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We present a method to improve the accuracy and speed, as well as significantly reduce the memory requirements, for the
recently proposed Graph Partitioning Active Contours (GPACs) algorithm for image segmentation in the work of Sumengen and
Manjunath (2006). Instead of computing an approximate but still expensive dissimilarity matrix of quadratic size, (N2

s M
2
s )/(nsms),

for a 2D image of sizeNs×Ms and regular image tiles of size ns×ms, we use fixed length histograms and an intensity-based symmetric-
centrosymmetric extensor matrix to jointly compute terms associated with the complete NsMs × NsMs dissimilarity matrix. This
computationally efficient reformulation of GPAC using a very small memory footprint offers two distinct advantages over the
original implementation. It speeds up convergence of the evolving active contour and seamlessly extends performance of GPAC to
multidimensional images.
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1. Introduction

Recently, Sumengen and Manjunath have proposed a graph
partitioning active contour (GPAC) algorithm for segment-
ing images motivated by graph cut approaches and paramet-
ric contour- or snake-based continuous curve evolution [1].
Using global minimization properties of graph partitioning
methods, coupled with an efficient numerical implemen-
tation for solving curve evolution using level sets, GPAC
produces impressive 2-class segmentation results for a variety
of multichannel (e.g., RGB) images. Color segmentation
using level sets has been previously reported in the literature
(cf, Brox and Weickert [2], Bunyak et al. [3]). However, as
noted by Sumengen and Manjunath in [1], these methods
are based on the statistics of unknown regions and impose
certain a priori assumptions about the image characteristics.

On the other hand, the underlying framework of GPAC
is based on the minimum-cut formulation, a problem widely
studied in the context of (color) image segmentation using
graph cuts (cf, Boykov et al. [4]). GPAC reformulates the
minimum-cut problem in a continuous domain and solves
the problem using active contours, rather than graph-cuts
[1].

The original description of the GPAC method follows an
explicit parametric contour-based approach with Lagrangian
dynamics. We start instead with an implicit level set descrip-
tion of the GPAC method following the notation of Chan
and Vese [5] that provides better intuition and reveals the
mathematical structure for the simplifying computations
introduced later. Let φ(x) be a level set function used to
segment a multichannel image in R2, having dimensionsNs×
Ms. Using the Heaviside function, H(φ(x)), we can write the
normalized maximum-cut formulation of the GPAC energy
functional combined with a length regularization term as

fin(x) =
∫

c∈Ω
w
(
p, x
)
H
(
φ(x)

)
dp,

fout(x) =
∫

c∈Ω
w
(
p, x
)(

1−H
((
φx
)))

dp,

(1)

where Ω is the complete image domain, integrals are
multidimensional, λ1, λ2, μ are scalars associated with the
functional, and Ain, Aout are the areas of the evolving
foreground and background regions, respectively. The last
term in (1) is a regularization term that measures boundary
length of the evolving level set and controls its smoothness.
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The foreground and background homogeneity terms fin, fout

are computed using the following weighted area integrals:

fin(c) =
∫
c∈Ω

w
(
c, p
)
H
(
φ(x)

)
dx,

fout(c) =
∫
c∈Ω

w
(
c, p
)(

1−H
(
φ(x)

))
dx,

(2)

where w(p, x) is a symmetric dissimilarity measure between
pixels located at indices c and p within a continuous
domain Ω. In this paper we consider measures w(c, p) that
are a function of intensity only without measuring spatial
differences between pixel locations as in the original GPAC
implementation [1, 6].

Using Gâteaux derivatives, the Euler-Lagrange equation
of (1) can be derived as

∂φ

∂t
= δ

(
φ
)
⎛
⎜⎜⎜⎜⎜⎝

λ2

Aout
fout − λ1

Ain
fin

︸ ︷︷ ︸
Data homogeneity term

+ μdiv

(
∇φ∣∣∇φ∣∣

)

︸ ︷︷ ︸
Length regularization term

⎞
⎟⎟⎟⎟⎟⎠
. (3)

