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We present a novel approach for contextual classification of image patches in complex visual scenes, based on the use of histograms
of quantized features and probabilistic aspect models. Our approach uses context in two ways: (1) by using the fact that specific
learned aspects correlate with the semantic classes, which resolves some cases of visual polysemy often present in patch-based
representations, and (2) by formalizing the notion that scene context is image-specific—what an individual patch represents
depends on what the rest of the patches in the same image are. We demonstrate the validity of our approach on a man-made versus
natural patch classification problem. Experiments on an image collection of complex scenes show that the proposed approach
improves region discrimination, producing satisfactory results and outperforming two noncontextual methods. Furthermore, we
also show that co-occurrence and traditional (Markov random field) spatial contextual information can be conveniently integrated
for further improved patch classification.
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1. Introduction

Associating semantic class labels to image regions is a
fundamental task in computer vision, useful in itself for
image and video indexing and retrieval, and as an inter-
mediate step for higher-level scene analysis [1–3]. While
many image area classification approaches segment an image
using all pixels [4] or by predefining a block-based image
grid [1, 3], in this work we consider local image patches
characterized by viewpoint invariant descriptors [5]. This
image representation, based on patches, robust with respect
to partial occlusion, clutter, and changes in viewpoint and
illumination, has shown its applicability in a number of
vision tasks [2, 6–9]. Local invariant regions do not cover the
complete image, but they often occupy a considerable part of
the scene and divide most of the scene into patches of salient
content (Figure 1).

In general, the constituent parts of a scene do not exist in
isolation, and the visual context—the spatial dependencies
between scene parts—can be used to improve region clas-
sification [1, 10–12]. Two image regions, indistinguishable

from each other when analyzed independently, might be
discriminated as belonging to the correct class with the help
of context knowledge. Broadly speaking, there exists a con-
tinuum of contextual models for image region classification.
On one end, one would find explicit models like Markov
random fields (MRFs), where spatial constraints are defined
via local statistical dependencies between class region labels
[10, 13], and between observations and labels [1]. The other
end would correspond to context-free models, where regions
are classified assuming statistical independence between the
region labels, and using only local observations [3, 6].

Lying between these two extremes, a type of scene
representation of increasing use is the histogram of quantized
image patches, referred to as bag-of-visterms [14, 15], bag-
of-keypoints [16], bag-of-features [17], or bag-of-codewords
[7, 18] in the literature. This representation is obtained
by sampling local regions in an image and quantizing
them into a finite set of patches according to their visual
appearance, storing the patch occurrence in the image in
the form of a histogram. On one hand, unlike explicit
contextual models, spatial neighboring relations in this
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Figure 1: (a) A visual scene, (b) scene patches: local invariant regions in yellow, (c) patches are classified with our method either as man-
made (in blue) or nature (not shown), and superimposed on a manual image area classification (in white).

representation are discarded, and any ordering between the
image regions disappears. On the other hand, unlike point-
wise models, although the image regions are still local,
the scene is represented collectively. This can explain why,
despite the loss of strong spatial contextual information,
this type of representation has been successfully used in a
number of problems, including object matching [19], object
categorization [9, 20], scene classification [7, 8, 21], and
scene retrieval [3].

As a collection of discrete data, the histogram of patches
is suitable for probabilistic models that capture a different
form of context which is implicitly captured through patch
co-occurrence. These models, originally designed for text
collections (documents composed of terms), use discrete
hidden aspect variables to model the co-occurrence of terms
within and across documents. Examples include probabilistic
latent semantic analysis (PLSA) [22] and latent Dirichlet
allocation (LDA) [23]. We have recently shown that the
combination of PLSA and histogram of quantized invariant
local descriptors can be successfully used for global scene
classification [8, 14]. Given an unlabeled image set, PLSA
captures aspects that represent the class structure of the
collection, and provides a low-dimensional representation
useful for classification. Similar conclusions with an LDA-
related model were reached in [7].

In this paper, we address the problem of classifying
image regions into semantic classes (see Figure 1) based on
their associated patch number (throughout this paper, the
term patch will mainly be used to denote an image region,
and sometimes to denote the discrete index obtained from
quantizing a local image descriptor of the patch; and in case
of ambiguity, we will use the term quantized patch or patch
number to denote the later). The main challenge for this task
is that patches are not class-specific. As shown in Figure 2,
image regions quantized into the same patch can appear in
both man-made and nature views. This situation, although
expected since quantized patch construction does not make
use of class label information, constitutes a problematic
form of visual polysemy. In this paper, we propose to take
advantage of the context in which each patch appears,
characterized by the patch histogram itself, to improve
the classification of the corresponding image regions. Our
contributions can be summarized as follows.

(1) We show that the above-mentioned aspect models
can be directly applied to patch classification, since specific

aspects, although learned without class information, corre-
late with the classes of interest. These aspects can be easily
labeled by hand or using a labeled image dataset, and used to
classify their most likely patches accordingly.

(2) The interpretation of a particular patch depends on
what the other patches in the same image are, and this co-
occurrence context is precisely captured by the estimated
aspect mixture weights. We propose to formally include this
contextual information in a new aspect model, so that even
though patches appear in multiple classes, the information
about the other patches in the same image can be used to
improve discrimination (Figure 2).

(3) We present results on a man-made versus natural
image regions classification task, and show that the contex-
tual information learned from co-occurrence improves the
performance compared to a non-contextual approach. In our
view, the proposed approach constitutes an interesting way
to model visual context that could be applicable to other
problems in computer vision.

(4) We show, through the use of a Markov random
field model, that standard spatial context can be integrated,
resulting in an improvement of the final classification of
image regions.

This paper is organized as follows. Section 2 reviews
the closest related work. Section 3 presents our approach
to local image patch classification. Section 4 introduces the
image representation. Section 5 introduces the concept of an
image as a mixture of latent aspects extended in Section 6 for
contextual local patch classification. Section 7 discusses the
two baseline models. Section 9 reports our results. Section 10
concludes the paper.

2. RelatedWork

Image region classification is a research field that has been
developed for many years. Generally speaking, there are two
main approach directions to the problem: classic pixel-based
image segmentation and image region classification.

