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We propose a new model-based hand tracking method for recovering of three-dimensional hand motion from an image sequence.
We first build a three-dimensional hand model using truncated quadrics. The degrees of freedom (DOF) for each joint correspond
to the DOF of a real hand. This feature extraction is performed by using the Chamfer Distance function for the edge likelihood. The
silhouette likelihood is performed by using a Bayesian classifier and the online adaptation of skin color probabilities. Therefore,
it is to effectively deal with any illumination changes. Particle filtering is used to track the hand by predicting the next state of
three-dimensional hand model. By using these techniques, this method adds the useful ability of automatic recovery from tracking
failures. This method can also be used to track the guitarist’s hand.
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1. Introduction

Acoustic guitars are currently very popular and as a conse-
quence, research about guitars is a popular topic in the field
of computer vision for musical applications.

Maki-Patola et al. [1] proposed a system called “Virtual
Air Guitar” using computer vision. Their aim was to
create a virtual air guitar which does not require a real
guitar but produces music similar to a player using a real
guitar. Liarokapis [2] proposed an augmented reality system
for guitar learners. The aim of his work is to show the
augmentation (e.g., the positions where the learner should
place the fingers to play the correct chords) on an electric
guitar as a guide for the novice player. Motokawa and Saito
[3] built a system called “Online Guitar Tracking” that
supports a guitarist by using augmented reality. This is done
by showing a virtual model of the fingers on a stringed guitar
as a teaching aid for anyone learning how to play the guitar.

These systems do not aim to detect the fingering and
handing which a player is actually using (a pair of gloves
are tracked in [1], and graphics information is overlaid on
captured video in [2] and [3]). We have developed a different
approach from most of these researches.

In our previous work [4], we proposed a method that
accurately locates the positions of the fingertips of a guitar
player by employing computer vision aid. However, it cannot
track the whole structure of guitarist’s hand. In order to
improve the previous work, we present a model-based hand
tracking which will be further applied to the recovery of
three-dimensional hand motion of guitar player from an
image sequence, without the use of markers. Example input
and output images are given in Figure 1.

A challenge for tracking the hand of a guitar player is
that, while playing the guitar, the fingers are not stretched
out separately. Thus the existing model-based hand tracking
methods such as [5], [6], and [7] are not directly applicable
to the guitarist’s hand tracking as the fingers are usually
bent while playing the guitar. Moreover, the background
is dynamic and nonuniform (e.g., guitar neck and natural
scene) which makes it more difficult for background segmen-
tation. Also, for many classic guitars, the colors of frets and
strings are very similar to skin color. As a result it is not an
easy task to track the hand correctly.

To begin with, we construct a three-dimensional hand
model [8] using truncated quadrics as building blocks,
approximating the anatomy of a real human hand [9]. A



FIGURE 1: Model-based guitarist’s hand tracking: (a) sample input
image and (b) sample output image (projected corresponding
three-dimensional hand model).

hierarchical model with 27 degrees of freedom (DOF) is
used. The DOF for each joint correspond to the DOF of
a real hand. Then we extract corresponding features (edges
and silhouette) between three-dimensional hand model and
input image. The Canny edge detection is used to extract
the edge. Then, the Chamfer Distance function [10] is used
for edge likelihood. The silhouette is determined by using a
Bayesian classifier and the online adaptation of skin color
probabilities [11, 12]. By using the online adaptation, this
method is able to cope well with illumination changes.
Following this, the particle filter [13] is applied to track the
hand by predicting the next state of three-dimensional hand
model. As a result, the system enables us to visually track the
hand, which can be applied to track the hand of a guitarist.

The advantage of particle filter is that the tracker is
able to initialize and recover. Particle filter uses a lot of
state vectors (particles) to represent possible solution in each
time instance. If the hand moves fast until lost tracks, it
can automatically recover from tracking failures. Also, in
[9] they use template-based method. In their work, the
range of allowed hand motion is limited by the number
of templates that need to be stored. Thus, their method
requires creating many templates manually enough at the
first time, unless its coverage will not be sufficient for hand’s
movements. In contrast, by applying particle filter, it can
avoid the cumbersome process of manually generating a lot
of templates.

