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traffic patterns and the network topology may be changing in the dynamic environment. We propose a Monte Carlo Expectation-
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network topology. In the experiments, a nine-camera network with twenty-five nodes (at the lowest level) is analyzed both in
simulation and in real-life experiments and compared with previous approaches.
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1. Introduction

Networks of video cameras are being envisioned for a variety
of applications and many such systems are being installed.
However, most existing systems do little more than transmit
the data to a central station where it is analyzed, usually with
significant human intervention. As the number of cameras
grows, it is becoming humanly impossible to analyze dozens
of video feeds effectively. Therefore, we need methods that
can automatically analyze the video sequences collected by a
network of cameras.

Most work in computer vision has concentrated on a
single or a few cameras. While these techniques may be useful
in a networked environment, more is needed to analyze the
activity patterns that evolve over long periods of time and
large swaths of space. To understand the activities observed
by a multicamera network, the first step is to infer the spatial
organization of the environment under surveillance, which
can be achieved by camera node localization [1], camera
calibration [2, 3], or camera network topology inference
[4-7] for different purposes. In this paper, we focus on
the topology inference of the camera network consisting of
cameras with mostly nonoverlapping field-of-views (FOVs).

Similar to the notion used in computer networking
community, the camera network topology is the study of
the arrangement or mapping of the nodes in a camera
network [8]. There are two main characteristics of network
topology: firstly, the existence of possible links between
nodes (i.e., the connectivity), which correspond to the
paths that can be followed by objects in the environment;
secondly, the transition time distribution of pedestrians
observed over time for each valid link (“path”), which is
analogous to the latency studied in the communication
networks. Rather than learning the geometrically accurate
maps by networked camera localization [1], the objective of
topology inference is to determine the topological map of the
nodes in the environment. The applications of the inferred
camera network topology may include coarse localization
of the networked cameras, anomalous activity detection
in a multi-camera network, and multiple object tracking
in a network of distributed cameras with non-overlapping
FOVs.

In this paper we develop (i) a multi-layered network
architecture that allows analysis of activities at various
resolutions, (ii) a method for learning the network topology
in an unsupervised manner by integrating visual appearance



and identity information, and (iii) a Markov Chain Monte
Carlo (MCMC) learning mechanism to update the network
topology framework continuously in a dynamically changing
environment. The paper does not deal with how to optimally
place these cameras; it focuses on how to infer the connec-
tivity and further analyze activities given fixed locations of
the cameras. We now highlight the relation with the existing
work and the main contributions of this paper along these
lines.

Section 2 describes the related work and contributions
of this paper. The multi-layered network architecture is
described in Section 3.1. In Section 3.2, we present our
theory for learning the network topology by integrating iden-
tity and appearance information, followed by the approach
for identifying network traffic patterns. In Section 4, we
first show extensive simulation results for learning a multi-
layered network topology and for activity analysis; then,
experimental results in a real-life environment are presented.
Finally, we conclude the paper in Section 5.

2. Related Work and Contributions

Camera network is an interdisciplinary area encompassing
computer vision, sensor networks, image and signal process-
ing, and so forth. Thanks to the mass production of CCD
or CMOS cameras and the increasing requirement in elderly
assistance, security surveillance and traffic monitoring, a
large number of video camera networks have been deployed
or are being constructed in our every-day life. In 2004, it
was estimated [9] that the United Kingdom was monitored
by over four million cameras, with practically all town
centers under surveillance. One of the prerequisites for
processing and analyzing the visual information provided
that randomly placed sensors is to generate the spatial
map of the environment. In the sensor networks and
computer vision communities, there has been a large body
of work on network node localization or multi-camera self-
calibration. In most cases, the node localization/calibration
involves the discovery of location information and/or the
orientation information (in the case of cameras) of the sensor
nodes.

In the research by Fisher [3], it was shown that it
is possible to solve the calibration problem for the ran-
domly placed visual sensors with non-overlapping field-
of-views. It presented a possible solution by using dis-
tant objects to recover orientation and nearby objects to
recover relative locations. However, it employed a strict
assumption on the motion of the observed objects. Ihler et
al. [10] presented nonparametric belief propagation-based
self-calibration method from pairwise distance estimates
of sensor nodes. Inspired by the success of Simultaneous
Localization and Mapping (SLAM) [11] in robot navigation,
Simultaneous Localization And Tracking (SLAT) [1, 2] was
proposed and widely used in sensor network. SLAT is to
calibrate and localize the nodes of a sensor network while
simultaneously tracking a moving target observed by the
sensor network. Rahimi et al. [2] proposed a probabilistic
model-based optimization algorithm to address the SLAT
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problem, which computed the most likely trajectory and the
most likely calibration parameters with the Newton-Raphson
method. Rather than the offline and centralized algorithm in
[2], Funiak et al. [1] used the Boyen and Koller algorithm
which is an approximation to the Kalman filtering as the basis
and built a scalable distributed filtering algorithm to solve the
SLAT problem.