Classic image segmentation is defined as a process of
partitioning the image into nonintersecting regions, such
that each region is homogeneous and no union of two
adjacent regions is homogeneous [24]. The main issue is
defining the property by which homogeneity is imposed.
In most cases, the properties on which segmentation is
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Figure 2: Image local regions can have different scene class labels depending on the image in which they are found. (a) Various patches
(4 different colors, same color means same patch number) that occur on natural parts of an image. (b) and (c) the same patches occur in
man-made structures. All these regions are correctly classified by our approach, switching the class label for the same patch depending on
the context.

based are gray-scale, color, texture, or a combination of
those properties. Image segmentation defined this way
is performed on each image independently. A review of
traditional segmentation approaches is given in [24]. Many
more alternatives have been proposed. For instance, Carson
et al. [25] present a blob-based segmentation method that
models the color, texture, and position of all the pixels in a
given image with a Gaussian mixture model (GMM), and
attribute the label of its most likely GMM component to
each pixel. This creates roughly homogeneous image regions
called blobs, which are used for image retrieval, allowing the
user to query the database at the blob level instead of the
image level.

We consider the perspective on image region classifica-
tion which is based on automatically defined patches. As we
will show, this allows the regional classification of images
based on class labels that are predefined and applicable
to the whole database, and not based on an homogeneity
criterion of the regions in an image. The region descriptors
are classified into categories, and the density of the region
class labels gives a regional classification of the image. We
present a selection of image regional classification models
that are based on class labels described in what follows, with
regions that cover the whole image [1, 3, 26–28] or only a
part of it [2, 6, 9].

The work in [26] relies on the normalized cuts segmen-
tation algorithm [29] to segment the image into regions that
are then quantized. Derived from the machine translation
literature, an expectation-maximization (EM) estimates the
probability distributions linking a set of words and blobs.
Once the model parameters are learned, words are attached
to each region. This region naming process is comparable to
image segmentation.

Extending the MRF model, Kumar and Hebert proposed
a discriminative random field (DRF) model that includes
neighborhood interactions in the class labels, as well as at
the observation level. They apply the DRF model to the
segmentation of man-made structures in natural scenes [1],

with an extraction of images features based on a grid of
blocks that fully covers the image. The DRF model is trained
on a set of manually segmented images, and then used to
infer the segmentation into the two target classes.

Using a similar grid layout, Vogel and Schiele presented a
two-stage classification framework to perform scene retrieval
[3] and scene classification [27]. This work performs an
implicit scene segmentation as an intermediate step, classi-
fying each image block into a set of semantic classes such as
grass, rocks, or foliage.

To include global shape prior information in an MRF-
based model formulation, Kumar et al. proposed an MRF
part-based segmentation model, referred to as ObjCut, which
represents object by means of segmented parts [30]. This
requires the explicit encoding of the spatial information
relating parts and also the modeling of their deformations.
The use of regions in this case reduces the invariance to
occlusion, and the modeling has a high computational cost.
Furthermore, the object to model must be composed of
discriminative parts with known spatial relationships, which
is not the case for scenes.

In [6], invariant local descriptors are used for an object
detection task. All region descriptors in the training set
are modeled with a Gaussian mixture model (GMM). A
subset of the mixture components is then selected based on
their estimated class likelihood ratio or mutual information,
which are then used to classify new regions based on
their local descriptors. In this non-contextual approach,
new descriptors are independently classified into object or
background regions, without taking the other descriptors
in the same image into consideration. A similar approach
introducing spatial contextual information through neigh-
borhood statistics of the GMM components collected on
training images is proposed in [2], where the learned-
prior statistics are used for relaxation of the original region
classification.

Leibe et al. proposed an implicit object model based on
local invariant descriptors that jointly learns the discriminant
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descriptors for an object and their spatial relationships [31].
Once again, this approach implies an existing spatial layout
of the object parts which does not exist in the case of scenes.

As an extension to local descriptors’ representation
of images, probabilistic aspect models have been recently
proposed to capture descriptors co-occurrence information
with the use of a hidden variable (latent aspect). The work
in [7] proposed a hierarchical Bayesian model that extended
LDA for global categorization of natural scenes. This work
showed that important patches for a class in an image
can be found. However, the problem of local image patch
classification was not addressed. The combination of local
descriptors and PLSA for local patch classification has been
illustrated in [9]. However this work has two limitations.
First, patches were classified into aspects, not classes, unless
we assume as in [9] that there is a direct correspondence
between aspects and semantic classes. This seems however a
over-simplistic assumption in general. Secondly, evaluation
was limited, for example, [9] does not conduct any objective
performance evaluation.

To model both the object and the scene in an image,
Russell et al. [32] proposed to use regions resulting from
multiple unsupervised image segmentations to represent an
image as an aggregate of sub-images. These sub-images are
represented with bag-of-visterms and modeled with an latent
aspect model. Starting from multiple image segmentations
to maximize the chance that some segmented regions will
correspond to actual objects is an interesting approach.
There is however no guarantee that this will be true in
general, and we therefore model images at the scale of patches
in our work to ensure that no initial segmentation step will
harm the image representation.

A preliminary version of our work first appeared in [33].
Inspired by our work, Verbeek and Triggs proposed the
extension of aspect modeling by integrating spatial models
[28]. The proposed approach introduces spatial coherence
to the aspect model improving segmentation. However, the
training of the latent aspect becomes limited to using labeled
data, losing the possibility of learning visual co-occurrence
from unlabeled data.

Unlike previous approaches, we propose a formal way
to integrate the latent aspect modeling, learned in an unsu-
pervised way from unlabeled data in the class information,
and conduct a proper performance evaluation, validating
our work with a comparison to a state-of-the-art baseline
method. In addition, we explore the integration of the more
traditional spatial MRF model into our system and compare
the obtained results.

In the final stage of preparing this manuscript, new
models were put forward to segment images by combining
latent aspect models with quantized local patches. Cao and
Fei-Fei presented a latent aspect model that assumes that
each region of an image, obtained with an unsupervised
segmentation algorithm in a first step, is generated from a
single aspect [34] . Regions are not modeled as separate doc-
uments, but as building parts of a given image which is itself
defined by a mixture of aspects, contrarily to [32]. Liu and
Chen proposed to explicitly combine a latent aspect model
with a known supervised segmentation algorithm [35]. The

segmentation algorithm and the aspect models are linked
through a new variable that distinguishes foreground from
background patches. This variable is successively obtained
from the segmentation algorithm and then considered as an
observed variable in the aspect model. A new segmentation
is obtained when the aspect model is learned and this process
iterates until the final segmentation is obtained.