The work that is similar to ours is by De la Gorce et al.
[14] They focused on recovery of geometric and photometric
pose parameters of a skinned hand model from monocular
image sequences. However, they do not aim to apply hand
model-based to track the hand of guitarist which includes
with guitar neck in the background. In their work, their
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FiGURE 2: Method overview.

assumption is that the background image is basically static
and was also obtained from a frame where the hand was
not visible. In other words, when they define the image
synthesis process, they assume that the background image
is known (if their background is not static, they relax this
constraint by assuming that the color distribution associated
to the background is available). In the case of guitarist’s hand
tracking, the background is dynamic because the guitar neck
is not fixed to the camera which makes the situation different.
Due to the dynamic movement of guitar position, it cannot
simply use background subtraction from a frame where the
hand is invisible at the first time. In addition, for many classic
guitars, the colors of frets and strings are similar to skin color
which makes it difficult for segmenting the hand from the
guitar neck. The method of robust hand segmentation from
the guitar neck is undoubtedly needed. For this reason, in this
paper we apply a Bayesian classifier and the online adaptation
of skin color probabilities [11, 12] to robustly segment the
hand region from the guitar neck. This approach can also
deal well with illumination changes.

2. Method

Figure 2 shows the schematic of the implementation. We
firstly build the three-dimensional hand model using trun-
cated quadrics. Following this, the feature extraction algo-
rithm is performed for the hand model. At the same time, we
also extract the feature of captured image. As the next step,
we utilize a particle filter to track the hand.

2.1. Construct 3D Hand Model. This section explains the
method we used for building the hand model [8, 15]. The
hand model is constructed using a set of quadrics {Qi}?g,
approximately representing the anatomy of a real human
hand, as represented in Figure 3. The 27 DOF hand model
is constructed from 39 truncated quadrics. A hierarchical
model with 27 DOF is used: 6 for the global hand position, 4
for the pose of each finger, and 5 for the pose of the thumb
[16]. Starting from the palm and ending at the tips, the
coordinate system of each quadric is defined relative to the
previous one in the hierarchy.

Truncated quadrics are joined together in order to design
parts of a hand, such as a finger. There may be several ways
in which to define the model shape. However, it is desirable
to make all variables dependent on a small number of values
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FIGURE 3: Our geometric hand model, built by a set of quadrics and
drawn by OpenGL.

FIGURE 4: Building a finger model from quadrics. The joints are
modeled with spheres. This shows a view of bottom joint [8].

that can be easily obtained, such as the height, width, and
depth of a finger. These values are then used to set the
parameters of the quadrics. Each finger is built from cone
segments and truncated spheres, as shown in Figure 4. The
width parameter w of the cone is uniquely determined by the
height of the segment h and the radius r of the sphere, which
models the bottom joint:

hr
22

In order to create a continuous surface, the parameter y;
of the bottom clipping plane for the sphere is found as

1= W (2)

as
(3)

where H is the sum of the length of all three cone segments,
and f is the ratio between the length of the bottom segment
to the total length.

2.2. Feature Extraction. This section explains the feature
extraction which is used within the algorithm. The methods
explained in this section are applied for both the hand model
image and the captured image. The likelihood p(z | x) relates
observations z in the image to the unknown state x. The
likelihoods we used are based on the edge map z°4¢ of the
image (edge) as well as pixel color values z*! (silhouette).
These features have proved useful for detecting and tracking
hands in previous work [17]. Therefore, the joint likelihood

N .
of z = (298¢, 281) " is approximated as
plzx) = p(zedge,zs‘lx),

p(zedge) Zsilx) ~p (Zedgex)P(zcolx)

(4)

2.2.1. Edge Likelihood. We first extract feature by considering
the edge likelihood. The edge likelihood term p(z(¢4¢) | x) is
based on the chamfer distance function [10]. Given the set of
template points A = {a;} 2 and the set of Canny edge points
B = {b;}Y, a quadratic chamfer distance function is given
by the average of the squared distances between each point of
A and its closest point in B:

1
d(A,B) = == > minlla— b]’. (5)

4 aeA

Example edge extraction is shown in Figure 5. The
chamfer function can be computed efficiently for many
model templates by using a distance transform (DT) of the
edge image. This transformation takes the set of feature
points B as input and assigns each location the distance to its
nearest feature; that is, the DT value at location u contains the
value rglgi]glllu —bll. The chamfer function for a single template

can be computed by correlating its points with the DT image.
Given the shape template P and the observed edge image
z°d8¢, the likelihood function is defined as

p(z | x) = %exP(‘”("‘(x)’B(zedge)))’ (6)

where A(x) denotes the set of template points. A is generated
by projecting the model using the state vector x, and B is the
set of edge points obtained from the edge image z¢%¢. In our
implementation, we set A = 0.03.