The geometric maps, generated by SLAT, can be used for
reliably mapping the observations from sensor nodes to the
global 2D ground-plane or 3D space coordinate system of the
environment. For a large number of applications, however,
the topological map is more suitable and more efficient than
the geometric map. For example, the human activity analysis
presented by Makris and Ellis in [12] was based on trajectory
observations and a priori knowledge of the network topology.
This provided an understanding of the paths that can be
followed by objects within the field of view of the network
of cameras.

Javed et al. [13] presented a supervised learning algo-
rithm to simultaneously infer the network topology and
track objects across non-overlapping field-of-views. They
employed a Parzen window technique that looks for corre-
spondences in object velocity, intercamera transition time,
and the entry/exit points of objects in the FOV of a camera.
However, the work in [13] relies on the strict constraint of
manually labeled trajectories, which is costly and not always
available in the real environment. With respect to the wide
use of non-overlapping cameras in camera networks, there is
the need for new methods to relax the assumption of known
data correspondence.

Recently, there has been some work on understanding
the topology of a network of non-overlapping cameras [5,
6, 14] and using this to make inferences about activities
viewed by the network [12]. The authors in these papers
proposed an interesting approach for modeling activities
in a camera network. They defined the entry/exit points
in each camera as nodes and learned the connectivity
between these nodes. Makris et al. [4] proposed a cross
correlation-based statistical method to capture the temporal
correlation of departures and arrivals of objects in the field-
of-views, which in turn is used to infer the network topology
with unknown correspondence. Tieu et al. [14] used the
information theoretic-based statistical dependence to infer
the camera network topology, which integrated out the
uncertain correspondence using Markov Chain Monte Carlo
(MCMC) method [15].

Marinakis et al. [6] used the Monte Carlo Expectation-
Maximization (MC-EM) algorithm to simultaneously solve
the data correspondence and network topology inference
problems. The MC-EM algorithm [16, 17] expands the
scope of the EM by executing the Expectation step, which is
intractable to sum over the huge volume of unknown data
correspondence, through MCMC sampling. This approach
works well for a limited number of moving objects (e.g.,
mobile robots) observed by the sensor network. When data
correspondence for a large number of objects is encountered,
the number of samples in MC-EM algorithm will increase
accordingly, which makes the convergence of MCMC sam-
pling to the correct correspondence really slow.
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(a) Ain camera 1

(b) A in camera 2

(c) Bin camera 2

FIGURE 1: An example of false appearance similarity information. Two subjects (“A” and “B”) are monitored by two cameras (“1” and
“27). Their clothing is similar, and the illumination of these two cameras is different. The Bhattacharyya distances between the RGB color

@ » o« »

histograms of the extracted objects in the above three frames (“a,

d(a, ¢) = 0.6828, which will establish a false correspondence between

All these approaches take only the discrete “depar-
ture/arrival” time sequences as input. To employ the abun-
dant visual information provided by the imaging sensors,
Niu and Grimson [5] proposed an appearance-integrated
cross-correlation model for topology inference on the vehicle
tracking data. It computed the appearance similarity of
objects at departure and arrivals as the product of the nor-
malized color similarity and size similarity. However, appear-
ances (e.g., color) may be deceiving in real-life applications.
For example, clothing color of different human subjects
is similar (“false match”) as shown in Figures 1(a) and
1(c), or cloth color of the same object changes significantly
under different illuminations (“false nonmatch”) in Figures
1(a) and 1(b). Besides, it is hard to differentiate human
subjects based on the observed size observed in the overhead
cameras.

Furthermore, these approaches work in a “one-shot”
manner; that is, once the topology is inferred, it is assumed
not to change. However, the assumption cannot be guar-
anteed in the dynamic changing environment. The traffic
behaviors in such environment vary much depending on
the age, health status, and so forth of the pedestrians.
Besides, the nature of the pan-tilt-zoom cameras widely used
in the sensor networks renders the “static environment”
assumption invalid. These issues prompt a continuous
learning framework for camera network topology inference
as presented in our paper.