3. Scene Patch Classification

The aspect models that we present in this paper allow to
classify image regions into two classes, based on an estimated
patch class likelihood taking advantage of the availability of
a patch histogram. The method can be applied to image
collection of regions defined randomly, by a regular grid
(with or without overlap), or obtained with an interest
point/region detector. Depending on what the considered
image regions are, the resulting spatial distribution of class
labels can produce local image classification with no label
overlap (e.g., when using grid patches) [1, 3, 27], or a
density-based image patch classification (when using interest
point detectors) [2, 6]. In the later case, as shown on Figure 1,
the classification of patches obtained by an interest point
detector produces a sparse regional image classification.
However, one advantage of using an interest point detector
is that the identification of stable regions may exhibit better
correspondence across the images than an arbitrary grid
image division. In this paper, we decided to rely on an interest
point detector to sample specific types of image regions to be
classified, but the technique can be applied to any other form
of region selection scheme.

As shown in Figure 3, our approach relies on the quan-
tization of local region descriptors into a fixed number of
patches using the K-means clustering algorithm. Compared
to [2, 6], this quantization step simplifies the image represen-
tation from an undefined number of region descriptors per
image to a histogram of patch labels. In addition, it allows to
define a patch co-occurrence context of an image as a simple
histogram, which can be further analyzed with an aspect
model formulation. The patch histogram representation is
discussed in details in Section 4.

Classification Principle: Likelihood Ratio. We rely on likeli-
hood ratio computation to classify each patch v of a given
image d into a class c. The ratio is defined by

LR(v) = P(v | c = man-made)
P(v | c = natural)

, (1)

where the probabilities will be estimated using different
models of the data, as described in Section 6, and the
classification rule is

LR(v) > T =⇒ v ∈ man-made, (2)

where T is a threshold value. Thus, all image regions
associated with the same patch will be classified in the same
category according to the rule in (2). Note that, alternatively,
we could have considered, as a classification rule, a ratio
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Figure 3: Our aspect models rely on a patch-based image representation, obtained by a K-means quantization of SIFT image region
descriptors. The class likelihood of patches extracted from a new image is estimated from the previously seen labeled images.

based on P(c | v). The only difference with respect to using
LR(v) is to multiply the threshold value T by the constant
P(c = man-made)/P(c = natural).

4. Image Representation

In what follows, we describe and further justify the four
steps that we take to build our image representation: (i)
detection of interest points/patches, (ii) computation of
local descriptors, (iii) local descriptor quantization, and (iv)
construction of the patch histogram.

4.1. Detection of Interest Points. The goal of the interest point
detector is to automatically extract characteristic points from
a given image, which are invariant to some geometric and
photometric transformations. These points define image
regions which are also invariant to the same transformations.
Invariance is an important property since it ensures that
given an image and its transformed version, equivalent image
patches will be extracted from both, and the resulting image
representation will be the same (within a certain estimation
error).

Different point detectors have been proposed to extract
regions of interest in images [5, 36]. They vary mostly by
the amount of invariance they theoretically ensure, the image
property they exploit to achieve invariance, and the type of
image structures they are designed to detect. However, the
increase in invariance also means that different points can
become more similar after invariance regularization. In this
way, we must also restrain invariance since a big increase in
the degree of invariance may remove information about the
local image content which is valuable for classification.

In this work, we use the difference of Gaussians (DOGs)
point detector [5]. This detector essentially identifies blob-
like regions where a maximum or minimum of intensity
occurs in the image, and it is invariant to translation, scale,
rotation, and constant illumination variations. We chose this

detector since it was shown to perform well in comparison
studies previously published [37, 38], and also since we
found it to be a good choice in practice for the task at hand,
performing competitively compared to other detectors [8].
The DOG detector is also faster than similarly performing,
fully affine-invariant ones [36],

4.2. Computation of Local Descriptors. Local descriptors are
computed over the image region defined by each interest
point which is automatically identified by the local interest
point detector. These descriptors characterize the image
content of each region in a compact way. In this work, we
use the scale invariant feature transform (SIFT) feature as
local descriptors [5]. This choice was motivated by several
publications [7, 37], where SIFT was found to work best. This
descriptor is based on the gray-scale gradient information
of images, and was shown to perform best in terms of
specificity of region representation and robustness to image
transformations [37]. SIFT features are local histograms of
edge directions computed over different parts of the region
of interest, capturing the structure of the local image patch.
In [5], it was shown that the use of 8 orientation directions
and a grid of 4 × 4 parts give a good compromise between
descriptor size and accuracy of representation (see Figure 4),
what gives a feature vector of size 128. Orientation invariance
is achieved by estimating the dominant orientation of
the local image patch using the orientation histogram of
the keypoint region. All direction computations in the
elaboration of the SIFT feature vector are then done with
respect to this dominant orientation.

4.3. Local Descriptor Quantization. After the interest point
detection and the computation of descriptors, an image is
represented as a set of SIFT features characterizing the gray-
scale texture of its regions of interest. We propose to quantify
the descriptors to obtain a fixed size, compact representation
of the image. A vocabulary of quantized descriptors V—
referred to as patches in this paper—is constructed by
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Figure 4: SIFT descriptor: the detected regions are segmented into a 4× 4 grid, and each square is represented by an eight-bin histogram of
the edge directions in this region, resulting in a description vector of dimension 128.

learning a K-means model from a set of local descriptors
extracted from the training images, keeping the estimatedNV

means as patches. New local descriptors s are mapped to the
closest patch v in the vocabulary V according to the nearest
neighbor rule:

s �−→Q(s)=vi ⇐⇒ dist
(
s, vi
)≤dist

(
s, vj

) ∀ j∈{1, . . . ,NV
}

,
(3)

where NV denotes the size of the patch set. We used the
Euclidean distance in the clustering (and in (3)) and choose
the number of clusters depending on the desired vocabulary
size. The choice of the Euclidean distance to compare SIFT
features is common [5].

Technically, the quantization of similar local descriptors
into a single patch can be thought of as being similar to
the stemming preprocessing step of text documents, which
consists of replacing all words by their stem. The rationale
behind stemming is that the meaning of words is carried
by their stem rather than by their morphological variations
[39]. The same motivation applies to the quantization of
descriptors into patches.

