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1. Introduction

Image segmentation has received considerable attention over
the last few decades. The goal of segmentation is to split
an image into regions according to some criteria such that
each region is homogeneous in a sense. Popular criteria
used for general segmentation include pixel intensity, color,
gradient information, texture features, and combinations
thereof. Images containing collages of textures—where the
average pixel intensities tend to be the same and distinctive
gradients are not present to mark boundaries—turn out to
be challenging images to segment. The methods presented
in this paper exploit properties of textures in an explicit
way.

From a digital image perspective, texture can be
described as the spatial interaction of pixels that produce
patterns perceived as homogeneous with respect to structure,
periodicity, and directionality. Texture segmentation typi-
cally involves representing these interactions with a set of
features that make textures distinguishable from one another.
The determination of a set of primary features has been the
source of continuous work for a few decades. These feature

sets were identified as textons in early work by Julesz [1].
Today, textures are often analyzed across different spatial
scales and orientations to generate good feature sets. This
approach is supported and motivated to some extent by
findings reported in the literature on visual perception in
humans and mammals [2, 3]. The use of linear filter banks
in combination with pattern recognition techniques (often
called multichannel decompositions) has been one of the
most successful approaches to texture segmentation in the
recent years. The area of digital image segmentation has
a rich history of noteworthy contributions, including early
work by Faugeras [4] and by Laws [5]. Laws [5] used a
set of compact 2D masks (i.e., filters) that resemble basis
functions from spatial frequency transforms. Malik and
Perona [6] used the difference of offset Gaussian (DOOG)
filters in combination with nonlinear processing of the filter
responses. Coggins and Jain [7] proposed the use of a bank
of ring-shaped and wedge-shaped filters. Gabor functions
have been extensively studied for texture segmentation [3,
8, 9] because they allow the design of filters tuned to
arbitrary scales and orientations, and they provide good
models of neuron responses in the primary visual cortex
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FiGURE 1: Frequency band partitions achieved by the Bamberger DFB.

of our brains. In related work by Spann and Wilson [10],
prolate spheroidal filters were employed with a quadtree
feature extraction procedure to implement a coarse-to-fine
resolution segmentation algorithm. Later on, Jain and Karu
[11] proposed a method to jointly design the filter bank and
the classifier using neural networks.

Throughout the 80s and 90s, filter banks and wavelets
were being developed for image compression and analysis.
Many of these researchers also considered segmentation
applications. In the late 1980s, Mallat [12] discussed the
connection of 2D wavelets to the human visual system (HVS)
and the potential application of wavelets to the analysis
of texture. In subsequent years, texture segmentation using
the 2D discrete wavelet transform (DWT) and multichannel
decompositions was reported by many authors [13-15],
some employing wavelet packets [16], wavelet frames [17—
19], complex DWTs [20, 21], and Markov random field
models [22-24].

The Bamberger directional filter bank (BDFB), originally
introduced by Bamberger and Smith [25], is a purely
directional decomposition that provides excellent frequency
domain selectivity with low computational complexity. This
family of filter banks has been successfully used for image
denoising [26, 27], target and character recognition [28,
29], image enhancement [30-32], 3D velocity filtering [33],
and biometrics [34, 35]. In the case of texture analysis,
the previous work on classification [36, 37] and rotation

invariant classification [38] indicates that the BDFB provides
a good representation of texture content.

Earlier studies have shown that BDFB structures work
well for texture segmentation [39—41]. In this paper we
present an extensive evaluation of Bamberger pyramids
within the context of multichannel texture segmentation.
We explore the design parameters of these pyramids to
assess their impact on segmentation. We adopt a supervised
segmentation framework based on local channel energy
features. Under this framework we provide a detailed
comparison with other multichannel decompositions. Our
results indicate that the superior directional selectivity found
in Bamberger pyramids is directly related to improved
segmentation performance.

This paper is organized as follows. In Section2 we
introduce the BDFB and Bamberger pyramids. Section 3
describes a general framework for multichannel texture
segmentation. Using this framework we present results in
Sections 4 and 5. In Section 6 we compare the performance of
Bamberger Pyramids against other multichannel approaches.
We close the paper with conclusions in Section 7.

2. The Bamberger Directional Filter Bank

The Bamberger directional filter bank (BDFB) [25] is an
angularly oriented image decomposition that splits the 2D
frequency plane into wedge-shape channels as shown in
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Figure 1 for N = 2,4,6, and 8 subbands (or channels). Each
subband captures spatial detail along a specific orientation.

The original BDFB was introduced as a maximally dec-
imated decomposition. This property is attractive from the
storage and computational perspective but does not provide
shift invariance (SI). The undecimated BDFB (UDFB) was
introduced [42] to address the need for SI in applications
like pattern analysis where spatial shifts on an image should
not affect the performance of a pattern classifier. However, SI
implies higher computational cost and a significant increase
in storage. The reminder of this section discusses the theory
of the BDFB and UDFB as background for the segmentation
algorithm.

