Hindawi Publishing Corporation

EURASIP Journal on Image and Video Processing
Volume 2009, Article ID 856037, 13 pages
doi:10.1155/2009/856037

Research Article

Profile-Based Focused Crawling for Social

Media-Sharing Websites

Zhiyong Zhang and Olfa Nasraoui

Department of Computer Engineering and Computer Sciences, University of Louisville, Louisville, KY 40292, USA

Correspondence should be addressed to Olfa Nasraoui, olfa.nasraoui@louisville.edu

Received 31 May 2008; Accepted 6 January 2009

Recommended by Timothy Shih

We present a novel profile-based focused crawling system for dealing with the increasingly popular social media-sharing websites.
In this system, we treat the user profiles as ranking criteria for guiding the crawling process. Furthermore, we divide a user’s profile
into two parts, an internal part, which comes from the user’s own contribution, and an external part, which comes from the user’s
social contacts. In order to expand the crawling topic, a cotagging topic-discovery scheme was adopted for social media-sharing
websites. In order to efficiently and effectively extract data for the focused crawling, a path string-based page classification method
is first developed for identifying list pages, detail pages, and profile pages. The identification of the correct type of page is essential
for our crawling, since we want to distinguish between list, profile, and detail pages in order to extract the correct information
from each type of page, and subsequently estimate a reasonable ranking for each link that is encountered while crawling. Our
experiments prove the robustness of our profile-based focused crawler, as well as a significant improvement in harvest ratio,
compared to breadth-first and online page importance computation (OPIC) crawlers, when crawling the Flickr website for two
different topics.

Copyright © 2009 Z. Zhang and O. Nasraoui. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

Social media-sharing websites such as Flickr and YouTube are
becoming more and more popular. These websites not only
allow users to upload, maintain, and annotate media objects,
such as images and videos, but also allow them to socialize
with other people through contacts, groups, subscriptions,
and so forth. Two types of information are generated in this
process. The first type of information is the rich text, tags and
multimedia data uploaded and shared on such web sites. The
second type of information is the users’ profile information,
that can tell us what kind of interests they have. Research
on how to use the first type of information has gained
momentum recently. However, little attention has been paid
to effectively exploit the second type of information, which
are the user profiles, in order to enhance focused search on
social media websites.

Prior to the social media boom, the concepts of vertical
search engines and focused crawling have gradually gained
popularity against popularity-based, general search engines.

Compared with general search engines, topical or vertical
search engines are more likely to become experts in specific
topic areas, since they only focus on these areas. Although
they lack the broadness that general search engines have,
their depth can win them a stand in the competition.

In this paper, we explore the applicability of developing
a focused crawler on social multimedia websites for an
enhanced search experience. More specifically, we exploit
the users’ profile information from social media-sharing
websites to develop a more accurate focused crawler that
is expected to enhance the accuracy of multimedia search.
To begin the focused crawling process, we first need to
accurately identify the correct type of a page. To this end,
we propose to use a Document Object Model (DOM) path
string-based method for page classification. The correct
identification of the right type of page not only improves the
crawling efficiency by skipping undesirable types of pages,
but also helps to improve the accuracy of the data extraction
from these pages. In other words, the identification of
the correct type of page is essential for our crawling,

since we want to distinguish between list, profile, and
detail pages in order to extract the right information, and
subsequently estimate a reasonable ranking for each link
that is encountered. In addition, we use a cotagging method
for topic discovery as we think that it suits multimedia
crawling more than the traditional taxonomy methods do,
because it can help to discover some hidden and dynamic
tag relations that may not be encoded in a rigid taxonomy
(e.g., “tree” and “sky” may be related in many sets of scenery
photos).

This paper is organized as follows. In Section 2, we review
the related work in this area. In Section 3, we define the three
types of pages that prevail on most social media-sharing
websites, and discuss our focused crawling motivation. Then
in Section 4, we explain the path string-based method for
page classification. In Section 5, we introduce our profile-
based focused crawling method. In Section 6, we discuss
the cotagging topic discovery for the focused crawler. In
Section 7, we wrap the previous sections to present our
complete focused crawling system. In Section 8, we present
our experimental results. Finally in Section 9, we make our
conclusions and discuss future work.

2. Related Work

Focused crawlers were introduced in [1], in which three
components, a classifier, a distiller, and a crawler, were
combined to achieve focused crawling. A Bayes rule-based
classifier was used in [2], which was based on both text
and hyperlinks. The distillation process involves link analysis
similar to hub and authority extraction-based methods.
Menczer et al. [3] presented a comparison of different
crawling strategies such as breadth-fist, best-first, PageRank,
and shark-search. Pant and Srinivasan [4] presented a com-
parison of different classification schemes used in focused
crawling and concluded that Naive Bayes was a weak choice
when compared with support vector machines or neural
networks.

In [5, 6], Aggarwal et al. presented a probabilistic
model for focused crawling based on the combination of
several learning methods. These learning methods include
content-based learning, URL token-based learning, link-
based learning, and sibling-based learning. Their assumption
was that pages which share similar topics tend to link to each
other. On the other hand, the work by Diligenti et al. [7]
and by Hsu and Wu [8] explored using context graphs for
building a focused crawling system. The two-layer context
graph and Bayes rule-based probabilistic models were used
in both systems.

Instead of using the page content or link context, another
work by Vidal et al. [9] explored the page structure for
focused crawling. This structure-driven method shares the
same motivation with our work in trying to explore specific
page-layouts or structure. In their work, each page was
traversed twice: the first pass for generating the naviga-
tion pattern, and the second pass for actual crawling. In
addition, some works [10, 11] for focused crawling used
metasearch methods, that is, their method is based on

EURASIP Journal on Image and Video Processing

taking advantage of current search engines. Among these
two works, Zhuang et al. [10] used search engine results
to locate the home pages of an author and then used a
focused crawler to acquire missing documents of the author.
Qin et al. [11] used the search results of several search
engines to diversify the crawling seeds. It is obvious that
the accuracy of the last two systems is limited by that
of the seeding search engines. In [12], the authors used
cash and credit history to simulate the page importance
and implemented an Online Page Importance Computation
(OPIC) strategy based on web pages’ linking structure (cash
flow).