FIGURE 5: Edge extraction: (a) input image and (b) edge extraction
result by Canny edge detector.

2.2.2. Silhouette Likelihood. We also perform feature extrac-
tion by determining the silhouette likelihood. The silhouette
is calculated by using a Bayesian classifier and the online
adaptation of skin color probabilities [11, 12].

The learning process has two phases. In the first phase,
the color probability is obtained from a small number of
training images during an offline preprocess. In the second
phase, we gradually update the probability automatically and
adaptively from the additional training data images. The
adapting process can be disabled as soon as the achieved
training is deemed sufficient.

Therefore, this method allows us to get accurate color
probability of the skin from only a small set of manually
prepared training images. This is because the additional
skin region does not need to be segmented manually. Also,
because of the adaptive learning, it can be used robustly with
changing illumination during the online operation.

In this way, because our method can learn color probabil-
ity of hand adaptively, the background of testing images does
not have to be the same. When the background is suddenly
changed, the segmentation result might become error prone
in the beginning but as soon as several frames are learned
adaptively, the segmentation will be recovered and becomes
good again.

Learning from Training Data Set. During an offline phase, a
small set of training input images (20 images) is selected on
which a human operator manually segments skin regions.
The color representation used in this process is YUV 4 :
2 : 2 [18]. However, the Y-component of this representation
is not employed for two reasons. Firstly, the Y-component
corresponds to the illumination of an image pixel. By
omitting this component, the developed classifier becomes
less sensitive to illumination changes. Secondly, compared to
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a 3D color representation (YUV), a 2D color representation
(UV) is lower in dimensions and, therefore, less demanding
in terms of memory storage and processing costs.

Assuming that image pixels with coordinates (x,y) have
color values ¢ = ¢(x,y), training data are used to calculate the
following.

(i) The prior probability P(s) of having skin s color in
an image. This is the ratio of the skin-colored pixels in the
training set to the total number of pixels of whole training
images.

(ii) The prior probability P(c) of the occurrence of each
color in an image. This is computed as the ratio of the
number of occurrences of each color ¢ to the total number
of image points in the training set.

(iii) The conditional probability P(c | s) of a skin
being color ¢. This is defined as the ratio of the number of
occurrences of a color ¢ within the skin-colored areas to the
number of skin-colored image points in the training set.

By employing Bayes’ rule, the probability P(s | ¢) of a
color ¢ being a skin color can be computed by using

P(c | s)P(s)

P(s|c) = (o)

(7)

This equation determines the probability of a certain
image pixel being skin-colored using a lookup table indexed
with the pixel’s color. The resultant probability map thresh-
olds are then set to be thresholdT,.x and threshold Ty,
where all pixels with probability P(s | ¢) > Tmax are
considered as being skin-colored—these pixels constitute
seeds of potential skin-colored blobs—and image pixels with
probabilities P(s | ¢) > Tmin Where Timin < Tmax are
the neighbors of skin-colored image pixels being recursively
added to each color blob. The rationale behind this region
growing operation is that an image pixel with relatively
low probability of being skin-colored should be considered
as a neighbor of an image pixel with high probability of
being skin-colored. The values for Tmax and Tmin should be
determined by test experiments (we use 0.5 and 0.15, resp.,
in the experiment in this paper). A standard connected com-
ponent labelling algorithm (i.e., depth-first search) is then
responsible for assigning different labels to the image pixels
of different blobs. Size filtering on the derived connected
components is also performed to eliminate small isolated
blobs that are attributed to noise and do not correspond
to interesting skin-colored regions. Each of the remaining
connected components corresponds to a skin-colored blob.