2.1. Maximally Decimated BDFB. The BDFB employs a tree-
structured 2D filter bank analogous to a 1D tree structured
filter bank. Using this approach, Bamberger introduced
BDFBs with 6, 10, 18, and more subbands [43]. However, the
BDFBs that have received the most attention in the literature
are the uniform M-stage tree structured filter banks that
generate N = 2M subbands. Without loss of generality,
we derive the BDFB for N = 8 (M = 3) which achieves
the frequency plane partitioning shown in Figure 1(d). The
block diagram for an eight-band BDFB analysis stage is
depicted in Figure 2. The extension to 16 bands, 32 bands,
and higher follows by a straightforward extension of the
tree structure. The primary building block of the BDFB
is the 2D two channel fan filter bank (FFB) shown in
Figure 3. The FFB consists of two filters Fy(w) and F;(w)
with complementary fan-shaped frequency bands followed
by quincunx downsampling matrices Q. The ideal support of
the fan filters correspond to the regions shown in Figure 1(a).
A typical value for Q is

1 -1
Q=1 (1)

with downsampling ratio | detQ| = 2. Hence, the FFB is a
maximally decimated structure where each subband is half
the size of the input image. In the spatial domain, quincunx
downsampling of an image sampled over a rectangular lattice
results in subbands where one of the quincunx sublattices is
discarded while the other lattice is remapped to a rectangular
lattice through a + 45° rotation. The spatial support of the
resulting subbands is diamond shaped. In the frequency
domain, quincunx decimation has the effect of stretching
and rotating the fan-shaped spectral support of the subbands
such that frequency information is mapped into the [ -7, 7)*
frequency cell.

As a result of using a tree structure, the output of the
first and second stages in Figure 2 corresponds to the two-
and four-channel BDFBs which split the frequency plane
as shown in Figures 1(a) and 1(b), respectively. The third
stage of the BDFB includes additional resampling matrices
U; and B;. These matrices are unimodular, implying that they
affect the ordering of the subband coefficients but not the
number of coefficients [44]. Unimodular resampling induces
skewing and stretching in the spatial and frequency domains.
In this case, matrices U; resample the four subbands from the
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FIGURE 2: Implementation of an eight bands BDFB using a tree
structure with FFBs and backsampling matrices.
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FIGURE 3: Maximally-decimated 2D two-channel fan filter bank
structure using quincunx downsampling.

second stage such that the frequency support is remapped
to a fan-shaped region. This operation allows the use of the
FFB across all tree stages of the BDFB. The function of the
B; matrices is to adjust the sampling lattice at the output of
the tree to attain subbands with rectangular geometry. The
values of the unimodular matrices are determined using a
set of rules derived by Park et al. [45]. It is easy to see from
Figures 2 and 3 that for an eight-band BDFB, the overall
downsampling matrices D, are given by

D, = QQU;QB;, (2)

where £ = 1,2,...,8and i = [£/2]. With the proper selection
of U; and B;, each D, should be diagonal with one of the
following forms:

R o _[+o
"o al *“ o2/ ®)

each with a downsampling ratio of eight as expected. The
output of an eight-band BDFB is shown in Figure 4 and was
obtained with the filters described next. It is interesting to
note that half of the bands are subsampled by two in the
horizontal direction and by four in the vertical direction
while the remaining four show the opposite structure. For
brevity we focuss our discussion on the analysis stage of
the BDFB. However, the same multirate concepts can be
used to derive the corresponding synthesis stages. Moreover,
the generation of BDFBs with 16,32,...,2M subbands can



be implemented by replicating the third stage of the tree
structure in Figure 2 [45].

2.2. Implementation of the BDFB Using Ladder Structures.
Given the tree structure of the BDFB, the design of the filter
bank devolves to the design of the FFB. In practice, the FFB
filters are designed to give a good approximation of the ideal
passband specifications while meeting aliasing cancelation
(AC), perfect reconstruction (PR), phase and smoothness
constraints. Designing 2D filter banks with fan and diamond
shaped passbands has been studied extensively [46—48].
For the BDFB, Bamberger proposed design methods using
the 1D to 2D mapping introduced by Ansari [49], which
transforms a 1D prototype into a 2D filter. This method
led to a BDFB based on 1D quadrature mirror filters (filters
satisfying Hy(z) = Ho(—z)), which has a very efficient
2D separable implementation structure in the polyphase
domain. The resulting 2D FIR filters only provide AC and
not PR. To achieve PR one could employ the 2D IIR filters
introduced in [50], but often one prefers the simplicity of
FIR filters.

Perfect reconstruction is a desirable property for any
filter bank when the signal needs to be reconstructed.
Versions of the BDFB with FIR PR filters were initially
reported by Rosiles and Smith [39, 42] based on the ladder
filter banks proposed in [47, 48]. Ladder networks also
offer a simple and flexible scheme to control the frequency
domain filter specification. We should note that in the
wavelet literature, ladder filters have been referred to as
lifting filters [51]. In this paper we use the ladder structure
proposed in [48] to design 2D two-channel diamond filter
banks consisting of filters Hy(wo,w1) and H;(wo,w;) with
complementary diamond passband/stopband regions. The
FFB filters are obtained by shifting the diamond filters along
the horizontal frequency axis by 7, namely, Fyo(wo, w;) =
Hy(wo — 7, w;) and Fy(wo, w1) = Hy(wp — 7, w1).

The simplest way to visualize the FFB implementation
is to inspect the 2D two-channel ladder structure shown
in Figure 5. There are three ladder steps where the filter-
ing operations f3;(zo)fi(z1) are performed. We note that
these operations represent a separable filter in the spatial
domain allowing for a low complexity implementation.
The FFB is obtained by transforming a 1D ladder polyphase
matrix [48]

1 0 1 zpifi(z) o 0
E(z) = 0 1 (4)
—papalz) 1 T+p T p —pPo(z) 1

to a 2D filter bank in two steps. First a 1D to 2D change
of variables is applied to the entries of E(z). The mapping
consists of replacing the 1D transfer function f(z) with
the separable 2D transfer function S(zo)B(z1) and the
1D delays z~! with the 2D delays z;'z;'. The resulting
2D filters Hy(zo,z1) and H;(zp,z1) have diamond shaped
passband support. The second step transforms Hy (2, z1) and
Hi(z9,z1) to fan-shaped filters Fy(zp,z1) and Fi(z9,21) by
letting zp — —zo, which corresponds to a shift by 7 along
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the wy axis. The constants pg, pi, p2 in the ladder structure
are used to control the frequency response of the filters. In
this case their values are p = 1/2, po = p1 = (1 + p)/2, and
p2=(1-p)/(1+p).