Furthermore, local descriptors will be considered as
distinct whenever they are mapped to different patches,
regardless of whether they are close or not in the SIFT feature
space. This also resembles the text modeling approach which
considers that all information is in the stems, and that any
distance defined over their representation (e.g., strings in the
case of text) carries no semantic meaning.

Figure 5 shows some examples of clusters of the SIFT
descriptors. All of the examples of each cluster get the same
label, and so get represented by the same patch. The patch
number 157 represents a step function that might not be
very specific to any of the man-made or natural image
regions. On the contrary, the patches 240 and 14 represent
cornered/squared structures that should mostly occur in
man-made structures. Similarly, the samples from the patch
661 contain high frequencies that seem most likely to occur
in natural structures.

4.4. Patch Histogram. After the feature quantization step, the
image is reduced as a set of patches taken from a fixed size

patch vocabulary that can be encoded as a patch histogram
according to

h(d) = (hi(d)
)
i=1,...,NV

, with hi(d) = n
(
d, vi

)
, (4)

where n(d, vi) denotes the number of occurrences of patch
vi in image d. The construction of the patch histogram
is illustrated in Figure 6. The patch histogram contains
no information about spatial relationship between patches,
similar to the bag-of-words text representation: even though
word ordering contains a significant amount of information
about the original data, it is completely removed from the
final document representation.

5. Scenes as Mixtures of Aspects

The concept of aspect models for images has been recently
applied to scene [8, 15, 21] and object [40, 41] categorization
tasks, using the estimated distribution over aspects as a
feature extraction process, or directly as a classifier. Under
the assumption of an aspect model, an image can be seen
as a mixture of unobserved (latent) aspects that are defined
by consistent co-occurrences of image patches (or their
features) within the image collection. A latent aspect zk is
thus represented by its conditional distribution over patches
P(v | zk), and an image di is represented by the conditional
distribution over aspects P(z | di).

5.1. Scene Modeling with PLSA. Several latent aspect models,
such as PLSA [22], LDA [23], and multinomial PCA (MPCA)
[42], have been proposed in the literature for discrete
components analysis. In this work, we consider the PLSA
model [22], which assumes each occurrence of the patch vj
to be independent from the image it belongs to given the
latent variable zk, and corresponds to the joint probability
expressed by

P
(
vj , zk,di

) = P
(
di
)
P
(
zk | di

)
P
(
vj | zk

)
. (5)

The joint probability of the observed variables is the
marginalization over the NA latent aspects zk as expressed by

P
(
vj ,di

) = P
(
di
) NA∑

k=1

P
(
zk | di

)
P
(
vj | zk

)
. (6)
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Figure 5: Four examples of randomly selected image regions clustered into the same patch number, out of 1000 obtained by the K-means
quantization.
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Figure 6: Construction of the patch histogram representation. Image regions are detected with DoG detector, their SIFT representation are
extracted and then quantized to build the patch histogram.

The multinomial distributions P(z | di) and P(v | zk)
are estimated with an EM algorithm on a set of training
documents. As an illustration, Figure 7 shows the distri-
bution over aspects for two images, for an aspect model
trained on a collection of 6600 images of landscape and
city images. The conditional distributions of patches given
the NA = 60 aspects are represented on the right column
of Figure 7, representing an aspect by its specific patch
co-occurrence pattern. We see in Figure 7 that the patch
histogram representations of the two images are modeled
by two dissimilar distributions over aspects, reflecting their
differences in content. The two images are composed of
different patch co-occurrences that exist in the image
collection, resulting in different image-dependent contexts.

The aspect indices have no intrinsic relevance to a specific
class, given the unsupervised nature of the PLSA model
learning. We can, however, inspect each aspect to observe
the meaning that they may have in terms of our target
classes. Aspects can be conveniently illustrated by their most
probable images in a dataset. Given an aspect z, images can
be ranked according to

P(d | z) = P(z | d)P(d)
P(z)

∝ P(z | d), (7)

where P(d) is considered as uniform. Figure 8 displays
the 10 best-ranked images for a given aspect to illustrate

its potential “semantic meaning.” The top-ranked images
representing aspect 55 and 22 all clearly belong to the natural
class, while the top-ranked images for aspect 50, 10, and 37
contain a large majority of man-made structures. Aspect 12
seems to be mainly related to horizon/panoramic scenes, and
contains landscape images only (top 10 images). However,
as aspects are identified by analyzing the co-occurrence of
visual patterns within local patches, they may be consistent
from this point of view without allowing for a direct semantic
interpretation as shown on Figure 8 for the aspect 45.

To further confirm the connection between the learned
aspects and the target classes, we can measure objectively
their relationship by defining the Precision and Recall paired
values with respect to a given label at rank r by

Precision(r) = RelRet
Ret

, Recall(r) = RelRet
Rel

, (8)

where Ret is the number of retrieved images, Rel is the total
number of relevant images, and RelRet is the number of
retrieved images that are relevant. Note here that for this
experiment, we assume that images are only associated with
one class label although they may contain some content (and
patches) belonging to the other class. The precision/recall
curves associated with each aspect-based image ranking
considering either the natural or the man-made queries are
shown in Figure 9. Those curves prove that some aspects
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Figure 7: Two images and their decomposition into a mixture of NA = 60 aspects, estimated by the PLSA model. The second column is
the histogram of 1000 patches corresponding to the image on the same row, the third column shows the estimated distribution over aspects
given the patch histogram. The right column represents the NA conditional distributions over patches given the aspects zk .

are clearly related to the two classes, and confirm the
observations made previously with respect to the aspect
correspondences. As expected, aspect 45 does not appear
in either the man-made or the natural top precision/recall
curves. The natural related ranking of aspect 12 does not hold
as clearly for higher recall values because the pattern of patch
co-occurrences appearing in horizons that it captures is not
exclusive to the natural class.