Extracting tags from social media-sharing websites
can be considered as extracting data from structured or
semistructured websites. Research about extracting data
from structured websites include RoadRunner [13, 14],
which takes one HTML page as the initial wrapper, and uses
Union-Free Regular Expression (UFRE) method to generalize
the wrapper under mismatch. The authors in [15] developed
the EXALG extracting system, which is mainly based on
extracting Large and Frequently occurring EQuivalence classes
(LFEQs) and differentiating roles of tokens using dtokens
to deduce the template and extract data values. Later in
[16], a tree similarity matching method was proposed to
extract web data, where a tree edit distance method and a
Partial Tree Alignment mechanism were used for aligning tags
in the HTML tag tree. Research in extracting web record
data has widely used a web page’s structure [17] and a
web page’s visual perception patterns. In [18], several filter
rules were proposed to extract content based on a DOM-
tree. A human interaction interface was developed through
which users were able to customize which type of DOM-
nodes are to be filtered. While their target was for general
HTML content and not for web records, they did not suit
their methods to structured data record extraction. Zhao
et al. [19] proposed using the tag tree structure and visual
perception pattern to extract data from search engine results.
They used several heuristics to model the visual display
pattern that a search engine results page would usually
look like, and combined this with the tag path. Compared
with their tag path method, our path string approach keeps
track of all the parent-child relationships of the DOM
nodes in addition to keeping the parent-first-child-next-
sibling pattern originally used in the DOM tree. We also
include the node property in the path string generation
process.

3. Motivation for Profile-Based
Focused Crawling

3.1. Popularity of Member Profile. In Section 2, we reviewed
several focused crawling systems. These focused-crawling
systems analyze the probability of getting pages that are in
their crawling topics based on these pages’ parent pages or
sibling pages. In recent years, another kind of information,
which is the members’ profiles, started playing a prominent
role in social networking and resource-sharing sites. Unfor-
tunately, this valuable information still eludes all current

EURASIP Journal on Image and Video Processing
Explo

il

re/Tags/tlowers
_ﬁ:‘ ' i u,:- i

From ok im

A g An ey
From squeezemonkey

From U-EET

From haggard37

From BeccalouWho

¢

From BeccalouWho

'_-f’;,rr . '__

= -
From squeezemonkey

' From U-EET

FIGURE 1: An example list page on Flickr.

focused crawling efforts. We will explore the applicability
of using such information in our focused-crawling system.
More specifically, to illustrate our profile-based focused
crawling, we will use Flickr as an example. But our method
can be easily expanded to other social networking sites,
photo-sharing sites, or video-sharing sites. Hence, we refer
to them as “social multimedia websites.”

3.2. Typical Structure of Social Media-Sharing Websites. Social
media-sharing Websites, such as Flickr and YouTube, are
becoming more and more popular. Their typical organiza-
tion structure are through the different types of web pages
defined in what follows.

(1) A list page is a page with many image/video thumb-
nails and their corresponding uploaders (option-
ally some short descriptions) displayed below each
image/video. A list page can be considered as a
crawling hub page, from where we start our crawling.
An example list page is shown in Figure 1.

(2) A detail page is a page with only one major
image/video and a list of detailed description text
such as title, uploader, and tags around it. A detail
page can be considered as a crawling target page,
which is our final crawling destination. An example
detail page is shown in Figure 2.

(3) A profile page is a page that describes a media
uploader’s information. Typical information con-
tained in such a page includes the uploader’s
image/video sets, tags, groups, and contacts, and so
forth. Further, such information can be divided into
two categories: inner properties, which describe the
uploader’s own contributions, such as the uploader’s
photo tags, sets, collections, and videos, and inter
properties, which describe the uploader’s networking
with other uploaders, such as the uploader’s friends,
contacts, groups, and subscribers. We will use infor-
mation extracted from profile pages to guide our
focused crawling process.

A list page has many outlinks that point to detail pages
and profile pages. Its structure is shown in Figure 3, in which
two image thumbnails in a list page link to two detail pages
and corresponding profile pages.

3.3. Profile-Based Focused Crawling. Our motivation while
crawling is to be able to assess the importance of each outlink
or detail page link before we actually retrieve that detail page
given a list page and a crawling topic. For the case of Figure 3,
suppose that we are going to crawl for the topic flowers, then
we would intuitively rank the first detail page link, which links
to a real flower, higher than the second detail page link, which

Canna lily

ADD TO = BLOG g 1

ay Al
FAVES & THIS :)\H/,I.\

EURASIP Journal on Image and Video Processing

Uploaded on August 4, 2007
by U-EET

- U-EET’s phtostream

browse

This photo also belongs to:

- Flowers (Set)

browse

Tags

flowers
canna

lily

FIGURE 2: An example detail page on Flickr.

Canna lily
Detail I

Flowers page 1

Thumbnail 1

flowers
canna
lily

U-EET’s photos pro

Sets | Tags | Map | Archives | Favorites | Profile

From U-EET
Profile
page 1
DOC 00043
Detail R R
page 2

Thumbnail 2

From hggard3%

[g
.
F -
-y [

LE L Eray 4

P
i
3

T

i1 A

FIGURE 3: Typical structure of list, detail, and profile pages.

links to a walking girl and happened to be also tagged as
“flower.” The only information available for us to use is the
photo thumbnails and the photo uploaders such as “U-EET”
and “haggard37” Processing the content photo thumbnails
to recognize which one is more conceptually related to the
concept of real flowers poses a challenging task. Hence, we
will explore the photo uploader information to differentiate
between different concepts. Luckily, most social media-
sharing websites keep track of each member’s profile. As
shown in Figure 3, a member’s profile contains the member’s

collections, sets, tags, archives, and so forth. If we process all
this information first, we can have a preliminary estimate of
which type of photos the member would mainly upload and
maintain. We can then selectively follow the detail page links
based on the corresponding uploader profiles extracted.