Hence, we are left with the design of the 1D functions
Bi(z). The following condition [47, 48] for the 3;(z) functions
should be satisfied:

. 7
e/(CNTDe  far 0 <0 < &,

Bi(e™) = (5)

. A
—el(C2N+Dw - for 5<w <,

\]

which implies B;(e/*) has allpass behavior. An FIR solution
that approximates (5) can be obtained by designing an even
length, linear phase function with a magnitude response
optimized to approximate unity. This is a very simple
requirement that can be satisfied with widely available filter
design algorithms, such as the Parks-McClellan filter design
method. Moreover, we can choose to use the same ladder
stage filter by making f(z) = fi(z) = fa(z) = Bs(2),
further simplifying the design procedure. As an example,
filters (z) of length L = 8 were designed using the Parks-
McClellan algorithm. The 2D fan filter responses |Fy(zo,21)]
and |F;(zp,z1)| obtained with the 1D to 2D mapping are
presented in Figure 6 using the same (z) for all ladder stages.
Finally, it is possible to design an FFB using maximally flat
1D ladder filters obtained with the closed-form Lagrange
formula discussed in [47]. Using a maximally flat design
has connections with wavelet theory and improves the
smoothness of reconstructed images. An example of a test
image processed with the BDEB is presented in Figure 4. The
separation of directional information across channels can be
verified visually.

2.3. The Undecimated Directional Filter Bank. The BDFB
tree structure from Figure 2 can be modified to obtain an
undecimated directional filter bank (UDFB). The UDFB pro-
duces N bands with the same dimension as the input image,
introducing significant redundancy. However, it provides
shift invariance and well localized edge and texture detail;
Figure 7 shows the output of an eight bands UDFB for the
test image in Figure 4. Visually the undecimated subbands
show very good separation of directional information.

Here we provide a brief overview of the UDFB, noting
that a detailed derivation can be found in [42, 52]. The UDFB
has a similar tree structure as the BDFB (Figure 2). In the
UDFB, the FFB blocks are replaced by two undecimated filter
banks. In stage one we use an undecimated fan filter bank
(UFEB). In stages two and three the FFB is replaced with an
undecimated checkerboard filter bank (UCFB). As its name
implies, the UCFB is formed by two complementary filters
whose passbands resemble 2 X 2 checkerboard tiles. The
UFFB and UCFB are related by a simple change of variables
as described in [49]. In this case, the unimodular matrices U;
and B; satisfy the relationship B; = U; .

The ladder structure from Figure 2 can be modified to
produce an UFFB using multirate identities [42]. The UFFB
structure is shown in Figure 8. The upsampling operations
rotate the input image by 45 degrees and insert zeros between
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(a) Test image

(b) Maximally-decimated subbands

FIGURE 4: Example of an eight bands BDFB using a test image with localized directional structure.

Figure 5: Ladder structure for the implementation of a 2D two-
channel biorthogonal analysis filter bank.

samples. The filtering operations are performed in this
intermediate lattice geometry using the upsampled ladder
filters B:(z3)Bi(z?). The rightmost downsampling operations
return the subbands to the same sampling geometry as the
input. Hence, the filtering operations remain separable in
the undecimated structure and retain the computationally
efficient implementation of BDFB. Given the relationship
between the UFFB and UCFB, a ladder-based implemen-
tation for the UCFB is easily obtained by removing the
upsampling and downsampling matrices Q from the UFFB
structure in Figure 8.

2.4. Bamberger Pyramids. Other image decompositions like
the 2D DWT, the complex-valued wavelet transform [53],
and 2D Gabor representations [8, 9], separate informa-
tion across different resolutions and orientations. The
multiresolution analysis (MRA) is embedded in the filter
bank structure. Alternatively, a multiresolution directional
decomposition can be constructed using a polar-separable
approach. In this case, each channel is generated by cascading
a radial filter with a directional filter (or vice versa). Polar-
separable spatial filters were proposed by Faugeras [4] in his
seminal work on multichannel texture analysis. The steerable
pyramid [54] is an example of a polar-separable decomposi-
tion where the radial decomposition is built by recursively
applying a circular lowpass filter that produces a pyramid

of ring-shaped channels; each radial component is then
processed with a steerable basis of directional derivatives.
Similar polar-separable decompositions have been proposed
in [55, 56].

Given that many problems of interest in image processing
and analysis use MRA as part of its processing, extending
the theory of the BDFB to polar-separable representations
is desirable. As it turns out polar-separable versions of the
BDFB and UDFB can be easily constructed. For instance,
we can form a polar-separable pyramid by combining a J-
level Laplacian pyramid with the BDFB [52, 56]. The analysis
structure is presented in Figure 9. At the high- and mid-
frequency levels the subbands can be processed with the
BDEFB. If required, the UDFB can be used in place of the
BDFB. More generally the directional decomposition can
be designed independently at each resolution. For instance,
the number of subbands and the order of the f3;(z) filters
can be chosen independently at each resolution. Since the
polar components of the pyramids are invertible, it is
easy to see that the overall system has PR. The frequency
plane partitioning obtained with the Laplacian-Bamberger
pyramid is shown in Figure 9.