The spatial index term (x) has been omitted for the sake
of clarity. Similar to the original Chan-Vese algorithm, a
regularized Heaviside and corresponding regularized Dirac-
delta function, δε(φ), should be used to improve the numer-
ical stability of computing derivatives of a step-function.
This will require appropriately adjusting the foreground
mask in the proposed fast GPAC algorithm described below.
The update equation shows that the level set iteration
process will be slowed if homogeneity terms have to be
recomputed at each iteration. Alternatively, precomputing
dissimilarity measures between all possible pairs of pixels
leads to tremendous storage requirements for even small
sized images [1]. To resolve this difficulty, the image is
partitioned into tiles of fixed dimensions (ns,ms) with ns �
Ns, ms � Ms, and dissimilarity measures are precomputed
with respect to centroids of these tiles, rather than each pixel
[1, Section 4]. Various aspects of tile size selection have been
discussed by the authors in [1, Section 4], including prob-
lems associated with selecting tiles across object boundaries,
chances of the curve disappearing due to large tile sizes,
and in general optimizing various scaling factors associated
with the tile size. Recently, Bertelli et al. have used geodesic-
based measures to optimize tile selection which requires the
additional step of computing image edges and performing
image-based region clustering [6]. Consequently, it would be
preferable to forgo this tile-based (or super-pixel) solution
of computing dissimilarity measures, and instead use exact
dissimilarity measures (which is equivalent to setting ns = 1
and ms = 1) provided that computational efficiency can be
addressed.

In Section 2, we propose the f-GPAC algorithm to
compute dissimilarity measures using histograms, and a
precomputed extensor matrix that is independent of pixel
locations and instead depends entirely on the dynamic range
pixel intensities. In Section 3, we provide comparative results
between the f-GPAC and Sumengen and Manjunath’s GPAC
algorithm followed by conclusions in Section 4.
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Figure 1: A 10 × 10 image with two distinct regions separated by
a zero level set φ0. (C1 ≡ φ ≥ 0) and (C2 ≡ φ < 0) represent the
two regions (i.e., foreground and background) produced by the zero
level set. The dynamic range of pixel intensities is between {I ∈ Z2 :
I ∈ [0, 8]}.

2. Fast GPAC (f-GPAC) with Histograms

As highlighted in the previous section, an exact, rather than
an approximate computation of the dissimilarity matrix W
would lead to more consistent results during segmentation.
For a better understanding in computing the dissimilarity
matrix, let us use the example shown in Figure 1 that shows a
10 × 10 image with pixels having discrete integer intensity
values I ∈ [0, 8]. We should mention that integer intensity
values have been chosen for illustrative purposes only, and in
the actual implementation intensities can be represented by
any finite range of real numbers. Following [1], we arrange
all pixels in a row-major order and compute elements of the
100× 100, location-dependent dissimilarity matrix (or graph
edge-weights between pixels), W, as

W =

I
(
i, j
)

6 5 5 · · · 2 3 5

6 0 1 1 · · · 16 9 1

5 1 0 0 · · · 9 4 0

...
...

...
...

...
...

...
...

3 9 4 4 · · · 1 0 4

5 1 0 0 · · · 9 4 0

(4)

It should be noted that in this paper we have constrained the
dissimilarity measure to any suitable function of difference in
intensity values (e.g., a squared Euclidean-distance measure).
This is a more relaxed version of a general dissimilarity
measure that incorporates differences in pixel position in
addition to intensity differences between pixels in the origi-
nal GPAC algorithm [1]. Clearly, precomputing dissimilarity
measures for all pixels is redundant. For example, in the
foreground region C1, pixels with intensity I(i, j) = 2 occur
six times. This redundancy makes computation, and storage
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of W a computationally expensive proposition. Hence, we
propose a novel approach of exploiting this redundancy, thus
leading to a highly efficient implementation of the GPAC
algorithm.

Let us assume that an M channel image, in R2, is being
segmented into N classes (or regions) using K level sets.
We do not constrain the relationship between K and N , but
from the literature it is understood that N = 2K in a dyadic
multiphase paradigm [7, 8], or N = K + 1 in other nondyadic
paradigms (cf [9]). In the specific case of a single level set
discussed in this paper, N = 2. Furthermore, we have a
priori knowledge about the dynamic range of pixel intensities
in all channels. Let Imin and Imax denote the minimum and
maximum pixel intensities from all channels, so the dynamic
range of pixel intensities D = �Imax� − �Imin� + 1.