4. Path String-Based Page Classification

Before we actually do the crawling, we need to identify the
type of a page. In this section, we will discuss our page

EURASIP Journal on Image and Video Processing

classification strategy based on the DOM path string method.
Using this method, we are able to identify whether a page is a
list page, detail page, profile page, or none of the above.

4.1. DOM Tree Path String. The DOM defines a hierarchy
of node objects. Among the different types of nodes, element
node and text node are the ones that are most relevant to our
crawling. Figure 4 gives a simple example web page and its
DOM tree representation.

In Figure 4, the whole DOM tree can be seen as a doc-
ument node, whose child is the element node <html>, which
further has two children <head> and <body>, both element
nodes, and so on. The element nodes are all marked with <>
in Figure 4. At the bottom of the tree, there are a couple
of text nodes. In the DOM structure model, the text nodes
are not allowed to have children, so they are always the leaf
nodes of the DOM tree. There are other types of nodes such
as CDATASection nodes and comment nodes that can be leaf
nodes. Element nodes can also be leaf nodes. Element nodes
may have properties. For example, “<tr class="people”>”
is an Element Node “<tr>” with property “class="people””
Readers may refer to http://www.w3.0rg/DOM/ for a more
detailed specification.

A path string of a node is the string concatenation from
the node’s immediate parent all the way to the tree root. If a
node in the path has properties, then all the display properties
should also be included in the concatenation. We use “-”
to concatenate a property name and “/” to concatenate a
property value.

For example, in Figure 4, the path strings for “John,”
“Doe,” and for “Alaska” are “<td>< tr-class/people>< table><

body><html>”

Note that when we concatenate the property DOM node
into path strings, we only concatenate the display property.
A display property is a property that has an effect on the
node’s outside appearance when viewed in a browser. Such
properties include “font size,” “align,” “class,” and so forth.
Some properties such as “href,” “src,” and “id” are not display
properties as they generally do not affect the appearance of
the node. Thus, including them in the path string will make
the path string overspecified. For this reason, we will not
concatenate these properties in the path string generation
process.

A path string node value (PSNV) pair P(ps,nv) is a pair
of two text strings, the path string ps, and the node value nv
whose path string is ps. For example, in Figure 4, “<td ><

tr-class/people><table><body><html>" and “John” are a PSNV
pair.

A perceptual group of a web page is a group of text
components that look similar in the page layout. For
example, “Sets,” “Tags,” “Map,” and so on, in the profile page
of Figure 3 are in the same perceptual group; and “U-EET”
and “haggard37” are in the same perceptual group in the list
page in Figure 1.

4.2. DOM Path String Observations. We propose to use the
path string information for page classification as it has the
following benefits.

(1) Path string efficiency. First, when we extract path
strings from the DOM tree, we save a significant
amount of space, since we do not need to save a path
string for every text node. For example, we only need
one path string to represent all different “tags” in a
detail page shown in Figure 2, as all these “tags” share
the same path string. Second, transforming the tree
structure into linear string representation will reduce
the computational cost.

(2) Path string differentiability. Using our path string
definition, it is not hard to verify that text nodes
“flowers,” “canna,” and “lily” in Figure 2 share the

same path string. Interestingly, they share a similar
appearance when displayed to users as an HTML
page, thus, we say that they are in the same
perceptual group. Moreover, their display property
(perceptual group) is different from that of “U-
EET, “haggard37,” and so on, in Figure 1, which
have different path strings. Generally, different path
strings correspond to different perceptual groups as
the back-end DOM tree structure decides the front-
end page layout. In other words, there is a unique
mapping between path strings and perceptual groups.
At the same time, it is not hard to notice that
different types of pages contain different types of
perceptual groups. List pages generally contain the
perceptual group of uploader names, while detail
pages usually contain the perceptual group of a list of
tags, and their respective path strings are different.
These observations have encouraged us to use path
strings to identify different types of pages, and the
identification of the types of pages is essential for our
crawling, since we want to distinguish between profile
and detail pages in order to extract the right ranking
for a link.

4.3. Page Classification Using Path String

4.3.1. Extracting Schema Path String Node Value Pairs. Our
first step in the page classification process is to extract the
schema PSNV pairs that occur in all pages. For instance,
“Copyright,” “Sign in,” and “Terms of Use” are the possible
text nodes that occur in the schema PSNV pairs. We need
to ignore such data for more accurate classification. For this
case, the schema deduction process is given in Algorithm 1.

In code 1, we adopt a simple way for identifying schema
data and real data. That is, if the data value and its PSNV
pair occur in every page, we identify them as a schema pair,
otherwise it is considered a real data pair. The for loop of line
2-4 performs a simple intersection operation on the pages,
while line 5 returns the schema. Note that this is a simple
and intuitive way of generating schema. It can be extended by
using a threshold value. Then, if a certain PSNV pair occurs
in at least a certain percent of all the pages, it will be identified
as schema data.

4.3.2. Classifying Pages Based on Real Data Path Strings.
Noting that the same types of pages have the same perceptual

<html>
<head>
<title>DOM Tutorial</title>
</head>
<body>

<head>

EURASIP Journal on Image and Video Processing

<h1>DOM Lesson one</h1>
<p>Hello world!</p>

| <title>| |<h1>| | <p> |

| <table> |

<table>

<tr class="people”>
<td>John</td>
<td>Doe</td>

DOM
Tutorial

<td>Alaska</td>
</tr>
</table>
</body>
</html>

test.html

DOM

Lesson
one

Hello
world!

>

<tr class="people”>

| <td> || <td> | |<td>|

| John || Doe || Alaska |
DOM tree

FIGURE 4: DOM tree of an example web page.