There are many possible variations of pyramids based on
the BDFB and UDFB. Next, we introduce several Laplacian-
Bamberger pyramid configurations, each with a different
level of redundancy. For the Laplacian pyramid we can also
consider the case where shift invariance is needed at all
resolutions and orientations. In this case we can remove
all downsampling operations from the Laplacian structure
and modify the lowpass kernels at each resolution level to
Hy(z%',2z}') and Go(2¢',z}'), where j = 0,1,...,P — 1. Hence
we can have a Laplacian-BDFB (Lap-BDFB) pyramid that
increases the data redundancy by approximately a factor
of 4/3. If we want to retain directional shift invariance at
each resolution, we could use the Laplacian-UDFB (Lap-
UDEFB) pyramid which generates a redundancy factor of
4N/3. If we use an undecimated Laplacian (ULap) pyramid,
then we can form the ULap-BDFB pyramid, which has
a redundancy factor of P. Finally, for the case we want
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(b) [F1(wo, w1)]

FIGURE 6: Magnitude response of the analysis fan filters obtained with a three-stage ladder structure.

FIGURE 7: Subbands obtained from an eight bands UDFB.

to avoid downsampling altogether we can consider the
tully undecimated pyramid (ULap-UDFB), which has a
redundancy factor of N(P—1) +1 (the low frequency channel
is not directionally divided).

3. Framework for Multichannel Texture
Segmentation

Multichannel texture segmentation schemes can be des-
cribed with the block diagram shown in Figure 10. For an

I x J input image X(i, j) composed of a mixture of C
texture classes, the output consists of a segmentation map
S(i,j) where a label from the set ¢ = {1,2,...,C} is
assigned to each location (i, j). The underlying principle of
the multichannel approach is based on the characterization
of textures by their energy distribution over the spatial-
frequency plane. To capture this energy distribution across
different scales and orientations, multichannel transforms
like Gabor filters, wavelet decompositions, local linear
transforms, and Bamberger pyramids are used at the front
end of Figure 10. Each channel captures specific structural
and statistical trends for a given texture. For instance,
textures with strong directional components will contain
more energy in the channels with frequency selectivity
tuned to these components. These energy signatures can be
used to differentiate among different texture classes. In our
case, we employ Bamberger pyramids as the multichannel
decomposition in Figure 10.

The remaining segmentation system components are
discussed next. We closely follow the work by Randen and
Husey [57] in order to take advantage of the extensive
comparative study they reported on texture segmentation.
This paper is commendable in terms of providing seg-
mentation benchmarks that can be used for convenient
comparison. As a side note, we recently became aware of a
similar benchmarking effort reported in [58]. To perform
meaningful comparisons, it is important to compare the best
algorithm implementations available and to use common
databases. Fortunately, the segmentation schemes reported
in [20, 21, 59, 60] have used the same set of comparisons.
Moreover, Randen and Husgy have made source code and
their data set available over the internet [61] to enable results
to be reproduced and compared.

3.1. Feature Extraction. The feature extraction stage consists
of the second, third, and fourth blocks shown in Figure 10.
First, each channel is passed through a nonlinearity in order
to rectify the oscillatory nature of the channels. Next, local
energy maps are calculated as described below. Finally, the
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FiGure 8: Ladder structure implementation of the UFFB.
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(a) Pyramid structure

(b) Pyramid passband regions

FIGURE 9: (a) Bamberger pyramid using the Laplacian pyramid structure combined with the BDFB. (b) Frequency plane partitioning

achieved by Bamberger pyramids.

second nonlinearity consists of a normalization operation
that limits the dynamic range of the energy maps and
removes spurious energy values. The resulting maps & (i, )
provide a feature set for each pixel location (4, j). This feature
set is used as input to a pattern classifier.

The nonlinearities are reminiscent of the inhibitory
operations of neurons. They are necessary as a vehicle to
combine or inhibit responses of neighboring neurons (i.e.,
subband coefficients) [6]. Unser and Eden [62] did an
extensive study on the types and effectiveness of the non-
linear operations. In this paper, we use both the rectifying
and normalizing nonlinearities f;(x) = |x|?> and flx) =
log(x), respectively, which were concluded to give the best
segmentation performance in [62].

Ideally, we would like to extract primitives and primitive
placement rules that characterize a texture. However, this is
a rather difficult analysis task that remains an open problem.
Instead we measure the local interactions of channel coetfi-
cients around each location (i, j) to infer the structure of a
texture. These interactions have been commonly measured
using local energy estimates. For each channel, an energy
map ex(i, j) is obtained by performing a spatial smoothing
on the rectified channel ax (i, j). This operation is given by
the convolution

ex (i, j) = ge(is j) * filse (i )1, (6)

where g (i, j) is a 2D kernel and k identifies the channel
under analysis. Intuitively, averaging over a region with
similar statistical primitives will produce slowly varying

responses indicating the presence of patches with uniform
energy.

The responses of the filters gk (i, j) should be carefully
selected. First, we want the filter dimensions to be as large
as possible to obtain good energy estimates. Second, we
want filters with small regions of spatial support in order
to promote good detection of texture boundaries. Gaussian
kernels have been shown to be a good compromise among
this set of conflicting requirements. The 2D filters are
implemented as finite separable filters using the basic 1D
Gaussian response

1 1 n?
g(n) = Tano eXp{_ZZSZ} (7)

with spatial support given by 20;. The parameter o; depends
on the average channel frequency u (i.e., the centroid) for a
given channel [9] and is given by

1
B Zﬁuo.

Os

(8)

In the case of Bamberger pyramids, the directional sub-
bands have truncated wedge-shaped passbands as shown in

Figure 9(b). The center frequency is given by uy = \/T(? + 712 ,
where (f,, f,) is the centroid of the subband. However we
found experimentally that this value generates rather small
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Ficure 10: Classical segmentation system based on multichannel filtering.

Collage (h)

Collage (j)

FIGURE 11: Subset of the texture collages mixtures used in this paper. The complete set is presented in [57].

kernels which do not introduce sufficient smoothing in the
channels. In order to generate larger windows, we found that

0 = \020 + 021, (9)

where

1 1
050 = ———, O] = ——— 10
5,0 2\/2](0 5,1 zﬁfl ( )

provides excellent results as we will discuss later in the paper.