We compare our approach and the existing work in
network topology inference in Table 1. Both transition times
and face recognition are helpful and used in our work. We
are not aware of any other published approach that has used
both transition times and face recognition. This information
can also be useful for anomaly detection in a video network.
The author in [18] explores the joint space of time delay
and face identification results for the detection of anomalous
behavior.

We propose a principled approach to integrate the
appearance and identity (e.g., face) to enhance the statistics-
based network topology inference. The main contributions
of the paper are summarized in the following.

and “c”) are calculated to identify the objects: d(a,b) = 0.9097, and
((a)) and “C. »

(A) Multilayered Network Architecture. The work in [5, 14]
defines the network as a weighted graph linking different
nodes defined by the entry/exit points in the cameras. The
links in the graph define the permissible paths. If a user were
presented with just this model, he/she would have to do a
significant amount of work to understand the connectivity
between all the cameras. However, applications may demand
that we model only the paths between the cameras without
regard to what is happening within the field-of-views (FOV)
of individual cameras. This means that we need to cluster the
nodes into groups based on their location in each camera.
Taking this further, we can cluster the cameras into groups.
For example, if there are hundred cameras in the whole
campus, we may want to group them depending upon their
geographical location. This is the motivation for our multi-
layered network architecture.

At the lowest level the connectivity is between the nodes
defined by entry/exit points. At the higher level, we cluster
these nodes based on their location within the FOV of each
camera. At the third level, the cameras are grouped together.
This can continue depending upon the number of cameras,
their relative positions, and the application. (An example of
a multilevel architecture is given in Figure 3.) At each level,
we learn the network topology in an unsupervised manner
by observing the patterns of activities in the entire network.
Note that given the information at the highest resolution
(i.e., at the lowest level), we can get the network graphs at
the upper levels, but not vice versa.

Departure and arrival locations in each camera view
are nodes in the network at the lowest level of the archi-
tecture (see Figure 3). A link between a departure node
and an arrival node denotes connectivity. By topology
we mean to determine which links exist. The links are
directional and they can be bidirectional. The information
about the identities is stored at the nodes corresponding
to entry/exit points at the bottom level of the network
architecture.

(B) Integrating Appearance and Identity for Learning Network
Topology. The work in [5] uses the similarity in appearance
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TaBLE 1: A comparison of our approach with the state-of-the-art topology inference approaches suited for non-overlapping camera

networks.
. . o Niu and Grimson
Approaches Makris et al. [4] Tieu et al. [14] Marinakis et al. [6] (5] Our approach
4 MCMC and Monte C?rlo ApPearance— Weighted cross
Method Cross correlation Mutual Expectation- weighted cross .
. . L . correlation and MC-EM
information Maximization correlation
Continuous NO NO NO NO YES
learning?
Discrete i i
Input departure/arrival Discrete D/A Discrete D/A ?lsi;ertaenlzéA and aDISCeTrt;nlzél:’n didentit
sequence (D/A) pp pp Y
Visual cues N/A N/A N/A Appearance Appearance and identity
. . . . . . . . 3-level (entry/exit
Node level SIOHiiltes )(entry/emt St)r;iltes )(entry/ex1t SlonilgllteS )(entry/exn Slor;Iglltes )(entry/exr( points, cameras and
P p P p camera clusters)
Link validation Threshold-ing Mutual . Posterl(.)r' Mutual . Mutual information
information probability information
Ca{mera. N/A Qverhea.ld and N/A Side-facing Qverhealld and
orientation side-facing side-facing
(?omplgx1ty of N/A 22 nodes 80 directed links in 26 nodes 25 nodes in 9 cameras
simulation 20 nodes
Complexity of real 26 nodes in 6 15 nodes in 5 7 nodes in 6 10 nodes in 2 25 nodes in 9 cameras
experiments cameras cameras cameras cameras and 13 links
Performance NO YES YES YES YES
evaluation

Pre-processing Input data: Temporal Network
(tracking, node discrete D/A, correlation-based topology and
video selection, face appearance, network topology traffic patterns
recognition) identity inference
_- -7 \
- \
-7 \
-7 \
-7 \
_-7 \
- \
-7 \
-7 \
_-7 \
P \
-~ \
Similarity- Calculating mutual
: ’ . . 8 Thresholding MI
integrated cross —>{ information (MI) of . .
. . to validate links
correlation departure and arrivals

FIGURE 2: The block diagram of the proposed method.

to find correlations between the observed sequences at differ-
ent nodes. However, appearances may be deceiving in many
applications as in Figure 1. For this purpose, we integrate
human identity (e.g., face recognition in our experiments)
whenever possible in order to learn the connectivity between
the nodes. We provide a principled approach for doing
this by using the joint distribution of appearance similarity
and identity similarity to weight the cross-correlation. We
show through simulations and real-life examples how adding

identity can improve the performance significantly over
existing methods.