Input: N Pages for schema extraction

Output: schema PSNV-pairs, Pi(nv, PS(nv)),i=1,...,n
Steps

(1) Schema = All PSNV-pairs of Page 1.
(2)fori=2toN

(3) do Temp = All PSNV-pairs of Page i

(4) Schema = intersection(Schema, Temp)

(5) Return Schema.

ArgoriTHM 1: Deduce schema PSNV pairs.

Input: N Pages of the same type

for page type path strings extraction
Output: A Set of Path Strings, PSi,i = 1,...,n
Steps
(1) Set = All Path Strings of Page 1 - Schema PSs.
(2)fori=2to N
(3) do Temp = All PSs of Page i - Schema PSs
(4) Set = intersection(Set, Temp)
(5) Return Set.

ArLGorITHM 2: Extracting a page type’s path strings.

groups and further the same path strings, we can use whether
a page contains a certain set of path strings to decide whether
this page belongs to a certain type of pages. For example, as
we already know that all list pages contain the path string
that corresponds to uploader names, and almost all detail
pages contain the path string that corresponds to tags, we can
then use these two different types of path strings to identify
list pages and detail pages. Algorithm 2 gives the procedure
of extracting characteristic path strings for pages of a given

type.

List page

characteristic —>{ List page

the above

I
1
path strings :
1
Web | ! Get page Detail page !
page | | | path strings characteristic Detail page
i path strings i
1 1
i Profile page i
: characteristic —{ Profile page
i path strings ;
i
i
i
I

FIGURE 5: Page classifier.

By applying Algorithm 2 on each type of page (list page,
detail page, and profile page) we are able to extract a group
of characteristic path strings for each type. Then given a
new page, the classifier would only need to check whether
that page contains all the path strings for a group to decide
whether that page belongs to that type of page. This process
is depicted in Figure 5. Note that most of the time, we do
not even need to compare the whole group of page path
strings with characteristic path strings; in fact, a few typical
path strings would suffice to differentiate different types of
pages. For example, our tests on Flickr showed that only one
path string for each type of page was sufficient to do the
classification.

5. Profile-Based Focused Crawler

Now, that we are able to identify the correct page type using
the path string method, we are equipped with the right tool
to start extracting the correct information from each type of
page that we encounter while crawling, in particular, profile

EURASIP Journal on Image and Video Processing

pages. In this section, we discuss our profile-based crawling
system. The basic idea is that from an uploader’s profile, we
can gain a rough understanding of the topic of interest of the
uploader. Thus, when we encounter a media object such as
an image or video link of that uploader, we can use this prior
knowledge which may relate to whether the image or video
belongs to our crawling topic in order to decide whether to
follow that link. By doing this, we are able to avoid the cost
of extracting the actual detail page for each media object to
know whether that page belongs to our crawling topic. To this
end, we further divide a user profile into two components, an
inner profile and an inter profile.

5.1. Ranking from the Inner Profile. The inner profile is
an uploader’s own property. It comes from the uploader’s
general description of the media that they uploaded, which
can roughly identify the type of this uploader. For instance,
a “nature” fan would generally upload more images and
thus generate more annotations about nature; an animal
lover would have more terms about animals, dogs, pets,
and so on, in their profile dictionary. For the case of
the Flickr photo-sharing site, an uploader’s inner profile
terms come from the names of their “collections,” “sets,”
and “tags” As another example, for the YouTube video-
sharing site, an uploader’s inner profile comes from their
“videos,” “favorites,” “playlists,” and so on. It is easy to
generalize this concept to most other multimedia sharing
websites.

The process for calculating the inner profile rank can be
illustrated using Figure 6. After we collect all the profile pages
for an uploader, we extract terms from these pages, and
get a final profile term vector. We then calculate the cosine
similarity between the profile term vector and the topic term
vector to get the member’s inner profile rank. We use (1) to
calculate a user’s inner rank:

RanKinner (¢ | T) = Cos (X, X7), (1)

where X, is the term vector of the user, and x; is the topic
term vector.

5.2. Ranking from the Inter Profile. In contrast to the inner
profile which gives an uploader’s standalone property, strictly
related to their media objects, we note that an uploader in a
typical social media-sharing website, tends to also socialize
with other uploaders on the same site. Thus, we may benefit
from using this social networking information to rank a
profile. For instance, a user who is a big fan of one topic,
will tend to have friends, contacts, groups, or subscriptions,
and so forth, that are related to that topic. Through social
networking, different uploaders form a graph. However, this
graph is typically very sparse, since most uploaders tend to
have a limited number of social contacts. Hence, it is hard to
conduct a systematic analysis on such a sparse graph. In this
paper, we will use a simple method, in which we accumulate
an uploader’s social contacts’ inner ranks to estimate the
uploader’s inter rank.

Member rank

Cosine
similarity
/\ Term1

Term?2

Termgq

Profile source 1

Term1 term?2 - - - termi

Profile source 2 Term1 freql

| Term2 freq2
Terml term2 - - - termj oac
Termp freqp

Topic
Profile source n Member profile

Term1 term?2 - - - termk

FIGURE 6: Inner profile ranking.

Suppose that a user u has N contacts, ¢;, then the inter
rank of the user, relative to a topic 7, can be calculated using
(2) which aggregates all the contacts’ inner ranks:

1

Rankinter(u | T) = N

N
ZRankinner(Ci | T)) (2)

i=1

where 7 is the given crawling topic, and Rankinner(c; | 7) is
the user’s ith contact’s inner rank.

5.3. Combining Inner Rank and Inter Rank. For focused
crawling, our final purpose is to find the probability of
following link L, given the crawling topic 7 so that we can
decide whether we should follow the link. Using Bayes rule,
we have

Pr(t | L,) % Pr(Ly)

Pr(L, | 1) = Pr(o) (3)
Suppose there are N total candidate links, then
Pr(r) = > (Pr(r|L;) * Pr(L)). (4)

0<i<N

Our task is then transformed into calculating the conditional
probability Pr(z | L,), that is, given a link, the probability
of that link belonging to the crawling topic 7. We propose to
calculate the prior based on inner ranks and inter ranks, such
that each factor gives us a reward of following the link. We do
this by combining them as follows:

Pr(z | L,) = a X Rankinner (t4) + f X Rankineer (t4),

(5)

where L, is the nth image thumbnail link and u,, is the
mth user that corresponds to the nth image thumbnail link.
Rankinner (4,) and Rankiner (14,,) are calculated using (1) and
(2), respectively. We could further normalize Pr(z | L,)
to obtain probability scores, however, this will not be not
needed, since they are only used for ranking links.