3.2. Classification Stage. After feature extraction, feature
vectors are formed from the & (i, j). For a filter bank
with K channels, each image pixel X(i,j) is described
with a K-dimensional feature vector f;; = [e1(i,j) (i, )

- ex(iy j )]T. Following [57], we adopt the Learning Vector
Quantization (LVQ) algorithm from Kohonen [63] as the
classifier in Figure 10. LVQ is a supervised classification algo-
rithms. It seems that the main reason for the initial selection
of LVQ was the availability of an open source implementation
[64]. More specifically the o1lvgl program was used, which
automatically selects some classifier parameters based on the
data.

The classification procedure is straightforward. Labeled
feature vectors produced from training samples are then used
to train the LVQ classifier, producing a set of N, labeled

prototypes M = {(mj,v;),(my,v2),...,(my,,vn,)}. Each
texture class ¢ is assigned a number of prototypes directly
proportional to the number of labeled vectors used for
training. At the classification stage, a feature vector f;; is
assigned to the class v; corresponding to the nearest distance
prototype m; from M.

3.3. Description of Test Image Data. 'We use the image collages
were introduced as part of the framework developed in [57].
A subset of the texture collages is shown in Figure 11. The
data set consists of 12 texture collages, each exhibiting dif-
ferent degrees of difficulty in terms of the number of textures
and region shapes. The data set contains five 256 X256 images
with five textures, two 512 X 512 images with 16 textures, two
256640 images with 10 textures, and three 256 X 512 images
with only two textures. The histograms were equalized in
each image in order to eliminate discrimination based on
first-order statistics. To generate codebooks for the LVQ
classifier, a 256 x 256 training sample is available for each
texture class. The training samples are not part of the test
image set.

In our system we set an LVQ codebook size to 160
codewords, in contrast to [57] where 800 codewords were
generated. Codebook size has a significant impact on train-
ing time. We believe that the size of 800 used in [57] is very
conservative. We were able to test the performance of LVQ
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TaBLE 1: Segmentation errors for ULap-UDFB pyramids with P = 4 radial decomposition levels. PM denotes Parks-McClellan. MF denotes

for maximally flat.

Pyramid Segmentation errors for texture collages

Parameters L ( (b) (c) (d) (e) () () (h) (1) 6)) (k) () Mean
4 7.02 32.00 20.19 26.77 1524 5493 61.31 30.68 66.67 294 3.00 7.18 27.33

N = 4, three-step

ladder, PM design 12 5,55 30.09 19.11 2690 16.31 52091 59.35 2830 6836 269 3.09 683 26.62
18 533 31.16 19.33 28.05 16.75 45.18 67.65 28.63 48.25 3.02 3.08 6.82 2527
4 546 2496 1823 1845 14.19 35.12 48.02 26.86 30.13 090 1.95 428 19.04

N = 8, two-step

ladder, PM design 12 535 2203 1687 1847 1368 3284 4549 2257 4901 134 208 421 1949
18 535 2419 16.09 1844 13.16 31.03 45.26 24.01 50.86 1.76 154 421 19.66
4 6.13 2040 15.12 1997 12.66 41.35 47.60 26.54 5433 086 252 482 21.02

N = 8, three-step

ladder, MF design 12 474 1850 12.84 20.36 12.48 35.38 44.68 22.51 44.18 0.67 1.50 4.68 18.55
18 4.66 1933 1297 16.66 1220 33.53 41.95 2228 2949 064 139 440 16.63
4 543 18.27 1228 19.82 12,99 3241 41.22 22.87 4298 0.75 1.87 452 17.95

N = 8, three-step

ladder,PM design 12 4.67 1948 1237 17.01 14.18 31.12 48.02 20.60 37.88 058 1.57 482 17.69
18  4.64 20.04 1234 17.70 13.45 30.72 44.4672 2091 29.10 0.60 136 493 16.69

over a range of codebook sizes using representative samples The feature vector dimension is given by K = (P —

of the data set. Segmentation errors seemed to plateau for
codebook sizes between 100 and 200 for all texture collages.
The codebook size of 160 was chosen since it is a common
multiple of the the number of different texture classes in the
collages. Using this value allows an even distribution of LVQ
codebook prototypes for all textures.

4, Texture Segmentation Using an Undecimated
Bamberger Pyramid

Our aim here is to use Bamberger pyramids as the front
end to a multichannel texture segmentation system. In
Section 2.4, we introduced different configurations of the
Bamberger pyramid. Shift invariant undecimated transforms
have typically shown better performance than subsampled
systems [57]. Based on this observation, we chose the
ULap-UDFB pyramid where the pyramid and directional
components are undecimated.

The multichannel segmentation framework discussed in
the previous section was implemented using the ULap-
UDEFB. We chose the number of pyramid levels P, number
of directional bands N, number of ladder stages in the
UFFB and UCFB, and the length L of the 1D prototype
B(z) carefully to maximize performance. Determining these
parameters was done experimentally through an extensive
evaluation of segmentations over the feature space. For our
experiments, we first determined that four pyramid levels
(P = 4) gave the best performance. We present results with
N = {4,8} using two-stage and thee-stage ladder structures.
Additionally, we present results using f(z) filters of length
L = {4,12,18} designed with the Parks-McClellan algorithm
and the maximally flat filter design algorithm. For values
higher than L = 18 no improvements were observed.