Adaptive Learning. The success of the skin color detection
crucially depends on whether or not the illumination
conditions during the online operation of the detector are
similar to those during the acquisition of the training data
set. Despite the fact that using the UV color representation
model has certain illumination independent characteristics,
the skin color detector may produce poor results if the
illumination conditions during online operation are consid-
erably different to those used in the training set. Thus, a
means of adapting the representation of skin-colored image
pixels according to the recent history of detected colored
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FiGure 6: Hand extraction by silhouette likelihood: (a) input image
and (b) hand extraction result by adaptive skin color learning.

pixels is required. To solve this problem, skin color detection
maintains two sets of prior probabilities. The first set consists
of P(s), P(c), and P(c | s) that have been computed offline
from the training set. The second is made up of Py (s), Pw (c),
and Pyw(cls) corresponding to the P(s), P(c), and P(cls)
that the system gathers during the W most recent frames
respectively. Obviously, the second set better reflects the
“recent” appearance of skin-colored objects and is therefore
better adapted to the current illumination conditions. Skin
color detection is then performed based on the following
weighted moving average formula:

Pa(s|c)=yP(s|c)+ (1—y)Pw(s o), (8)

where y is a sensitivity parameter that controls the influence
of the training set in the detection process, Pa(s | ¢)
represents the adapted probability of a color ¢ being a skin
color, and P(s | ¢) and Pw(s | ¢) are both given by (1)
but involve prior probabilities that have been computed
from the whole training set (for P(s | ¢)) and from the
detection results in the last W frames (for Py (s | ¢)). In our
implementation, we set y = 0.8 and W = 5.

Thus, the hand skin color probability can be determined
adaptively. By using online adaptation of skin color probabil-
ities, the classifier is easily able to cope with considerable illu-
mination changes. Example hand segmentation is illustrated

in Figure 6.
In this way, given the shape template P and the observed
silhouette image z*!, the likelihood function p(z:! | x)

is defined from the ratio difference of overlapped areas,
calculated from adaptive hand segmentation algorithm.

The skin color (or the luminance) in the testing images
does not have to be similar to the skin color in the training
images. This is because during online process we can learn
the input color adaptively, so that the skin color probability

will converge automatically. In case that the skin color (or
the luminance) is suddenly changed, the segmentation result
might become error prone in the beginning but as soon
as several frames are learned, and the segmentation will be
recovered. In other words, the training images are just the
initial value (seed). When the real input hand enters the
scene, the probability will converge automatically to the new
values matching with the real hand.

2.3. Particle Filter Tracking. Particle filtering [13] is a useful
tool to track objects in a clutter, with the advantage of
performing automatic recovering from tracking failures. We
apply particle filter to compute and track the hand. In
our method, one particle represents each DOF of hand
model. We determine the probability-density function by
calculating from edge likelihood and silhouette likelihood, as
explained in Section 2.2.1 and Section 2.2.2, respectively. The
calculation is based on the following analysis.

Given that the process at each time-step is an iteration
of factored sampling, the output of an iteration will be a

welghted time- stamped sample-set, denoted by {s[ o=
., N}with weights 7, " representing approximately the
probability—density function p(X;) at time t, where N is the

size of sample sets, s ) is defined as the position of the nth
particle at time ¢, and X; represents the position of hand
model at time.

The iterative process can be divided into three main
stages:

(i) selection stage,
(ii) predictive state,

(iii) measurement stage.

In the first stage (the selection stage) a sample s, ™ s

chosen from the sample-set {st 1»7Tr l,ct 1} with probabil-

ities 7'[;] )1, where c('1 is the cumulative weight. This is done

by generating a umformly distributed random number r €

[0, 1]. We find the smallest j for which ct(j )1
"(n)

> r using binary
search, and then s, can be set as follows: st(”) = sgj )1

Each element chosen from the new set is now subjected
to the second stage (the predictive step). We propagate each
sample from the set s;_; by a propagation function, g(s;(”)),
using

5 = g s

where noise is given as a Gaussian distribution. The form

) + noise, 9)

of g(s;(”)) is a propagation function we used. We have
tried different propagation functions (e.g., constant velocity
motion model and acceleration motion model), but our
experimental results have revealed that constant velocity
motion model and acceleration motion model do not
give a significant improvement. A possible reason is that
the motion of hand is usually changing directions while
tracking. Therefore the calculated velocities or accelerations
in previous frame do not give accurate prediction of the next
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FIGURE 7: Particle filter behaviour in our system.

frame. In this way, we use only the noise information by
defining g(x) = x in (9).