6. Cotagging Topic Discovery

To start the focused crawling process, we need to feed the
crawler with a crawling topic. The crawling topic should not

FIGURE 7: Two-layer cotagging topic discovery.

be set to only one tag as that would be too narrow. For
example, if we choose the crawling topic “animals,” all tags
that are closely related to “animals,” which may include “cat,”
“dog,” “pet,” and so on, may need to also be included in the
crawling topic tags. Hence, to set a crawling topic properly,
we need to expand the topic’s tagging words. Our method to
conduct this task is by exploiting the cuamulative image/video
cotagging (i.e., tag co-occurrence) information. We use for
this purpose, a voting-based method. If one tag, say T1, and
the topic tag T co-occurred in one photo, we count this as
one vote of T1 also belonging to our crawling topic. When
we accumulate all the votes through many photos, we would
get a cumulative vote for T1 also belonging to our crawling
topic. When such a vote is above a threshold, we will include
tag T1 in our crawling topic tags. This mechanism boils down
to using a correlation threshold:

_ P(TnTl
?= Py x P(T1) (6)

where P(T N T1) is the number of pictures cotagged by both
tag T and tag T1, and P(T) and P(T1) are the number of
pictures tagged by tag T and tag T1, respectively. Suppose
that tag T belongs to the crawling topic, then ¢ gives the score
of whether T1 also belongs to the crawling topic. When ¢ is
bigger than a preset threshold, we will count T1 as belonging
to the crawling topic.

In order to make the crawling topic tags more robust, we
further use the following strategies.

(1) Take only one image if multiple images are tagged
with an identical set of tags. This is usually because an
uploader may use the same set of tags to tag a group
of images that they uploaded to save some time.

(2) From the top cotagging tags, start a new round
of cotagging discovery. This process is depicted in
Figure 7. Then use the expanded cluster of high
frequency co-occurring tags as the final crawling
topic.

7. Profile-Based Focused Crawling System

We developed a two-stage crawling process that includes a
cotagging topic discovery stage and a profile-based focused
crawling stage. Both of these stages use the page classifier
extensively to avoid unnecessary crawling of undesired types

EURASIP Journal on Image and Video Processing

{Enq% List pages
Dequeue
Crawl URL queue Get page
1 No J
@ Page classifier
Yes / \
Exit List page Detail page
v
=
Detail page links| | Profile page links
1 Expand topics
Follow links gnore P P

Enqueue through co-tagging

F1GurE 8: Stage one: cotagging topic expansion stage.

Input: Initial Crawling Topic Tag, T
List pages, p_1,...,p_-N

Output: Expanded Topic Tags, T, T-1,..., Tk

Steps

(1) Set Queue Q = empty

(2)fori=1ton

(3) do Enqueue p_i into Q

(4) while Q! = Empty

(5) do page p = Dequeue Q

(6) classify p

(7) if p = List Page

(8) then <o_1,..., 0_m> = Outlinks from p
9) if 0_i = Detail Page Link

(10) then Enqueue 0_i to Q

(11) else if 0_i = Profile Page Link

(12) then discard o_i

(13) else if p = Detail Page

(14) then extract tags data from p

(15) analyze the tags to get the most frequent
(16) co-occurring tags <T, T_1,..., T_k>
(17) return <T,T_1,..., T k>

ALGoRrITHM 3: Stage one: cotagging topic discovery.

of pages and to correctly extract the right information from
the right page. The details of crawling are explained in
Sections 7.1 and 7.2.

7.1. Cotagging Topic Discovery Stage. The first stage of our
profile-based focused system is the cotagging topic discovery
stage. In this stage, we collect images that are tagged with
the initial topic tag, record their cotags, process the final
cotagging set, and extract the most frequent co-occurring
ones. Figure 8 gives the diagram of the working process of
this stage, and Algorithm 3 gives the detailed steps.

In Algorithm 3, lines (4)—(14) do the actual crawling
work. The page classifier described in Section 4 is used in

EURASIP Journal on Image and Video Processing

y URL list
Dequeue
Crawl URL queue Get page
— No l
: Other
Page classifier | page —>| Ignore
List page Profile page
/\ Detail page
Profile page Detail page
links links - < >
Rank links
Follow according to User Tags
links profile profile data
2
Follow only high
rank links
Profile-based
Enqueue |} focused crawling

FIGURE 9: Stage two: profile-based focused crawling stage.

line (6) to decide whether a page is a [list page or a detail
page. We already know that in social media-sharing websites,
list pages have outlinks to detail pages and profile pages, and
we name such links detail page links and profile page links,
respectively. It is usually easy to differentiate them because
in the DOM tree structure, detail page links generally have
image thumbnails as their children, while profile page links
have text nodes, which are usually the uploader names, as
their children. Combined with our path string method, we
can efficiently identify such outlinks. In lines (11)-(12), by
not following profile page links, we save a significant amount
of effort and storage space. Since we are not following profile
page links, the classification result for page p in line (6) would
not be a profile page. Lines (15)-(16) do the cotagging analysis
and line (17) returns the expanded topic tags.