5.2. Mapping Aspects to Local Image Patches. As we have
shown, images can be modeled as mixtures of aspects, and
some aspects correlate with the man-made or the natural
classes. The conditional distribution of patches given an
aspect P(v | z) could be exploited for the classification of
image regions in an image (given their patch label) as far as
a class label is attached to the aspects. Based on the learned
conditional distributions of patches given aspects, the most
likely aspect can be attributed to a given patch according to

zvj = arg max
z

(
P
(
z | vj

))

= arg max
z

(
P
(
vj | z

)
P(z)

P
(
vj
)

)

= arg max
z

P
(
vj | z

)
,

(9)

where we have assumed that the distribution over the
latent aspects P(z) is uniform. In Figure 10, we show two
examples of image region classification based on the concept
of mixture of aspects. Based on the average precision (AP)
measure of the ranking illustrated in Figure 9, we first
select the ten aspects that are the more closely related to
the man-made class and the ten aspects that are the more

closely related to the natural class. Restricting the aspect
attribution to these 20 man-made and natural aspects, each
patch can be independently classified as a man-made or
a natural descriptor based on (9). These two examples
show a reasonable match between the ground-truth patch
classification and the density of red and green points. The
unsupervised learning based on co-occurrence thus allows to
identify man-made and natural latent aspects in the data that
can be later used to classify patches (and their corresponding
image regions) into these two categories.

Based on this idea, we present two aspect models that
extend PLSA model [22] for image patch classification in
Section 6.

6. Aspect Models for Patch Classification

As introduced in Section 3, our goal is to classify image
regions based on the estimated class likelihood ratio of
their corresponding patches, as described in (1). In what
follows, we propose two aspect models that estimate patch
class-likelihoods based on the decomposition of scenes in
a mixture of aspects. The observed data is composed of
patch, document, and class triplets (v,d, c) for each patch
occurrence in a labeled training set.

The first aspect model classifies patches independently
of the image they belong to and can be thus seen as a
probabilistic formulation of the idea presented at the end
of Section 5, where the assumption was that an aspect could
only be associated with one class (i.e., P(z | c) = 0 or 1). The
second model takes full advantage of the patch histogram
context, and allows to estimate patch class-likelihoods that
depend on the image that is considered.
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Aspect 55 Aspect 22 Aspect 50 Aspect 10 Aspect 37 Aspect 12 Aspect 45

Figure 8: Illustration of seven aspects out of 60 learned by the PLSA model on a set of 6600 landscape and city images. The 10 top-ranked
images for each aspects are displayed, showing a correspondence between the aspects and the man-made (aspects 50, 10, and 37) and natural
(aspects 55, 22, and 12) classes.

6.1. Aspect Model 1. The first model associates a hidden
variable z ∈ Z = {z1, . . . , zNA} with each observation leading
to the joint probability defined by

P(c,d, z, v) = P(v | z,d, c)P(z | d, c)P(d | c)P(c)

= P(v | z)P(z | d)P(d | c)P(c).
(10)

This model introduces two conditional independence
assumptions. The first one, traditionally encountered in
aspects models, is that the occurrence of a patch v is

independent of the image d it belongs to, given an aspect
z. The second assumption is that the occurrence of aspects
is independent of the class the patch belongs to, that is,
P(z | d, c) = P(z | d). Note that in (10), the class label
refers to the class of one patch. Thus, different class labels
can be associated with a given document, and the term
P(d | c) reflects the degree to which an image indirectly
belongs to a given class given its patches. The parameters
of this model are learned using the maximum likelihood
(ML) principle [22]. The optimization is conducted using
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Figure 9: Precision/recall curves for the image ranking based on each of the 60 individual aspects, relative to the natural (a) and man-made
(b) query. Each curve represents a different aspect. Floor precision values correspond to the proportion of natural (resp., man-made) images
in the dataset.

(a) (b) (c)

(d) (e) (f)

Figure 10: Classification of local image patches based on the 10 aspects that are the more closely related to the man-made class, and the
10 aspects that are the more closely related to the natural class. The first column is the original image, the second column is the ground-
truth image area classification (white is man-made, black is natural), and the last column is the result of the patch classification. Red circles
correspond to patches classified as man-made, green circles correspond to patches classified as natural. The respective densities of red and
green points show a good correspondence with the ground-truth image area classification.

the expectation-maximization (EM) algorithm, allowing us
to learn the aspect distributions P(v | z) and the mixture
parameters P(z | d).

Notice that, given our model, the EM equations do not
depend on the patch class label. Besides, the estimation of the
class-conditional probabilities P(d | c) does not require the
use of the EM algorithm. We will exploit these points to train
the aspect models on a large dataset (denoted D) where only
a small part has been manually labeled at the image level (we
denote this subset by Dlab). This labeling at the image level

allows to quickly annotate a large number of patches as man-
made or natural, but does not imply that images have one
class in general. We assume that patches have a class label.

Regarding the class-conditional probabilities, as the
labeled set is only composed of man-made-only or natural-
only images, we simply estimate them according to

P(d | c) =

⎧
⎪⎨

⎪⎩

1
Nc

, if d belongs to class c,

0, otherwise,
(11)
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where Nc denotes the number of images belonging to class c
in the labeled set Dlab. Given this model, the likelihood we
are looking for (cf. (1)) can be expressed as

P(v | c) =
NA∑

l=1

P
(
v, zl | c

) =
NA∑

l=1

P
(
v | zl

)
P
(
zl | c

)
, (12)

where the conditional probabilities P(zl | c) can in turn be
estimated through marginalization over labeled documents,

P
(
zl | c

) =
∑

d∈Dlab

P
(
zl,d | c

) =
∑

d∈Dlab

P
(
zl | d

)
P(d | c). (13)

These equations allow us to estimate the likelihood ratio
as defined by (1). Note that this model extends PLSA by
introducing the class variable [22].

6.2. Aspect Model 2. From (12), we see that despite the fact
that the above model captures co-occurrence of the patches
in the distributions P(v | z), the context provided by the
specific image d has no direct impact on the likelihood. To
explicitly introduce this context knowledge, we propose to
evaluate the likelihood ratio of patches conditioned on the
observed image d,

LR(v,d) = P(v | d, c = man-made)
P(v | d, c = natural)

. (14)

The evaluation of P(v | d, c) can be obtained by marginaliz-
ing over the aspects,

P(v | d, c) =
NA∑

l=1

P
(
v, zl | d, c

) =
NA∑

l=1

P
(
v | zl

)
P
(
zl | d, c

)
,

(15)

where we have exploited the conditional independence of
patch occurrence given the aspect variable. Under model
1 assumptions, P(zl | d, c) reduces to P(zl | d), which
clearly shows the limitation of this model to introduce both
context and class information for patch classification. To
overcome this, we assume that the aspects depend on the
class label as well. The parameters of this model are the
aspect multinomial P(v | z) and the mixture multinomial
P(z | d, c), which could be estimated from labeled data by
EM as before. However, as our model is not fully generative
[23], only P(v | z) can be kept fixed, and we would have to
estimate P(z | dnew, c) for each new image dnew. We propose
to separate the contributions to the aspect likelihood due to
the class-aspect dependencies, from the contributions due to
the image document-aspect dependencies. Thus, we propose
to approximate P(zl | d, c) as

P
(
zl | d, c

)∝ P
(
zl | d

)
P
(
zl | c

)
, (16)

where P(zl | c) is still obtained using (13). The complete
expression is given by

P(v | d, c) ∝
NA∑

l=1

P
(
v | zl

)
P
(
zl | c

)
P
(
zl | d

)
. (17)

The main difference with (12) is the introduction of the
contextual term P(zl | d), which means that patches will not
only be classified based on them being associated to class-
likely aspects but also on the specific occurrence of these
aspects in the given image.