1)N where the lower frequency channel of the ULap-UDFB
pyramids has been excluded from the classification stage.
Finally, the LVQ codebook size was set to 160 as described
before. Segmentation errors for each collage and the average
segmentation error are presented in Table 1 for different
parameter combinations. We define the segmentation error
as the percentage of pixels that were incorrectly classified
with respect to the total number of pixels in the image. We
also show the classification maps and the error maps for
some of the test collages in Figure 12.

At the rightmost column of the table we compute the
average segmentation error for each system. Based on these
averages we arrive at the following conclusions.

(1) Very similar performance is obtained for two-stage
and three-stage ladder structures. We choose the
three-stage ladder structures for subsequent work as
they provide better passband quality.

(2) We observed that eight-band UDFB systems signifi-
cantly outperform four-band UDFB systems.

(3) Systems based on the Parks-McClellan design per-
form somewhat better than the maximally flat sys-
tems. The average of the segmentation errors for
each value of L shows that Parks-McClellan systems
have more consistent behavior as L is varied, while
maximally flat designs show more sensitivity to this
parameter. Moreover, in some cases large L works
marginally better than smaller L.

(4) The overall best system has a mean classification error
of 16.63%. We should note that this is a system using
maximally flat filters with L = 18. However, as stated
before, Parks-McClellan filters give more consistent
performance as a function of L.
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FiGure 12: ULap-UDFB and ULap-BDFB segmentation maps and errors from Tables 1 and 2 with L = 12, ] = 4, and N = 8 using

Parks-McClellan filter design.

Because of the more consistent performance as a function of
L, we favor the use of ladder-based UDFBs whose step filters
are designed using the Parks-McClellan algorithm.

5. Texture Segmentation Based on
Decimated Bamberger Pyramids

The ULAP-UDFB segmentation systems from the previous
sections require a 24-fold data expansion in the training
and classification stages. Hence, any possibility to reduce the
computational and storage requirements is highly desirable.

The decision to use a fully undecimated Bamberger pyramid
was based on previous findings where full rate systems
work significantly better than systems using subsampled
channels [57]. However, we also investigated Bamberger
pyramids using the (maximally decimated) BDFB. To assess
the complexity-performance tradeoffs between the BDFB
and the UDFB.

In this section, we evaluate segmentation systems based
on the BDFB. We chose the ULap-BDFB, which consists
of the undecimated Laplacian pyramid and the BDFB. This
implies that for a pyramid with P levels and N directional
bands per level, the expansion factor is only P — 1. We do
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not use the lowpass pyramid level in our feature extraction
process. Hence, using the ULap-BDFB with P = 4 and
N = 8 has an eight-fold reduction in storage compared to
the ULap-UDFB. Moreover, the complexity reduction in the
feature extraction, training, and classification stages is also
significant.

The segmentation system from Figure 10 requires some
significant changes. The nonlinear operations remain the
same, while the energy map generation needs to be modified
to account for the spatial characteristics of the subbands.
As we recall from Section 2, the output of the BDFB is
maximally decimated. In the case of a four-band BDFB,
the subbands are equally halved on both directions. In this
case, each location (i, j) on a subband corresponds to the
neighborhood {(2i,2j), (2i+1,2), (2i,2j+1), (2i+1,2j+1)}
at the input image and generating a subsampled energy map
is straightforward.

On the other hand, an eight-band BDFB poses a slightly
more difficult task to obtain feature maps & (i, j). We recall
from Figure 4 that the eight-band BDFB produces subbands
with nonuniform sizes whose overall downsampling matri-
ces are given in (3). For instance, a 512 X 512 input image
produces four 256 X 128 subbands and four 128 X 256
subbands. Hence we need a way to produce the energy maps
ex(i, j) from decimated subbands si(i, j) and feature maps
ex(i, j) of equal size. To obtain energy maps e (i, j) we need
to consider the effect of C; and C, on the original data. For a
diagonal downsampling matrix

D_ dy 0
-5 4] (a

decimation translates to stretching the frequency axes by
factors of dy and d, along wy and w;, respectively. Given the
periodic nature of the 2D subband frequency responses, the
centroid frequencies along each dimension are mapped to
fa, = (dofy) modmand f,; = (dif,) mod 7 Using these
values, we can compute g5 and o;,; as before to find g, using
9).

To solve the nonuniform subband size issue, the simplest
solution is to produce energy maps with uniform size
by averaging spatial locations along the larger of the two
dimension. For a feature map & (i, j) with a spatial geometry
produced by C; we form a new set of “averaged” energy
maps given by

Sk(Zi,j) + e (2i+ l,j)
2

ar(i, j) = (12)

forall jandi = 0,1,...,(I/2) — 1. Similarly, for subbands
whose downsampling matrix is C, we obtain

e(i,2) + e (i,2j +1)
2

ar(i, j) = (13)
forall i and j = 0,1,...,(J/2) — 1. The resulting energy
maps ai (i, j) have equal dimensions (I/4) X (J/4). Averaging
the channels reduces spatial resolution. On the other hand
classifier complexity is reduced by an additional factor of
2. The feature vector for subband spatial location (i, j) is

11

now given by f; ; = [a1(4, j) a2 (i, j) - - - aK(i,j)]T with K =
(P — 1)N. The LVQ classifier produces segmentation maps
S(i, j) of size I/(2M~1) x J/(2M~1), where M = 3 for the
eight-band BDFB. We recall M is the number of stages in the
BDEB tree structure. Each segmentation map location (i, j)
spatially colocates with an (M — 1) X (M — 1) region on the
original texture. To produce a full rate segmentation map,
we perform a simple interpolation of S(i, j) by computing a
Kronecker product with an M x M structuring element of
ones, followed by a 3 x 3 median filter to reduce jagged edges
around the texture boundaries.