7.2. Profile-Based Focused Crawling Stage. In the second
stage, which is the actual crawling stage, we use the infor-
mation acquired from the first stage to guide our focused
crawler. For this stage, depending on the system’s scale, we
can choose to store the member profiles either on disk or in
main memory. The system diagram is shown in Figure 9, and
the process detail is shown in Algorithm 4. In Algorithm 4,
similar to the cotagging stage, we classify page p in line (6).
The difference is that, since we are not pruning profile page
links in lines (13)-(14) and we follow them to get the user
profile information, we will encounter the profile page branch
in the classification result for line (6), as shown in lines (17)-
(18). Another difference is how we handle detail page links,
as shown in lines (10)—(12). In this stage, we check whether
a detail page link’s user profile rank according to the crawling
topic. If the rank is higher than a preset threshold, RANKrH,
we will follow that detail page link, otherwise, we will discard
it. Note that in this process, we need to check whether a user’s

Input: Crawling Topic Tags, <T'_1,..., T_k>
Crawling URLs <url_1,...,url_n>

Output: Crawled Detail Pages

Steps

(1) Queue Q = empty

(2)fori=1ton

(3) do Enqueue url_iinto Q

(4) while Q! = Empty

(5) do page p = Dequeue Q

(6) classify p

(7) if p = List Page

(8) then <o_1,...,0.m> = Outlinks from p
9) if 0_i = Detail Page Link

(10) then if Rank(u_0_i) > RANK_TH
(11) then Enqueue o0_i to Q

(12) else Discard o_i

(13) else if 0_i = Profile Page Link

(14) then Enqueue 0_i to Q

(15) else if p = Detail Page

(16) then Extract Tags Data from p

(17) else if p = Profile Page

(18) then Extract Prof Data from p

(19) else if p = Other Type Page

(20) then ignore p

(21) Return Detail Pages Tags Data

ALGORITHM 4: Stage two: profile-based focused crawling.

profile rank is available or not, which can be done easily by
setting a rank available flag, and we omit this implementation
detail in the algorithm. In lines (17)-(18), we process profile
pages and extract profile data. Another issue is deciding
when to calculate the user profile rank since the profiles are
accumulated from multiple pages. We can set a fixed time
interval to conduct the calculation or use different threads to
do the job, which is another implementation detail that we
will skip here.

8. Experimental Results

8.1. Path String-Based Page Classification. Our tests on Flickr
and YouTube showed that only one or two path strings suffice
to get a 100% classification accuracy. Hence, we will not give
further experimental results on the page type classification.
Instead, we will demonstrate the performance of the more
challenging path string differentiation for the same page
type on different websites. This experiment serves to see
how the path string can differentiate different schema data
from real-value data. Our assumption for using the path
string method to extract web data is that the path string
for schema data and for real data share little in common.
Thus, we can first use path strings to differentiate real data
and schema data. In case the path string cannot totally
differentiate among the two, we can further use node data
value to differentiate between them. Also, we assume that
using the path string method, if we do not need to consider
schema path strings, then we save a lot of effort for extracting
real data. For this experiment, we used “wget” to download

10 EURASIP Journal on Image and Video Processing
TaBLE 1: Path string differentiation. TasLE 3: Top cotagging tags for “nyc.”
Site T S \4 UsS uv INT nyc New York City Manhattan
Flickr 133 111 22 36 16 3 Brooklyn Street Art NY Newyork
YouTube 488 179 309 40 73 9 Graffiti Winter Park Gothamist USA
Amazon(book) 837 411 426 101 115 22
Ebay 474 183 291 56 113 15 Harvest ratio of profile based focused crawl and breadth first crawl
SpringerLink 140 100 40 27 20 5 B ' ' ' ' ' '
ACM DL 124 62 62 15 19 4 0.38 T
0.36 \\\ b
TasBLE 2: Top cotagging tags for the topic “flowers.” 0341 .]
: 2 032} oo BTSN .
Flowers Flower Nature Macro Spring s | Tt N
Yellow Pink Garden Green White g 0377~ RN
— T+ ~
Plants Red Flowers Purple Blue £ 0.28 ¢ RN :
0.26 I .
0.24 Tl T
the real web data from the popular sites, “Flickr,” “YouTube,” ST
« » . 022 g
Amazon,” and so forth. For each website, we randomly

downloaded 10 pages of the same type. For instance, in
the Amazon book site, we only downloaded the pages that
contain one detailed information of a specific book. For
“Flickr,” we only downloaded the page that contains the
detailed image page. We will name these pages object pages.
After downloading these object pages, we use our imple-
mentation (written in java, and using the nekohtml parser
APIs, http://people.apache.org/~andyc/neko/doc/html, for
parsing the web page) to build the DOM tree and conduct
our experiments. The results are shown in Table 3, where
T is the number of total PSNV pairs, S is the number of
schema PSNV pairs, V is the number of value data PSNV
pairs, and US is the number of unique path strings for schema
data. Notice that some schema data with different text data
value may share the same path string. The same applies to
value data. Different value data may also share the same path
strings. UV is the number of unique path strings for value
data. Finally, INT is the number of intersections between
US and UV. We can see from this table that our assumption
is well founded. The low intersections between US and UV
means that very few pages have the same path strings for
schema data and for true value data. This tells us that we
can indeed use path strings to differentiate between schema
data and real data. Also, notice that the number of unique
path strings is much lower than the number of actual PSNV
pair (US is less than S, UV is less than V), this means that
converting from a text node value path string to unique path
strings can save some time and space in processing.

8.2. Topic Discovery through Cotagging. We tested two topics
for the cotagging topic discovery process using Flickr photo-
sharing site. In the first test, we used the starting tag
“flowers,” and we collected 3601 images whose tags contain
the keyword flowers. From this 3601-image tag set, we found
the following tags that occur in the top cotagging list (after
removing a few noise tags such as “nikon,” that are easy to
identify since they correspond to camera properties and not
media object properties).

0.2
200 300 400 500 600 700 800 900

Number of detail image pages crawled

1000

-+- Breadth first crawl
-6~ Profile-based focused crawl

FIGURE 10: Crawling harvest ratio for topic “flowers” (threshold =
0.01).

In the second round of tests, we used the starting tag
“nyc,” and after collecting 3567 images whose tag sets contain
“nyc,” we obtained the following expanded topic tag set.