First, we precompute a symmetric centrosymmetric exten-
sor matrix P as

Pi, j =
(
i− j

)2, i ∈ [Imin, Imax], j ∈ [Imin, Imax], (5)

for the L2-squared norm or

Pi, j =
∣∣i− j

∣∣, i ∈ [Imin, Imax], j ∈ [Imin, Imax], (6)

for the L1 norm, to reflect location independent dissimilarity
measures between pixel intensities. This intensity-domain
distance matrix, whose dimensions depend on the intensity
range and quantization bin-size, was inspired by the extensor
matrix proposed by Palaniappan et al. [10, equation (1)],
for solving problems related to image interpolation. In order
to compute P, we need to quantize the dynamic range of
the image intensity, D. Although the intensity range can
be quantized into any discrete set, a tradeoff needs to be
made between using finer quantizations (i.e., more bins)
and increasing the size of P, which would increase storage
requirements. Note, however, that the storage requirement
for the matrix P does not increase quadratically with the
number of quantization bins (i.e., D2) since we only need
to physically store the first row of the extensor matrix, and
each subsequent row can be determined as needed through
a sequence of shifts and copies. For the example shown in
Figure 1, Imin = 0, Imax = 8, D = 9 and for an intensity
quantization bin size of one, P is a 9× 9 matrix given by

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 4 · · · 49 64

1 0 1 · · · 36 49

4 1 0 · · · 25 36

...
...

... · · ·
...

...

49 36 25 · · · 0 1

64 49 36 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Next, we exploit the redundancy in computing pixel intensity
dissimilarities by constructing 1D histograms, hm,n, of each
class from every channel in the image yielding MN his-
tograms. The length of each histogram equals the dimension
of the extensor matrix P (i.e., D). Histograms have been
previously used in level set segmentation, or to speed up

their implementation and is similar to a Chan and Vese
style of modeling the image based on some sort of a priori
characteristics [2], a fact highlighted at the beginning of this
paper.

Thus, for the example shown in Figure 1, histograms for
the two regions (i.e., h1,1 for C1, and h1,2 for C2) are simply

0 1 2 3 4 5 6 7 8

h1,2
(
Background

)
10 9 14 14 4 13 2 2 1

h1,1
(
Foreground

)
16 5 6 2 1 1 0 0 0

(8)

Using the permutation matrix and histograms we compute a
vector of weights, wm,n, associated with pixels in each class,
and for every channel using the following expression:

wm,n = Phm,n, n ∈ [1,N], m ∈ [0,M − 1]. (9)

The matrix-vector multiplication associated with (9) is used
to update the active contour evolution and is performed at
each level set iteration. This is not only a fixed cost operation
but can be efficiently computed using Melmans algorithm in
(5/4)D2 + O(D) floating point operations for a vector (i.e.,
histogram) of length D, instead of the 2D2 operations needed
for an arbitrary matrix-vector multiplication [12].

By reducing the 2D M-channel image to a finite number
of fixed length 1D histograms, we are able to remove the
bottleneck of having to explicitly compute the dissimilarity
matrix W which as the authors noted in [1] makes segmenta-
tion an untenable operation, even for relatively small images
unless suitable approximations are made. Furthermore, it
is easy to observe that using a similar analogy, we can
seamlessly extend our approach of computing histograms
to segment images in higher dimensions Rn, thus making
f-GPAC a competitive alternative to other state-of-the-art
segmentation methods.

Thus, computing the homogeneity (i.e., force) terms
associated with each region in the original GPAC functional
is equivalent to summing up intraclass homogeneity terms
from each channel:

fn
[
p
] =

M−1∑
m=0

Mn
[
p
]
wm,n

[
I
[
p,m

]]
, and n = 1, 2, . . . ,N ,

(10)

where fn[p] is a vector representing the discrete version of
(2) for multichannel data with square brackets indicating
array indexing, I[p,m] is the intensity at the pth pixel
location in the image from the mth channel, and the set of
binary masks Mn (obtained from a discrete, or crisp version
of the Heaviside function) is used to select pixels from the
nth region out of the N-classes, for each of M-channels.

To complement the previous discussion, steps of the
algorithm for segmenting a multichannel 2D image (e.g.,
an RGB image) into two classes using a single level set are
presented in Algorithm 1. The implementation of f-GPAC as
described in Algorithm 1 pseudocode emphasizes clarity and
in some steps can be further optimized for performance. The
binary mask vector for class n, Mn, is simplified to just M for
the foreground mask and (1 −M) for the background mask
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I, a 2D image with M-channels and 2-classes,
Input: M, an initial 2D mask (binary)

Scalars λ1, λ2,μ, τ, and, ε
An appropriate stopping criterion

Output : φ
f
0 , the final 2D mask (binary)

(1) Compute Imin, Imax from all M-channels, and D = �Imax� − �Imin� + 1.
(2) Compute the extensor matrix P and histograms for foreground and background from all M channels.
(3) Ain,Aout, the foreground and background areas from M.
(4) Compute a signed Euclidean distance transform (EDT), φk