Inference on New Images. With aspect model 1 (and also
with empirical distribution, cf. baseline model in Section 7),
the patch classification decision is taken once for all at
training time, through the patch co-occurrence analysis on
the training images. Thus, for a new image dnew, the extracted
patches are directly assigned to their corresponding most
likely class label. For aspect model 2, however, the likelihood
ratio LR(v,dnew) (14) involves the image-dependent aspect
parameters P(z | dnew) (17). Given our approximation (16),
these parameters have to be inferred for each new image, in
a similar fashion as for PLSA [22]. P(zl | dnew) is estimated
by maximizing the likelihood of the patch histogram of dnew,
fixing the learned P(v | zl) parameters in the maximization
step.

7. Baseline Models

We propose two complementary baseline models. The first
baseline directly uses the empirical patch class-conditional
distribution to classify new patches, the second learns a
model from the region descriptors themselves, without
quantification.

7.1. Empirical Class-Conditional Patch Distribution. Given a
set of training data, the ratio in (1) can simply be estimated
using the empirical distribution of patches, as done in [6].
More precisely, given a set of manually segmented images D
into man-made and natural regions (e.g., Figure 1(c)), P(v |
c) is estimated as the number of times the patch v appears
in regions of class c, divided by the total number of visterms
of class c in the training set. Note that the class conditional
probabilities P(c | v) could have been considered instead.
This would have modified the estimated likelihood threshold
value TEER by P(c = man-made)/(1 − P(c = man-made)).
The class conditional probabilities P(c | v) are shown in
Figure 11, indicating that there is a substantial amount of
polysemy. Patches can simultaneously have a high probability
given both classes (e.g., note that all patches appear at least
15% in the natural class).

Empirical estimation of probabilities is simple but may
suffer from several drawbacks. A first one is that a sig-
nificantly large amount of labeled training data might be
necessary to avoid noisy estimates, especially when using
large vocabulary sizes. A second one is that such estimation
only reflects the individual patch occurrences, and does
not account for any kind of relationship between them.
Patches, however, correspond to regions extracted from full
images, and, therefore, should be better interpreted in this
context. In particular, we see in Figure 11 that even if P(c =
man-made | v) and P(c = natural | v) are estimated on
the segmented image regions from the test set, there is an
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Figure 11: P(c | v) for man-made and natural structures, estimated
on the annotated patches from test images. The x axis is the patch
indices ordered with decreasing P(c = natural | v).

important ambiguity of the patches with respect to the two
classes.

7.2. Gaussian Mixture Model Soft Assignment. Quantizing
image regions into patches discard all information about
the distance of each particular local descriptor s to the
corresponding patch cluster center v. It results in a compact
representation that can be seen as a drastic simplification
of the data. Two descriptors of highly similar local textures
can be assigned to different patches if they are close to the
border between the two clusters. This intrinsic ambiguity of
the quantization approach can be questioned. In the previous
example, knowing that the two regions were in fact similar
could be beneficial.

One way to address this issue is to perform a soft
clustering of the region features. Instead of attributing a
single patch number to each local descriptor, we allow for
multiple cluster assignments with membership probabilities,
assuming that the region descriptors have been generated
by a Gaussian mixture model (GMM) [43]. Given this soft
clustering, we base the classification of image patches on the
class likelihood ratio of their corresponding local descriptor
s j , given by

LR
(
s j
) =

Ng∑

i=1

p
(
gi | s j

)
LR
(
gi
)
, (18)

where Ng is the total number of Gaussian distributions in
the GMM, p(gi | s j) denotes the probability of the Gaussian
gi having generated the local descriptor s j , and LR(gi) is
the class likelihood ratio of the Gaussian gi. Note that the
empirical baseline based on the K-means hard clustering
becomes a special case of (18) when p(gi | s j) equals 1 for

one Gaussian component and 0 for others. The posterior
probability p(gi | s j) is computed as

p
(
gi | s j

) = p
(
s j | gi

)
p
(
gi
)

p
(
s j
) , (19)

where p(s j | gi), p(gi), and p(s j) relate to the standard
GMM formulation. Each feature s j is generated by a mixture
of Ng Gaussian distributions, with the following likelihood
given the estimated GMM mixture weights w, means μ, and
standard deviations Σ:

p
(
s j
) =

Ng∑

i=1

p
(
s j , gi

) =
Ng∑

i=1

p
(
gi
)
p
(
s j | gi

) =
Ng∑

i=1

wiN
(
s j ;μi,Σi

)
,

(20)

where N (s;μi,Σi) is the Gaussian distribution of the compo-
nent gi. The class likelihood ratio of a Gaussian distribution
is given by

LR(g) = P(g | c = man-made)
P(g | c = natural)

, (21)

where P(g | c) is estimated by the ratio of importance of that
generating Gaussian distribution for each class in the labeled
images.

8. Markov Random Field (MRF) Regularization

The contextual modeling with latent aspects that we present
in this paper can be conveniently integrated with traditional
spatial regularization schemes. To investigate this, we present
the embedding of our contextual model within the MRF
framework [13] though other schemes could be similarly
employed [2, 11, 28].