We can see that these results are reasonable. We then used
these two sets of crawling topics for the following focused
crawling experiments.

8.3. Profile-Based Focused Crawling. The harvest ratio is often
used to evaluate focused crawlers. It measures the rate
at which relevant pages are acquired and how effectively
irrelevant pages are filtered. We will calculate the harvest
ratio using the following formula:

. N,
H t Ratio = —, 7
arvest Ratio N (7)

a

where N; is the number of relevant pages (belonging to the
crawl topic) and N, is the number of total pages crawled. To
calculate the harvest ratio, we need a method to calculate the
relevancy of the crawled pages. If the crawled page contains
any of the tags that belong to the crawl topic, we would
consider this page as relevant, otherwise it will be considered
as irrelevant. For comparison, we compared our focused
crawling strategy with the breadth-first crawler.

We also conducted this test on the Flickr photo-sharing
site. We started our crawler with a list of URLs with popular
tags (easily obtained from the main page on Flickr). Our first
stage breadth-first crawler starts by recording the uploader
profiles that it extracted from the crawled pages. Later in

EURASIP Journal on Image and Video Processing

Harvest ratio of profile based focused crawl and breadth first crawl
0.32 T T T T T T T

03F - .]

Harvest ratio
¢
i

02} Y - ~__]

0.18 \) \ \
200 300 400 500 600 700 800 900 1000
Number of detail image pages crawled

-+~ Breadth first crawl
-©- Profile-based focused crawl

FiGURre 11: Crawling harvest ratio for topic “nyc” (threshold = 0.01).

Harvest ratio of profile based focused crawl and OPIC crawl (NYC)
0.4 T T T T T T T T

0.35 1

03} e~ .

o
o
o
T
AN
L

e
)
T
Ay

L

Harvest ratio
AN

o

—

o
T

L

0l+—o_ "]

1 2 3 4 5 6 7 8 9 10 R
Number of detail image pages crawled 10

-+~ OPIC based crawl
-©- Profiled based crawl

FIGurg 12: Crawling harvest ratio for topic “nyc” (706 valid user
profiles accumulated).

our second stage of profile-based focused crawling, we read
these profiles, and calculate the corresponding ranks for each
outlink according to the user profile. We then prune outlinks
with scores lower than a threshold value. Note that in the
harvest ratio calculation, we only count the detail image links
traversed. Figures 10 and 11 give comparisons of focused
crawling and breadth-first crawling for two crawling topics,
“flowers” and “nyc,” respectively. We can see that our harvest
ratio for profile-based focused crawling exceeds that of the
breadth-first crawling by a significant margin.

11

Harvest ratio of profile based focused crawl and
OPIC crawl (Flower)

0.32 T T

0.28 | J

024 /| ;

022 E

Harvest ratio

02t/]
0.18 £/]

0.16¢ AT

1 2 3 4 5 6 7 8 9 10 s
Number of detail image pages crawled 10

-+- OPIC crawl
-©- Profiled based crawl

F1GURrE 13: Crawling harvest ratio for topic “flower” (793 valid user
profiles accumulated).

Detail page capture ratio of profile based focused crawl

and OPIC crawl (NYC)
0.5 -~
// \\\
// ﬂ\
0.45 ~ AN 1
p .
2 04l Gl :
it N
2 035, oL 1
3 \ AN
[} S
2 03\ o~
(=¥ \
=1 \
< \
b L \ i
ﬁ 0.25 \
+\\ /’k,,,+___+____+,—"
0.2 F TS 1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number pages crawled

-+- OPIC crawl
-6~ Profiled based crawl

FIGURE 14: Detail page capture ratio for topic “nyc” (706 valid user
profiles accumulated).

In the next set of experiments, we compared our profile-
based focused crawler with that of the OPIC crawler [12] for
both the topic “nyc” and “flower.”

For the profile-based crawling, we adjusted the crawling
strategy used by OPIC [12] to take the user profile and
crawling topic into account. Once we encounter a list page,
if we find that the list page is from the crawling topic list (by
checking its URL), we reset the score of that link to the initial
maximum value (1.0), while we reset the detail page scores
or profile page link scores according to their corresponding

12
Detail page capture ratio of profile based focused crawl
and OPIC crawl (Flower)
0.5 T T T T
PRGN
0.45¢ -~ \\\S E
T m—mom -
£ o4} Thel 1
g e
L A TG
2 035, <]
< \
© \
s \
& 0311 1
a, \
— \
= .
B 0.25 \ &
A ‘4\ ’+,__—+———_+_——+”’
AN T
0.2 F e ik -

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number pages crawled

-+- OPIC crawl
-©- Profiled based crawl

FiGure 15: Detail page capture ratio for topic “flower” (793 valid
user profiles accumulated).

0 Robustness of profile based focused crawl (Flower)
.5 T T T T T T T T

Harvest ratio
P
<

1 2 3 4 5 6 7 8 9 10
x103

Number of detail image pages crawled

F1GUrEe 16: Robustness of profile-based crawler for topic “flower.”

user profile scores. For the rest of the links, we adopt the
OPIC scores. We can see from the results that profile-based
focused crawling has a much better harvest ratio than purely
OPIC-based crawling. The harvest ratios, for the two topics,
are shown in Figures 12 and 13.

We also performed experiments to compare the detail
page capture ratio between profile-based focused crawling
and OPIC-based crawling.

We can see that in both cases, the detail page capture ratio
is higher for the profile-based focused crawler than for the
purely OPIC-based crawler.

Finally, we performed robustness experiments on both
topics to evaluate how stable a profile-based focused crawler
is. Unlike the above harvest ratio experiments, in the

EURASIP Journal on Image and Video Processing

05 Robustness of profile based focused crawl (NYC)

0.45 -

Harvest ratio
~

0.2}t

1 2 3 4 5 6 7 8 9 10
3
Number of detail image pages crawled <10

FIGURE 17: Robustness of profile-based crawler for topic “nyc.”

robustness experiments, we used a sliding window of 1000
pages to observe the harvest ratio on each set of 1000
pages, while for the general harvest ratio experiments we
measured the cumulative harvest ratio on 1000 pages,
2000 pages, ..., 10000 pages. From the experimental results
shown in Figures 16 and 17, we can see that for both topics,
the profile-based focused crawler is reasonably robust.