In the last stage (the measurement stage), we generate
weights from the probability-density function p(X;) to

obtain the sample-set representation {(SE"),nt("))} of the
state-density for time f using

" = p(Xt = 55")) = p(z | x), (10)

where p(z | x) is the joint likelihood of z, obtained from (4).
Next, we update the cumulative probability, which can be
calculated from normalized weights using

@0 @ ()

where nt(")Tota] is the total weightand n = 1,...,N.
Once the N samples have been constructed, we estimate
moments of the tracked hand model at time-step ¢ as using

el f(X)] = =N, m" s (12)

The hand can then be tracked, enabling us to perform
automatic track recovering.

Figure 7 shows how the particle filter visually behaves in
our system. The color in these hand model images illustrates
the probabilities of the hand which is used in the particle
filter step (left-to-right means low-to-high probability in
color scale). For example, at each moment if the particle has
a low normalized probability of being the correct hand pose
by considering edge and silhouette likelihoods as described in
Section 2.2, the color of the hand model shown will be black.
In contrast, if the particle has high probability of the hand,
the color will be red. The sum over all probabilities of every
particle is 1. The scale of color used is also shown in Figure 7.

If the tracking certainty is lower than the threshold we
set, it will return to the initial state again (as described in
Particle Filter Tracking). This means that the particles will
be initially distributed again for tracking. Thus, if the recent
tracking results are not perfect, the hand can still be tracked.

3. Results

Representative results from our experiments are shown in
this section. Figure 8 provides some representative results of

the tracking experiments from a single camera with captured
resolution 320 x 240 pixels. The reported experiment was
acquired and processed on an Intel(R) Core (TM2) Duo
CPU T7300 laptop computer running MS Windows at
2.0 GHz 778 MHz. One thousand particles are used for each
experiment, that is, N = 1000. The execution time for these
sequences is about 84 seconds per frame.

It is possible to use all 27 DOF in tracking, but it will take
too long time to compute the result in each frame (a lot of
particles are required for tracking in those high dimensions).
Thus, in our experiments we limit the movement of the hand
in the input video to a small number of DOE Then, we track
the hand movement in this reduced dimension.

Figures 8 (a) and (b) show the results of tracking global
hand motion together with finger articulation. The images
are shown with projected corresponding three-dimensional
hand models (green color). For these sequences, the three-
dimensional hand model has 11 DOE

As seen in Figure 8 (a), at the commencement of the
experiment, the hand starts moving from left-to-right and
then moving back from right-to-left, respectively. It can be
seen that the global hand motions are tracked successfully in
this sequence.

Figure 8 (b) shows the result of hand tracking, when
bending down the forefinger toward the palm. For this
sequence, the range of global hand motion is restricted to a
smaller region, but it still has 11 DOF. It can be observed that
the proposed tracker successfully recovers these motions.

In the next experiment (Figure9), a 13-DOF model
is used to track the hand of guitarist, while holding the
guitar. In this case, it is more challenging to track the
hand because edge extraction of the frets and strings is
more complicated than other normal backgrounds. Also the
colors of frets and strings are quite similar to skin color.
However, due to adaptive learning of the color probabilities
from online input images as described in Section 2.2.2, it
can robustly segment the hand region from the guitar neck
background. This allows the hand to be accurately tracked.
Figures 9(a) and 9(b) show the difference between without
and with using adaptive leaning for tracking, respectively.
It can be seen that when adaptive color learning is not
used, the system cannot successfully track the hand, as
shown in Figure 9(a), because of problem of background
segmentation. In contrast, Figure 9(b) illustrates that when
we apply adaptive learning of the color probabilities, the
system is able to track the hand correctly.
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(a) Results of hand tracking, when moving the global position of hand (11-DOF model)

(b) Results of hand tracking, when bending the forefinger down toward the palm (11-DOF model)

FIGURE 8: Representative results of 3D model-based hand tracking.