With these modifications to the segmentation scheme,
we present the same evaluation of the design parameter
space as in the previous section. The segmentation results
are presented in Table 2. First we note that, as before, the
N = 8 systems outperform N = 4. This is remarkable
since for N = 4 there is four times the amount of spatial
information than with N = 8, and it could be expected
that the N = 4 case would provide better segmentations.
This experimental evidence seems to imply that for texture
segmentation, directional selectivity is a more important
property than spatial resolution. This is further discussed in
the next section where we compare our results with other
maximally decimated decompositions.

The second important observation from our experiments
is that the decimated systems work as well as undecimated
systems from the previous section. In fact, the ULAP-
BDFB systems perform slightly better on average as seen
from the tables. The best performance with an average
segmentation error of 15.93 is given by the system using a
ULap-BDFB pyramid with N = 8, the FFB implemented
with a three-step ladder, and the f3;(z) filters designed with
the Parks-McClellan algorithm with L = 12. Although
the ULap-BDFB is not maximally decimated, it works with
substantially less data than the full rate case, and is closer
in complexity to maximally decimated systems. Visually, we
present the segmentation results for the decimated system
in the rightmost column of Figure 12. We only present the
segmentation error maps, noting that the maps are very
similar to those of the ULap-UDFB. The main difference is in
the delineation of boundaries which is (as expected) less well
defined in the decimated case. However, in some cases the
interior regions are better identified by the decimated system.

The results presented in this section are noteworthy
given the previous understanding of the performance of
multichannel decompositions with decimated subbands. The
theoretical justification for the good performance given by
the BDFB is the subject of future work. However, we see a
couple of mechanisms in play. First, the BDFB (and UDFB)
filters provide excellent frequency selectivity. The sharp
transition bands are inherited from the 1D prototypes and
can be easily adjusted to meet different needs. This selectivity
implies that the interband frequency leakage (i.e., cross-talk)
is low, leading to clear separation of texture detail in the
subbands and energy maps. As a consequence, the feature
vectors maximize the interclass distances among textures.
As discussed in the next section, the performance of the
DT-CWT supports our findings. The second mechanism
is related to the decimation operations, which can be
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TaBLE 2: Segmentation errors for ULap-BDFB pyramids with P = 4 radial decomposition levels. PM denotes Parks-McClellan. MF denotes

maximally flat.

Pyramid Segmentation errors for texture collages

Parameters L @ (b (c) (d) (e) (f) () (h) (i) (G (k) (1)  Mean
551 2598 20.65 2639 1796 5535 5096 44.77 3487 7.07 3.46 289  24.65

N = 4, three-step
ladder, PM design 12 490 2651 1929 2574 17.81 4876 5098 27.09 3592 7.44 284 239 2247
18 561 2575 20.48 25.63 16.13 50.26  50.54 26.54 35.60 6.87 3.19 230 2241
4 7.25 1990 17.08 21.50 12.52 36.24 47.85 2534 2825 233 148 3.27 18.58

N = 8, three-step
ladder, MF design 12 679 1936 16.44 16.79 12.90 31.62 4541 19.62 2502 1.22 136 2.50 16.59
18  6.31 17.69 16.04 1542 12.66 30.30  45.70 19.23 26.26 1.29 141 237 16.22
4 557 19.20 15.08 19.27 12.66  32.79  44.01 20.35 26.05 1.08 1.52 2.61 16.68

N = 8, three-step
ladder, PM design 12 646 17.72 1495 1643 12.05 2936 4462 18.02 26.77 1.09 135 237 15.93
18 6.78 1845 1551 1509 1233  30.19 4384 1799 26,55 118 136 232 15.97

explained by the class resolution versus spatial resolution
tradeoff described by Wilson and Spann [10]. As the spatial
resolution is reduced by the downsampling operations, the
class resolution of the textures in the image is increased. A
similar finding was reported by Jain and Farrokhnia in [9]
with their interpretation on the use of local energy maps as
blob detectors.

6. Comparison with Other Multichannel
Schemes

In this section we compare the segmentation results pre-
sented in this paper with other multichannel segmentation
schemes. An extensive number of filter banks were evaluated
in [57]. The mean classification error over the texture
collages is presented in Table 3.

In the decimated multichannel systems reported in
[57], the energy maps of the lower rate subbands were
upsampled to full rate in order to deal with nonuniform
sized channels. The upsampling process could be as simple
as sample replication or as complex as using anti-imaging
filters. From the average results shown in the tables, it appears
that upsampling the subbands hinders the discriminative
abilities of the feature set, probably as a result of the imaging
introduced by this operation.

Table 3 also includes the DT-CWT result reported by
de Rivaz [20]. The DT-CWT decomposition gives a clear
improvement compared to the rest of the filter banks.
The DT-CWT is nearly shift invariant and has twice the
directional selectivity of the classical DWT. De Rivaz con-
cluded that the improved directionality of the DT-CWT
is the principal mechanism behind the improvement in
segmentation quality and that the complex-valued nature
of this representation is not relevant. In fact, it is shown
in [20] that the real part of the DT-CWT performed
as well as the full DT-CWT. This result supports our
own conclusions about DFB-based systems that increased
directional selectivity improves the discriminative power of
the local-energy features despite the loss in spatial resolution
caused by downsampling.

For further comparisons we considered the local DCT,
the full rate nonuniform QMEF filter bank with 40 sub-
bands, and the DT-CWT. Additionally, we implemented a
segmentation system using the Steerable Pyramid (SPyr)
from Simoncelli et al. [54]. For the SPyr we use four pyramid
levels combined with an eight-band angular component.
The lower resolution energy maps were upsampled using a
combination of zero-order interpolation followed by a 3 x 3
median filter. We selected the ULap-BDFB and ULap-UDFB
systems that provide the lowest average segmentation error
for comparison. We present the classification errors for all
the texture collages in Table 4.