9. Conclusions and Future Work

We presented a profile-based focused crawler, which ranks
users with more topic-relevant media objects higher during
crawling. To further differentiate profiles while taking into
account the special characteristics of social media sites,
we have introduced and used the notions of the inner
profile and inter profile. We have used cotagging in a first
stage, for automated crawling topic discovery, and thus
build a consistent set of tags for a given topic. In both
the cotagging topic discovery process and the profile-based
focused crawling process, we used a path string-based page
classification scheme in order to allow us to extract the
correct type of information from each page type, and in
order to correctly calculate the profile ranks for a given topic.
Our experimental results confirmed the effectiveness of our
profile-based focused crawling system from the perspective
of harvest ratio and robustness. In the future, we would like
to deploy the proposed focused crawling on a real system for
real-time vertical social media search.

References

[1] S. Chakrabarti, M. van den Berg, and B. Dom, “Focused
crawling: a new approach to topic-specific web resource
discovery,” Computer Networks, vol. 31, no. 11-16, pp. 1623—
1640, 1999.

[2] S. Chakrabarti, B. Dom, and P. Indyk, “Enhanced hypertext
categorization using hyperlinks,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pp- 307-318, Seattle, Wash, USA, June 1998.

EURASIP Journal on Image and Video Processing

(3]

=

(11

F. Menczer, G. Pant, and P. Srinivasan, “Topical web crawlers:
evaluating adaptive algorithms,” ACM Transactions on Internet
Technology, vol. 4, no. 4, pp. 378-419, 2004.

G. Pant and P. Srinivasan, “Learning to crawl: comparing
classification schemes,” ACM Transactions on Information
Systems, vol. 23, no. 4, pp. 430-462, 2005.

C. C. Aggarwal, F. Al-Garawi, and P. S. Yu, “On the design
of a learning crawler for topical resource discovery,” ACM
Transactions on Information Systems, vol. 19, no. 3, pp. 286—
309, 2001.

C. C. Aggarwal, E Al-Garawi, and P. S. Yu, “Intelligent
crawling on the world wide web with arbitrary predicates,” in
Proceedings of the 10th International Conference on World Wide
Web (WWW °01), pp. 96-105, Hong Kong, May 2001.

M. Diligenti, E Coetzee, S. Lawrence, C. L. Giles, and M.
Gori, “Focused crawling using context graphs,” in Proceedings
of the 26th International Conference on Very Large Data Bases
(VLDB ’00), pp. 527534, Cairo, Egypt, September 2000.
C.-C. Hsu and F. Wu, “Topic-specific crawling on the web
with the measurements of the relevancy context graph,”
Information Systems, vol. 31, no. 4-5, pp. 232-246, 2006.

M. L. A. Vidal, A. S. da Silva, E. S. de Moura, and J.
M. B. Cavalcanti, “Structure-driven crawler generation by
example,” in Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval (SIGIR °06), pp. 292-299, Seatttle, Wash, USA,
August 2006.

Z. Zhuang, R. Wagle, and C. L. Giles, “What’s there and
what’s not?: focused crawling for missing documents in digital
libraries,” in Proceedings of the 5th ACM/IEEE Joint Conference
on Digital Libraries (JCDL 05), pp. 301-310, Denver, Colo,
USA, June 2005.

J. Qin, Y. Zhou, and M. Chau, “Building domain-specific
web collections for scientific digital libraries: a meta-search
enhanced focused crawling method,” in Proceedings of the 4th
ACMY/IEEE Joint Conference on Digital Libraries (JCDL ’04), pp.
135—-141, Tucson, Ariz, USA, June 2004.

S. Abiteboul, M. Preda, and G. Cobena, “Adaptive on-line
page importance computation,” in Proceedings of the 12th
International Conference on World Wide Web (WWW ’03), pp.
280-290, Budapest, Hungary, May 2003.

V. Crescenzi, G. Mecca, and P. Merialdo, “Roadrunner:
towards automatic data extraction from large web sites,” in
Proceedings of the 27th International Conference on Very Large
Data Bases (VLDB ’01), pp. 109-118, Roma, Italy, September
2001.

S. Grumbach and G. Mecca, “In search of the lost schema,”
in Proceedings of the 7th International Conference on Database
Theory (ICDT ’99), vol. 1540 of Lecture Notes in Computer
Science, pp. 314-331, Jerusalem, Israel, January 1999.

A. Arasu, H. Garcia-Molina, and S. University, “Extracting
structured data from web pages,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pp- 337-348, San Diego, Calif, USA, June 2003.

Y. Zhai and B. Liu, “Web data extraction based on partial tree
alignment,” in Proceedings of the 14th International Conference
on World Wide Web (WWW 05), pp. 76-85, Chiba, Japan, May
2005.

Z. Li, W. K. Ng, and A. Sun, “Web data extraction based on
structural similarity,” Knowledge and Information Systems, vol.
8, no. 4, pp. 438—461, 2005.

(18]

13

S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm, “Dom-based
content extraction of html documents,” in Proceedings of the
12th International Conference on World Wide Web (WWW ’03),
pp. 207-214, Budapest, Hungary, May 2003.

H. Zhao, W. Meng, and C. Yu, “Mining templates from
search result records of search engines,” in Proceedings of the
13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’07), pp. 884-893, San Jose,

Calif, USA, August 2007.

	1. Introduction
	2. RelatedWork
	3.Motivation for Profile-Based Focused Crawling
	4. Path String-Based Page Classification
	5. Profile-Based Focused Crawler
	6. Cotagging Topic Discovery
	7. Profile-Based Focused Crawling System
	8. Experimental Results
	9. Conclusions and Future
Work
	References