Let us denote by S the set of sites s, and by Q the set
of cliques of two elements associated with a second-order
neighborhood system G defined over S. The patch classifi-
cation can be classically formulated using the maximum a
posteriori (MAP) criterion as the estimation of the label field
C = {cs, s ∈ S} which is most likely to have produced the
observation field V = {vs, s ∈ S}. In our case, the set of sites
is given by the set of interest points, the observations vs take
their value in the set of patches V, and the labels cs belong
to the class set {man-made, natural}. Assuming that the
observations are conditionally independent given the label
field (i.e., p(V | C) = ∏

s p(vs | cs)) and that the label field
is an MRF over the graph (S,G), and due to the equivalence
between MRF and Gibbs distribution (p(x) = (1/Z)e−U(x)),
the MAP formulation is equivalent to minimizing an energy
function[13]:

U(C,V) =
∑

s∈S
V1
(
cs
)

+
∑

{t,r}∈Q
V ′

1

(
ct, cr

)

︸ ︷︷ ︸
U1(C)

+
∑

s∈S
V2
(
vs, cs

)

︸ ︷︷ ︸
U2(C,V)

,

(22)
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Figure 12: Comparison of the true positive rate versus false positive rate curves for all patch classification methods, obtained by varying the
likelihood ratio threshold T : (a) performance of the baseline methods for different numbers of K-means clusters and GMM components,
(b) best baseline results compared to the aspect models with a vocabulary size of Nv = 1000 patches and NA = 20 aspects.

where U1 is the regularization term which accounts for
the prior spatial properties (homogeneity) of the label field
whose local potentials are defined by

V1(man-made) = βp, V1(natural) = 0,

V ′
1

(
ct, cr

) =
{
β, if ct /= cr ,

0, otherwise,
(23)

where β is the cost of having neighbors with different labels
while βp is a potential that will favor the man-made class label
(if βp < 0) or the natural one (if βp > 0), and U2 is the data-
driven term for which the local potential are defined by

V2
(
vs, cs

) = − log
(
p
(
vs | cs

))
. (24)

To implement the above regularization scheme, we need
to specify a neighborhood system. Several alternatives could
be employed, exploiting, for instance, the scale of the
invariant detector (see, e.g., [2]). Here, we used a simpler
scheme: two points t and r are defined to be neighbors if
r is one of the NN nearest neighbors of t, and vice versa.
For this set of experiments, we defined the neighborhood to
be constituted by the five nearest neighbors. Finally, in the
experiments, the minimization of the energy function of (22)
was conducted using simulated annealing [10].

9. Experiments and Discussion

We validate our proposed models on natural versus man-
made scene patch classification. In this section, we present
our experimental setup, show a detailed performance eval-
uation illustrated with the patch classification results on a
few test images, and we finally study the result of integrating
spatial regularization.

9.1. Experimental Setup

9.1.1. Datasets. Three image subsets from the Corel Stock
Photo Library were used in the experiments. The first set
(D) contains 6600 photos depicting mountains, forests,
buildings, and cities. From this set, 6000 have no associated
label, while the remaining subset Dlab is composed of
600 images whose content mainly belonged to one of the
two classes, which were hand-labeled with a single class
label leading to approximately 300 images of each class.
This labeling at the image level is used to quickly label
the corresponding patches. D was used to construct the
vocabulary and learn the aspect models, while Dlab was
used, entirely or not, to estimate the patch likelihoods
for each class. A third set Dtest, containing 485 images of
man-made structures in natural landscapes hand-segmented
with polygonal shapes to label the corresponding patches
(Figure 1) was used to evaluate the methods.

9.1.2. Performance Measure. The global performance of the
algorithm was assessed using the true positive rate (TPR,
number of positive regions correctly classified over the total
number of positive descriptors), false positive rate (FPR,
number of false positives over the total number of negative
descriptors), and true negative rate (TNR = 1-FPR), where
man-made structure is the positive class. The FPR, TPR,
and TNR values vary with the threshold T applied for
classification (see (2)).

9.1.3. Parameters. Results are reported with a vocabulary size
ranging from 1000 to 10 000 patches, a number of 1000
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Figure 13: Image patch classification examples at TEER. Results provided by the following: first column, K-means empirical distribution;
second column, aspect model 1; third column, aspect model 2. The total number of correctly classified patches (man-made + natural) is
given per image. The five rows illustrate cases where aspect model 2 outperforms the other approaches. In the fifth row, an extreme example
of a strong natural context that is correctly identified by aspect model 2 leads to the classification of all regions as natural (though some
should be labeled as man-made).

and 2000 GMM mixtures, and 20 aspects for aspect models
1 and 2.

9.2. Performance Evaluation. Figure 12 displays the receiver
operating curve (TPR versus FPR) of the empirical patch
distribution baseline and the GMM baseline for various
parameter settings (a), and gives a comparison between

the baseline approaches with the best parameter settings
with the two proposed aspect models (b). The ROC curves
are obtained by varying the likelihood ratio threshold
T , resulting in a different patch classification. The first
observation relates to the influence of the patch vocabulary
size, varied between 1000 and 10 000 patches in Figure 12(a),
for the empirical patch distribution baseline. While no
significant difference in performance is observed between
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Figure 14: Image patch classification examples at TEER. Results provided by the following: first column, K-means empirical distribution;
second column, aspect model 1; third column, aspect model 2. The first three rows illustrate the case of a correctly identified marked
natural image context by aspect model 2, resulting in a more accurate patch classification as compared to aspect model 1 and empirical
distribution. The fourth row shows a correctly identified marked man-made image context by aspect model 2, with an improved number of
correctly classified points. The last row shows the confusion in patch classification, when the context is not correctly identified (in this case,
overestimated) by aspect model 2.

the vocabulary of 1000 and 5000 patches, the performance
decreases significantly for the 10 000 patch vocabulary. This
effect is somehow counter-intuitive since a higher granularity
in the quantization allows to define a finer classification
decision function. It can be explained by a higher level of
noise in the estimation of the likelihood ratio since the
number of training images remains constant. In contrast,

the GMM approach is more accurate, as it allows good
likelihood ratio estimates while providing a finer feature
space quantization through the soft assignment possibility.
As in the two cases, no improvement is observed when using
vocabulary sizes larger than 1000, we will use this number
in what follows (for the empirical patch distribution and the
aspect models).
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Table 1: Half total recognition rate (in percent).