0 , of M using any suitable algorithm (cf, [11]).
(5) while (!stopping criterion) do
(6) Compute 1D weighting (of length D), using equation (9), for every channel m ∈ [0,M − 1].
(7) /∗Update every pixel in the image∗/
(8) for j = 0, 1, . . . ,MsNs do
(9) f1[ j] =∑M−1

m=0 M[ j]wm,1[I[ j,m]], f2[ j] =∑M−1
m=0 (1−M[ j])wm,2[I[ j,m]]

(10) Update φk[ j] to φk+1[ j] using a semi-explicit discretization of (3) as in [5].
(11) Update mask M and histograms hm,n for each channel and class, by noting sign changes in φk+1 − φk .
(12) Update mask M.
(13) Update Ain and Aout.
(14) end for
(15) end while
(16) /∗Binary mask from converged level set∗/

(17) φ
f
0 ←M

Algorithm 1: Fast GPAC for 2-class image segmentation.

in the two-class (N = 2) case, and we use f1 and f2 for fin
and fout, respectively (see (1)). For example, even though it
is indicated that two histograms need to be maintained (and
updated) for solving the two-class segmentation problem, it
is easy to observe that, under certain conditions, this can be
reduced to updating a single histogram. Using (10) and (9),
and assuming the scaling terms λ1 = λ2 = λ, we can discretize
and rewrite the data-homogeneity term of (3) as

λ

(
fout

Aout
− fin

Ain

)
= λ

M−1∑
m=0

P
(
hm,2

Aout
− hm,1

Ain

)
. (11)

Let us simplify the term within braces. We know that the
histogram of the complete image, h = h1,1 + h1,2, and the
total area of the image AΩ = Ain + Aout. On replacing h1,2

and Aout in (11), the terms within the braces can be rewritten
as

λ
M−1∑
m=0

P
(
hm,2

Aout
− hm,1

Ain

)
= λ

M−1∑
m=0

P
(
h− hm,1

AΩ − Ain
− hm,1

Ain

)

= λ
M−1∑
m=0

P
(
Ainh− AΩhm,1

((AΩ − Ain)Ain)

)

= λin

AΩ

M−1∑
m=0

Ph

︸ ︷︷ ︸
Term 1

− λin

Ain

M−1∑
m=0

Phm,1,

︸ ︷︷ ︸
Term 2

(12)

where

λin = λAΩ

AΩ − Ain
. (13)

Clearly, Term 1 in (12) can be precomputed prior to
beginning the iteration process. Hence the performance of
f-GPAC can be made entirely dependent on updating a
single histogram (Term 2—the histogram of the foreground
region). The simplification described above is not valid if
kernel-smoothing (e.g., Gaussian, cubic B-splines, etc.) is
applied on the histograms prior to computing the homo-
geneity terms. However, kernel-smoothing on the image as
a preprocessing step is not precluded by this simplification.

3. Experimental Results

We have implemented the proposed f-GPAC algorithm in
MATLAB, utilizing calls to dynamic linked libraries written
in C++ to optimize for speed. We have compared the
performance of our algorithm with the original GPAC
algorithm for which source code and test data are available
online [13]. Unless otherwise mentioned, the same initial
mask, as well as the following parameters, λ1 = NsMs,
λ2 = NsMs, μ = 4.0 × 104, ε = 1.0 were used in both
algorithms. In addition, the following tile sizes have been
used for the original GPAC algorithm: 4 × 4, 8 × 8, and
12 × 12. In the original GPAC implementation, the level
set iteration is deemed to have converged if the number of
pixels changing signs in two consecutive iterations is less
than a certain fixed number [13]. We have also used this
stopping condition when implementing our algorithm. A
semi-implicit discretization is used to solve the level set
update equation (3). We omit details of this discretization
and instead direct readers to [5, page 8, Section III].

