. 9, no. 1, pp. 88–101,
2000.

[9] D. A. Adjeroh and M. C. Lee, “Scene-adaptive transform
domain video partitioning,” IEEE Transactions on Multimedia,
vol. 6, no. 1, pp. 58–69, 2004.

[10] N. Vasconcelos and A. Lippman, “Statistical models of video
structure for content analysis and characterization,” IEEE
Transactions on Image Processing, vol. 9, no. 1, pp. 3–19, 2000.

[11] V. S. Subrahmanian, Principles of Multimedia Database Sys-
tems, Morgan Kaufmann, San Mateo, Calif, USA, 1998.

[12] T. C. T. Kuo and A. L. P. Chen, “Content-based query process-
ing for video databases,” IEEE Transactions onMultimedia, vol.
2, no. 1, pp. 1–13, 2000.

[13] C. Taskiran, J.-Y. Chen, A. Albiol, L. Torres, C. A. Bouman, and
E. J. Delp, “ViBE: a compressed video database structured for

active browsing and search,” IEEE Transactions on Multimedia,
vol. 6, no. 1, pp. 103–118, 2004.

[14] S.-C. S. Cheung and A. Zakhor, “Fast similarity search and
clustering of video sequences on the world-wide-web,” IEEE
Transactions on Multimedia, vol. 7, no. 3, pp. 524–537, 2005.

[15] A. H. M. Dawood and M. Ghanbari, “Content-based MPEG
video traffic modeling,” IEEE Transactions on Multimedia, vol.
1, no. 1, pp. 77–87, 1999.

[16] F. Arman, A. Hsu, and M.-Y. Chiu, “Image processing on
encoded video sequences,” Multimedia Systems, vol. 1, no. 5,
pp. 211–219, 1994.

[17] A. Hampapur, R. Jain, and T. E. Weymouth, “Production
model based digital video segmentation,” Multimedia Tools
and Applications, vol. 1, no. 1, pp. 9–46, 1995.

[18] S.-W. Lee, Y.-M. Kim, and S. W. Choi, “Fast scene change
detection using direct feature extraction from MPEG com-
pressed videos,” IEEE Transactions on Multimedia, vol. 2, no.
4, pp. 240–254, 2000.

[19] G. Ahanger and T. D. C. Little, “A survey of technologies
for parsing and indexing digital video,” Journal of Visual
Communication and Image Representation, vol. 7, no. 1, pp.
28–43, 1996.

[20] A. Hanjalic, “Shot-boundary detection: unraveled and
resolved?” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 12, no. 2, pp. 90–105, 2002.

[21] M. K. Mandal, F. Idris, and S. Panchanathan, “A critical
evaluation of image and video indexing techniques in the
compressed domain,” Image and Vision Computing, vol. 17, no.
7, pp. 513–529, 1999.

[22] M. Abdel-Mottaleb and S. Krishnamachari, “Multimedia
descriptions based on MPEG-7: extraction and applications,”
IEEE Transactions on Multimedia, vol. 6, no. 3, pp. 459–468,
2004.

[23] B. Shen and I. K. Sethi, “Direct feature extraction from
compressed images,” in Storage and Retrieval for Still Image
and Video Databases IV, vol. 2670 of Proceedings of SPIE, pp.
404–414, San Jose, Calif, USA, February 1996.

[24] J. Bescos, G. Cisneros, J. M. Martinez, J. M. Menendez, and
J. Cabrera, “A unified model for techniques on video-shot
transition detection,” IEEE Transactions on Multimedia, vol. 7,
no. 2, pp. 293–307, 2005.

[25] M. Cooper, T. Liu, and E. Rieffel, “Video segmentation
via temporal pattern classification,” IEEE Transactions on
Multimedia, vol. 9, no. 3, pp. 610–618, 2007.

[26] S. Li and M.-C. Lee, “Effective detection of various wipe
transitions,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 17, no. 6, pp. 663–673, 2007.

[27] H.-W. Yoo, H.-J. Ryoo, and D.-S. Jang, “Gradual shot bound-
ary detection using localized edge blocks,” Multimedia Tools
and Applications, vol. 28, no. 3, pp. 283–300, 2006.

[28] W.-K. Li and S.-H. Lai, “Integrated video shot segmentation
algorithm,” in Storage and Retrieval for Media Databases 2003,
M. M. Yeung, R. W. Lienhart, and C.-S. Li, Eds., vol. 5021
of Proceedings of SPIE, pp. 264–271, Santa Clara, Calif, USA,
January 2003.

[29] M. Cooper, J. Foote, J. Adcock, and S. Casi, “Shot bound-
ary detection via similarity analysis,” in Proceedings of the
TRECVID Workshop, November 2003.

[30] D. A. Adjeroh and M. C. Lee, “Adaptive transform domain
video shot analysis,” in Proceedings of IEEE International
Conference on Multimedia Computing and Systems, Ontario,
Canada, June 1997.

[31] C. O’Toole, A. Smeaton, N. Murphy, and S. Marlow, “Evalu-
ation of automatic shot boundary detection on a large video

EURASIP Journal on Image and Video Processing 13

test suite,” in Proceedings of Conference on Challenge of Image
Retrieval, Newcastle Upon Tyne, UK, February 1999.

[32] N. Vasconcelos and A. Lippman, “A Bayesian video modeling
framework for shot segmentation and content characteriza-
tion,” in Proceedings of Workshop on Content-Based Access to
Image and Video Libraries, San Juan, Puerto Rico, USA, 1997.

[33] Y. Rui, T. S. Huang, and S.-F. Chang, “Image retrieval: current
techniques, promising directions, and open issues,” Journal of
Visual Communication and Image Representation, vol. 10, no.
1, pp. 39–62, 1999.

[34] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and
R. Jain, “Content-based image retrieval at the end of the early
years,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 12, pp. 1349–1380, 2000.

[35] A. S. Al-Fahoum and A. M. Reza, “Combined edge crispiness
and statistical differencing for deblocking JPEG compressed
images,” IEEE Transactions on Image Processing, vol. 10, no. 9,
pp. 1288–1298, 2001.

[36] F. Dufaux and F. Moscheni, “Motion estimation techniques for
digital TV: a review and a new contribution,” Proceedings of the
IEEE, vol. 83, no. 6, pp. 858–876, 1995.

[37] B. Tao and M. T. Orchard, “Gradient-based residual variance
modeling and its applications to motion-compensated video
coding,” IEEE Transactions on Image Processing, vol. 10, no. 1,
pp. 24–35, 2001.

	1. Introduction
	2. Related
Work
	3.Multilevel Edge-Response Vectors
	4. Adaptive Video Partitioning
	5. Results
	6. Discussion and Conclusion
	References