(a) Results of hand tracking, while holding the guitar (13-DOF model) without adaptive color learning

(b) Results of hand tracking, while holding the guitar (13-DOF model) with adaptive color learning

FiGgure 9: Comparing results of 3D model-based hand tracking without/with adaptive color learning.
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TaBLE 1: Error performance in terms of fingertip localization measured against manually labeled ground truth with different numbers of

particles.

Number of particles

Execution time (seconds per frame)

Mean distance errors (pixels)

750 69
1000 84
1250 126

11.78
8.46
6.18

FIGURE 11: Results of hand tracking, when the scale of hand changes (13-DOF model).

Camera is calibrated, so that the intrinsic parameters
are known before starting the system. Then the camera is
registered to the world coordinate through ARTag (Aug-
mented Reality Tag) [19]. Hence, when the projection matrix
is known, we can track by using particle filter to register to
the three-dimensional hand models onto the input images.
It converges to the hand automatically by fitting model based
on silhouette and edge clues using particle filter. Because
ARTag’s marker is placed to the guitar neck, the origin of the
world coordinate is defined on the guitar neck. In this way,
we know the projection matrix of camera at every frame, and
so we can track the three-dimensional hand model using the
proposed method.

In our method, we assume that the biggest region of a
skin color found in the images is a hand blob. When we
segment the skin area from the images, we remove small
noise by size filtering. We determine that if noise is smaller
than the threshold, we remove it. After that, we choose the

biggest area as a hand blob. Therefore, our assumption is
that the hand region has to be the largest area of skin found
in the images. In this way, even though there is some other
regions with color similar to skin color appear in the scene,
our method can deal with. Similarly, if there is more than one
hand or having faces in the images (but the hand of interest
is the biggest skin area), the hand can still be tracked.

Figure 10 shows representative results when there is more
than one hand or other skin area rather than hand in the
image. As described, if there is more than one skin area in
the image, our assumption is that the biggest area of a skin
color is a hand blob. Thus, although there are other areas of
skin color, we can differentiate them by deciding the size of
appearing skin-color areas.

Figure 11 represents some results when changing the
scale of hands. In the dimensions of DOF of the hand model,
the X-axis, Y-axis, and Z-axis are all considered. Because we
distribute randomly particles in Z-axis too, if the scale of
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hands changes (i.e., Z-axis is changed), our system can still
track the hand correctly.

Because it is difficult to measure directly the ground
truths of the parameters of every joint of 3D hand model, we
evaluate the error performance by measuring the projection
of fingertips in 2D. Table 1 shows the error performance
in terms of fingertip localization of five fingers measured
against manually labeled ground truth with different num-
bers of used particles. We randomly select 25 images
from 200 images from the sequence to measure the error
performance. We measure the distance errors by measuring
the differences of the distance between the ground truth
positions and the results of fingers tracking positions in each
fingertip. We obtain the ground truth positions manually by
human eyes to locate the correct positions of five fingertips,
while the fingertips of tracked hand model are estimated by
our system at each time. The distance errors in each fingertip
are measured by Euclidean distances in pixels (320 x 240
total image size) with respect to the ground truth positions.
After obtaining the distance errors from five fingertips, we
calculate the mean of the distance errors, as shown in Table 1.
The execution time in each of the number of used particles
is also shown in seconds per frame. We believe that these
errors are low enough to make the proposed algorithm
presented in this paper a suitable method for guitarist’s hand
tracking.

4. Conclusions

In this paper, we have developed a system that tracks the
hand by using a model-based approach. We construct the
three-dimensional hand model by using a set of quadrics.
After that, we utilize a quadratic chamfer distance function
to calculate the edge likelihood, and then the online color
learning adaptation is utilized. Following this, particle filter
is performed to track the hand. This implementation can
be used to further improve the hand tracking application
of guitarist such as [20]. Although we believe that we can
successfully produce accurate output from our system, the
current system has the limitation with finger occlusion and
guitar neck occlusion. This sometimes happens when playing
the guitar in real life. Another limitation is about the high
dimension of the state space (DOF). The number of particles
required increases with the dimension of the state space.
Therefore, some improvement or optimization should be
considered to make the system faster. In the future, we intend
to further refine these problems.
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