Segmentation results of a few representative RGB images
(with dimensions of 216 × 144) are described. For a
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(a) Fast GPAC—After 0, 3, 6, and 14 iterations

(b) Original GPAC—After 0, 3, 6, and 81 iterations, with tile size of 4× 4

(c) Original GPAC—After 0, 3, 6, and 300 iterations, with tile size of 8× 8

(d) Original GPAC—After 0, 3, 6, and 300 iterations, with tile size of 12× 12

Figure 2: Comparative results of using our fast GPAC algorithm vis-à-vis the original GPAC algorithm in segmenting the “chinese man”
image. The RGB image was transformed into the YCbCr space prior to segmentation. It can be noted that decreasing the tile size improves the
convergence rate of the level set segmentation (indicated by the white mask). On the other hand, convergence is reached after 14 iterations
when using the f-GPAC algorithm. The stopping criterion is satisfied if less than 30 pixels change signs between two successive iterations, or
a count of 300 iterations is reached.

perceptual uniform color-space and faster convergence, RGB
images were transformed to the YCbCr space and suitably
scaled, prior to segmentation. We shift the dynamic range
of the image components using the experimentally deter-
mined transformation, Y-10, Cb-20, and, Cr-20. We have
observed that recentering the color component histograms
improves the final image segmentation results. An L2-
squared intensity-based extensor distance matrix (as shown
in (5)) of size 256 × 256 (and storing only the first row, as
described in Section 2) was used in all the experiments.

As shown in Figure 2, approximate versions of the
original GPAC algorithm lead to a longer convergence time
(4 × 4 tile sizes), or incorrect segmentation (12 × 12 tile
sizes). In contrast, our f-GPAC algorithm correctly extracts
out the man and similar regions (e.g., Chinese characters)
from the image. Using the same parameters, we notice a
nearly 7-fold decrease in convergence time when compared
to the original GPAC algorithm using the smallest possible
tile size dimension. Unfortunately, using the original GPAC
algorithm, further reduction in tile size was not possible
due to the huge amount of memory needed for storing
the dissimilarity matrix. A similar set of observations can
be drawn when segmenting other images having similar
dimensions (e.g., “horses” and “starfish” in Figure 3).

The f-GPAC algorithm produces nearly the same (or
better) results as the original GPAC algorithm, using the
smallest computationally feasible tile size for the latter, and
f-GPAC also demonstrates faster convergence. Moreover, as
observed in [1] increasing tile sizes can lead to unreliable
results as seen in Figure 3, where the tile size is increased
to 12 × 12. We wish to emphasize that changing the scaling
parameters associated with the level set functional may lead
to improved results using the original GPAC method. In our
f-GPAC implementation we have avoided this approach and
used the same set of parameters for segmenting all images
described in the experiments. However, we do acknowledge
that even in our algorithm, some parameters may need to be
changed (e.g., μ that controls smoothness of the curve) when
segmenting different classes of images.

In the context of biological image analysis, accurate
image partitioning is an important step when segmenting
and tracking multiple closely touching objects, such as
cells (cf [14–16]), when biological objects such as plant
or animal tissues need to be detected in highly cluttered
and noisy surroundings ([17–19]), or when complex biopsy
tissues are segmented into their constitutive elements [8, 20].
We have compared the performance of f-GPAC, as well
as the original GPAC algorithm in clustering nuclei from
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(a) 0, 3, and 14 iterations (e) 0, 3, and 15 iterations

(b) 0, 3, and 66 iterations, tile size of 4 × 4 (f) 0, 3, and 104 iterations, tile size of 4 × 4

(c) 0, 3, and 300 iterations, tile size of 8 × 8 (g) 0, 3, and 300 iterations, tile size of 8 × 8

(d) 0, 3, and 300 iterations, tile size of 12 × 12 (h) 0, 3, and 300 iterations, tile size of 12 × 12

Figure 3: Comparative results at various iteration steps when using our fast GPAC algorithm ((a) and (e)) vis-à-vis the original GPAC
algorithm ((b)–(d), and (f)–(h)) in segmenting “horses” and “starfish” images. The same parameters, used in segmenting the
“chinese man” image (Figure 2), were also used in segmenting these images.

(a) f-GPAC-0 iterations (b) f-GPAC-3 iterations (c) f-GPAC-8 iterations (d) f-GPAC-20 iterations

(e) Original GPAC-0 iterations (f) Original GPAC-3 iterations (g) Original GPAC-6 iterations (h) Original GPAC-300 iterations

Figure 4: Comparative results of using the f-GPAC algorithm vis-à-vis the original GPAC algorithm in segmenting “benign cells” with
dimensions 557× 227. The minimum tile size that could be used in the original GPAC algorithm was 12 × 12. The stopping condition was
set at 60 pixels, or a maximum iteration count of 300. Other parameters (like λ1, λ2, etc.) were the same as that used in generating results
shown in Figure 3. Evidently, the f-GPAC algorithm correctly segments the background (i.e., noncellular regions), while the original GPAC
is only able to segment stromal (white) regions in the image.