Using the average segmentation errors as a single metric
for performance, we see that the our systems are the top
performers. However, the average classification error over
simplifies the picture. It might be more useful to look at
the collages on a case-by-case basis. From this point of view,
we see that except for collages (g), (j), and (k), our systems
provide the best results. The DT-CWT performs marginally
better on collages (g), (j), and (k). It should be noted that
the differences in classification error are marginal among the
top performers and that their segmentation maps will not
have visually discernable differences. The SPyr is the worst
performer. Similar to other systems with decimated channels,
upsampling the lower rate energy maps to full rate does not
improve segmentation.

Complexity is another dimension for comparison. With
respect to complexity, the DT-CWT (4-levels, 6-orientations)
is comparable to the Lap-DFB system (3-levels, 8-directions).
The DT-CWT is redundant by a factor of four, while the
ULap-BDFB increases the data rate by factor of three.
Additionally, the computation of features from the DT-
CWT is more involved, since the local energy calculation
has to be computed from complex-valued subbands. Hence,
considering the whole picture, the ULap-BDEFB is arguably a
better choice than the DT-CWT from both complexity and
performance perspectives.

For full rate representations, we found the ULap-UDFB
pyramid (with 24 subbands) significantly outperformed the
40 subband undecimated QMF system. The main difference
between the two systems is again the improved directional
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TABLE 3: Average classification errors for different segmentation systems.

Segmentation Method Mean classif. error Segmentation method Mean classif. error
Laws Filters 28.32 Cooccurrence 29.1
Ring/wedge filters 30.6 Autoregressive 26.32
Dyadic Gabor 27.77 Eigenfilter 26.17
Gabor filt. bank 31.45 Prediction error 29.27

DCT (3 x 3) 24.85 Optimized FIR J, 26.36
Daub. 4 (UDWT) 22.55 Back Prop. NN 51.92
Daub. 4 (DWT) 28.55 DT-CWT [20] 18.0

QMEF 16-tap (40 subbands) 20.83

TaBLE 4: Comparison of segmentation results for different multichannel approaches.

Description (a) (b) (c) (d) (e) (f) (g) (h) (1) 6)) (k) €)) Mean
DCT 13.2 27 25.5 37.8 22.6 40.9 49 38.2 33 6.4 22 2.5 24.85
FR-QMF 8.7 18.9 23.3 18.4 17.2 36.4 41.7 39.8 28.5 8.1 0.8 8.2 20.83
SPyr 7.1 26.2 24.3 29.9 20.2 42.27 6392 3529 4331 299 191 12.98  25.87
DT-CWT 10.9 21.8 16.2 16.6 17.3 33.8 40.4 19.3 28.6 0.6 1.1 9.3 17.99
ULap-UDFB,L =18 4.66  19.33 1297 16.66  12.20  33.53  41.95 2228 2949 0.64 139 440 16.63
ULap-DFB L = 12 6.46  17.72 14.95 16.43 12.05 2936  44.62 18.02  26.77 1.09 1.35 2.37 15.93

selectivity compared to the traditional 2D DWT. The perfor-
mance of Gabor filter banks, which can have an arbitrary
number of orientations, is relatively poor in general. This
may be attributed to the poor stopband rejection inherent
with Gaussian filters.

As a final note we point our that the motivation to use
tull rate decompositions with this level of redundancy is to
exploit shift invariance (SI). However, our results suggest that
the improved directional selectivity of the BDFB and UDFB
is a more dominant property than SI. This is supported
experimentally by comparing the ULap-BDFB an the ULap-
UDEFB results. Hence, we can de-emphasize the requirement
for SI and in so doing, achieve a substantial reduction in
computation and storage.

7. Conclusions

In this paper we presented the use of Bamberger pyramids for
multichannel texture segmentation. These polar-separable
pyramids are composed of flexible filter bank structures that
allow fine tuning of several design parameters including a
tight control of filter specifications, the number of directional
bands at each scale, and the redundancy factor of the decom-
position. A well-known supervised segmentation framework
using LVQ as a classifier was adopted in order to allow a
detailed comparison with other multichannel transforms.

A common belief in multichannel texture segmentation
is that SI and highly redundant decompositions tend to
outperform maximally decimated representations. Here we
report a contradictory result to this perspective. We showed
that the ULap-BDFB pyramid with decimated directional
channels performs at the same level (and in some cases
better) as the full-rate ULap-UDFB. We infer that the angular
frequency selectivity provided by Bamberger pyramids is the
most significant factor in improving segmentation. In other

words, the BDFB and UDFB provide an excellent packing of
texture energy across subbands.

A comparison with other multichannel schemes shows
that the ULap-BDFB and ULap-UDEFB pyramids provide
the best overall performance. After considering complexity
and storage requirements, the ULap-BDFB pyramid is
particularly attractive for segmentation compared to the
other multichannel representations discussed in this paper.
Although the results are based on the texture collages tested,
we speculate that the results will be similar for other collages
given the wide gamut of variations presented in the test
images.

The work here has focused on evaluating Bamberger
pyramids as the front end of the multichannel segmentation
system. We have not yet made an attempt to improve the
feature extraction and classification steps. As seen in some
of our results, there is still room for improvement. To this
effect, we are currently exploring the use of classifier ensem-
bles (e.g., boosting) to improve classification performance.
Another line of work under study is texture segmentation
using multiresolution Markov random fields (MRFs). Recent
work on MRF segmentation using the DWT and the DT-
CWT [22-24] indicate that directional information is a key
factor on improving the estimation of the segmentation map.
Finally, the exploration of algorithms based on physiology
seems to have come to a halt. Current findings on the neural
mechanisms of the visual cortex suggest revisiting this topic
in the near future.
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