Emp. dist. Emp. dist. Aspect Aspect

K-means GMM model 1 model 2

HTRR 67.5 69.7 68.5 72.4

As can be seen in Figure 12(b), the aspect model 1
performs slightly better than the empirical patch distribution
baseline for all vocabulary sizes. However, the GMM baseline
improves both the empirical patch distribution baseline
and the aspect model 1 classification performance. The
GMM approach is, therefore, the best image independent
patch classification approach. Aspect model 2 outperforms
significantly all other methods, proving the advantage of
an image-dependent patch classification. Interestingly, the
aspect models do not need 100% of the 600 labeled images
for a good classification performance. We can observe in
Figure 12 that the same patch classification performance is
achieved when using only 5% of the labeled images (30
images) required to estimate the class-conditional aspect
likelihood P(z | c).

To further validate our approach, Table 1 reports the half-
total-recognition rate (HTRR) measured by 10-fold cross-
validation. For each of the folds, 90% of the test data Dtest

is used to estimate the likelihood threshold TEER leading to
equal error rate (EER, obtained when TPR = TNR) on this
data. This threshold is then applied on the remaining 10%
(unseen images) of Dtest, from which the HTRR (HTRR =
(TPR + TNR)/2) is computed. This table shows that the
ranking observed on the ROC curve is clearly maintained,
and that aspect model 2 results in a 7.5% performance
relative increase with respect to the baseline approach.

As mentioned in Section 6, aspect model 1 and the
empirical distribution method (GMM and K-means based)
assign specific patches to the man-made or natural class

independently of the actual image in which those patches
occur. This sets a common limit on the maximum perfor-
mance of both systems, which is referred here as the ideal
case. This limit is given by attributing to each patch the
class label corresponding to the class in which that patch
occurs the most in the test data. On our data, this ideal
case corresponds to an HTRR of 71.0% for the 1000 patches
vocabulary, showing the advantage of an image-dependent
patch classification method.

In order to have a chance of performing better than the
ideal case, patches must be labeled differently depending on
the specific image that is being segmented. Aspect model
2 switches patch class labels according to the contextual
information gathered through the identification of image-
specific latent aspects. In our data, successful class label
switching occurs at least once for 727 out of the 1000 patches
in our vocabulary.

9.3. Patch Classification Examples. The impact of the con-
textual model can also be observed on individual images.
Figure 13 displays classification examples of man-made
image patches, where likelihood thresholds were estimated
at EER value. As can be seen, aspect model 2 improves the
classification results with respect to the two other methods
in two different ways. On one hand, in the first three
examples, aspect model 2 increases the precision of the man-
made patch classification, producing a slight decrease in the
corresponding recall. On the other hand, the fourth example
shows aspect model 2 producing a higher recall of man-
made patches while maintaining a stable precision. In the
fifth example, the occurrence of a strong context causes the
whole image to be taken as a natural scene, also improving
the total patch classification.

In Figure 14, five more examples of patch classification
are shown. The first three rows illustrate natural image
context examples that are correctly grasped by aspect model
2. The fourth row shows a correctly estimated man-made
context that leads to an improved classification of patches for
aspect model 2. In the fifth example, however, the overesti-
mation of the man-made related aspects leads to patches that
are dominantly classified as man-made. Nevertheless, overall,
as indicated in Figure 12 and Table 1, the introduction of
context by co-occurrence is beneficial.

9.4. Effects of the Markov Random Field Regularization.
We investigate the impact of the combination with spatial
regularization on the task of patch classification. The level
of regularization is defined by β (a larger value implies a
larger effect). The regularization is conducted by starting at
the equal error rate point, as defined in the 10-fold cross-
validation experiments described in the preceding section.
More precisely, for each of the folds, the threshold TEER is
used to set the prior on the labels by setting βp = − log(TEER).
Thus, in the experiments, when β = 0 (i.e., no spatial
regularization is enforced), we obtain the same results as in
Table 1. In Figure 15, we see that the best patch classification
performance corresponds to an HTRR of 73.1% and a β of
0.35 with the empirical modeling, and an HTTR of 76.3%
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Figure 16: Effect of the MRF regularization on the man-made patch classification. The first three rows illustrate the benefit of the MRF
regularization where wrongly classified isolated patches are removed. The last row shows the deletion of all man-made classified patches
from an image when natural patches dominate the scene.

for a β of 0.2 and aspect model 2. This latter value of β is
chosen for all the MRF illustrations reported in Figures 16
and 17.

The inclusion of the MRF relaxation boosted the perfor-
mance of both aspect model 2 and empirical distribution.
However, it is important to point out that aspect model 2
still outperforms the empirical distribution model though
the boosting beneficiated most to the empirical distribution
modeling. This was to be expected, as aspect model 2 was
already capturing some of the contextual information that
the spatial regularization can provide (notice also that the
maximum is achieved for a smaller value of β in aspect
model 2).

Besides obtaining an increase of the HTRR value, we
can visually notice a better spatial coherence of the patch
classification as can be seen in Figures 16 and 17. We
can observe in the images that the MRF relaxation process
reduces the occurrence of isolated points, and tends to
increase the density of points within segmented regions. We

show in the last row of Figure 16 that as can be expected
when using prior modeling, on certain occasions the MRF
step can over-regularize the patch classification, causing the
attribution of only one label to the whole image.

10. Conclusion and FutureWork

In this paper, we proposed computational models to perform
contextual regional classification of images. These models
enable us to exploit a different form of visual context, based
on the co-occurrence analysis of patches in the whole image
rather than on the more traditional spatial relationships.
Patch co-occurrence is summarized into aspects models,
whose relevance is estimated for any new image, and used
to evaluate class-dependent patch likelihoods. These models
have been tested and validated on a man-made versus
natural scene image patch classification task. One model
has clearly shown to help in disambiguating polysemic
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NaturalMan-madeImage

Figure 17: Three other examples that illustrate the final patch classification obtained with aspect model 2 and MRF regularization. The
display is different than in previous figures to avoid image clutter.

patches based on the context they appear in. Producing
satisfactory classification results, it outperforms state-of-
the-art likelihood ratio methods [6], even when using soft
assignment techniques.

Moreover, we investigated the use of Markov random
field models to introduce spatial coherence in the final
classification and show that the two types of context models
can be integrated successfully. This additional information
enable us to overcome some patch classification errors from
the likelihood ratio and aspect models methods, increasing
the final performance.

While the results presented here are encouraging, this
task is complex, and there is a need for further improve-
ments. Logical extensions would be the introduction of other
sources of contextual information like color or scale and
other forms of integration of spatial contextual information.
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