hematoxylin and eosin (H&E) stained images of biopsy
tissue cores containing various grades of prostrate cancer
including, “benign cells” (Figure 4), “grade3 cells”
(Figure 5), and “grade4 cells” (Figure 6), respectively.
With small tile sizes the original GPAC algorithm cannot be
used for segmenting large images (e.g., “grade4 cells”),
while using a larger tile size (e.g., 14×14) leads to the eventual
disappearance of the evolving curve! However, using the
proposed f-GPAC algorithm, a clear demarcation between
cellular clusters and the background is achieved in all cases,
within 60 iterations. The stopping criterion was changed
from 30 to 60 pixels, and the upper bound on the number
of iterations set to 300 for this dataset.

The difficulty in using the original GPAC and the
advantage of using the proposed f-GPAC for segmenting
large images, such as the “grade4 cells” image, merit
further discussion. A minimum tile size of 14 × 14 is the
smallest that could be used to compute the dissimilarity
matrix. Due to large memory requirements of storing the
dissimilarity matrix, we could not use a smaller tile size.
However, as seen from Figure 6(b), the evolving curve
eventually disappears when using this large of a tile size.
This confirms the observation made by the authors in [1,
Section IV], that when large tile sizes are used in the original
GPAC implementation, the curve may shrink and disappear
instead of converging to an object boundary. When the
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(a) f-GPAC-0 iterations (b) f-GPAC-3 iterations (c) f-GPAC-6 iterations (d) f-GPAC-29 iterations

(e) Original GPAC-0 iterations (f) Original GPAC-3 iterations (g) Original GPAC-6 iterations (h) Original GPAC-300 iterations

Figure 5: Comparative results of using the f-GPAC algorithm vis-à-vis the original GPAC algorithm in segmenting “grade3 cells” with
dimensions 340×156. The minimum tile size that could be used in the original GPAC algorithm was 5×5. The stopping condition was set at
60 pixels, or a maximum iteration count of 300. Other parameters (like λ1, λ2, etc.) were the same as those used in generating results shown
in Figure 3. Evidently, both the f-GPAC, as well as the original GPAC algorithm correctly segment the foreground (i.e., cellular regions).
However, the large value of μ results in smoothed blobs when using the original GPAC. Fine details of cell boundaries are preserved when
using the f-GPAC algorithm.

(a) f-GPAC-0 iterations (b) f-GPAC-3 iterations (c) f-GPAC-6 iterations (d) f-GPAC-36 iterations

(e) Original GPAC-0 iterations (f) Original GPAC-3 iterations (g) Original GPAC-6 iterations (h) Original GPAC-225 iterations

Figure 6: Comparative results of using the f-GPAC algorithm vis-à-vis the original GPAC algorithm in segmenting “grade4 cells” with
dimensions 388× 389. The minimum tile size that could be used in the original GPAC algorithm was 14× 14. was the same as that used in
generating results shown in Figure 5. The selected tile size for the GPAC algorithm leads to the disappearance of the evolving curve. Please
refer to the text for more details.

tile size is sufficiently reduced then a correct segmentation
is achieved using the original GPAC algorithm (Figure 4).
However, there is excessive smoothing of boundaries in the
segmented region due to a combination of using image tiling
and without tuning μ.

4. Conclusions

A novel approach to improve the performance of the GPAC
algorithm, proposed by Sumengen and Manjunath, has been
presented in this paper. We, jointly, compute terms associated
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with various elements of the complete dissimilarity matrix
by fixed length histograms and an intensity-based circulant
symmetric-centrosymmetric extensor distance matrix, thus
obviating the need to use spatial approximations to the
dissimilarity matrix. This dramatically reduces the memory
requirement for GPAC as image size increases while still
computing exact weights, which inturn leads to faster conver-
gence, and accurate segmentation when compared with the
original GPAC algorithm. Opportunities for further improv-
ing the performance of f-GPAC include using a narrow-
band implementation by maintaining a list of narrow-band
pixels around the zero level set and updating only those
pixels [9]. This approach is useful when a good initial guess
is provided to the f-GPAC algorithm. Parallelization using
additive operator splitting (AOS) can also be employed when
updating the Euler-Lagrange equation for f-GPAC (cf [21,
22]) to further speed-up performance. The proposed f-GPAC
algorithm improves the applicability of GPAC for a wide
range of image segmentation tasks and offers scalability to
explore automatic segmentation of large multidimensional
datasets.
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