Note that the identity information can be very useful for
learning network topology since the color information alone
is not reliable. However, face recognition is not the focus of
this paper. Existing techniques for frontal face recognition
[19-21] or side face recognition [22] in video can provide
improved performance. For a network of video cameras, see
[23, 24] and for intercamera tracking, see [25].
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Clusters of cameras

Cameras

Entry/exits

FIGURE 3: The three-layered architecture of the camera network.

(C) Continuous Learning of Traffic Patterns and Network
Topology in the Dynamically Changing Environment. As
shown in Table 1 the previous work only focuses on the
batch-mode learning of traffic patterns and network topol-
ogy in the static environment. However, the traffic patterns
and the network topology keep changing in the dynamic
environment. The continuous learning mechanism proposed
in the paper is necessary for the topology inference to reflect
the latent dynamically changing characteristics.

3. Technical Approach

The technical approach proposed in this paper consists of a
multi-layered network architecture, the inference of network
topology and traffic patterns, and the continuous learning of
the network topology and traffic patterns in the dynamically
changing environment. The block diagram of the system is
shown in Figure 2.

3.1. Multilayered Network Architecture. The network topol-
ogy is defined as the connectivity of nodes in the network.
For instance, given the node as a single camera in a
distributed camera network as in [6], the network topology is
the connectivity of all the cameras in the network. In [5, 14],
the entry/exit points are defined as the nodes in the network
and a weighted directed graph is employed to represent
the network topology. The advantage of “entry/exit” nodes

is the detailed description of the network topology. The
disadvantage of such representation is the cumbersome
volume of the network to analyze. For instance, a network
with 9 cameras will give rise to at least 18 entry/exit points as
nodes, which may have up to 306 directed links.

To deal with the increasing number of cameras installed
for surveillance nowadays, we propose a multi-layered
architecture of weighted, directed graphs as the camera net-
work topology (as shown in Figure 3), which can maintain
scalability and granularity for analysis purposes. Figure 3 is
actually the network architecture for our experimental setup
and the simulation, which will be described in Section 4 in
detail.

In the hierarchical architecture in Figure 3, the nodes
at the lowest level are the entry/exit points in the FOVs of
cameras; the middle level is composed of the nodes as single
cameras; the top level has the fewest nodes that correspond
to the clusters of cameras, for example, all the cameras on the
second (II) and third (III) floors of a building, respectively.
All the entry/exit points in the same FOV can be grouped
and associated with the corresponding camera node at the
middle level. Similarly, the camera nodes in the middle level
can be grouped according to their geographic locations and
associated to the appropriate node at the highest “cluster”
level. For example, in Figure 3, the entry/exit nodes “18,
“19,” and “20” are in the FOV of the camera “8,” which is
associated with the cluster “II” along with other cameras on
the same floor.



The topology is inferred in a bottom-up fashion: first
at the lowest “entryl/exit” level, then at the middle “camera”
level, and finally at the highest “cluster” level. In subsequent
network traffic pattern analysis, the traffic can be analyzed
at the “entry/exit” level, at the “camera” level, or even at the
“cluster” level, if applicable, which provides a flexible scheme
for traffic pattern analysis at various resolutions. Note that
since the single layer network deals only with the entry/exit
patterns, the computational burden will be the same in a
single-layer network and the bottom layer of the multi-layer
network. Multi-layer network architecture processes data at
a lower level and the information is passed to a higher level.
It requires more computational resources since higher-level
associations need to be formed. However, the hierarchical
architecture allows, if desired, the passing of control signals
in a top down manner for active control of network
cameras.

3.2. Inferring Network Topology and Identifying Traffic Pat-
terns. In this section, we will show how to determine the
camera network topology by measuring the statistical depen-
dence of the nodes with the appearance and identity (when
available); then the topology inference for the multi-layered
architecture and the network traffic pattern identification are
presented. Finally, continuous learning of traffic patterns and
network topology is described.

3.2.1. Inference of Network Topology. The network topology
is inferred in a bottom-up fashion. We first show how to
infer the topology at the “entry/exit” level by integrating
appearance and identity. At the lowest level of our multi-
layered network architecture, the nodes denote the entry/exit
points in the FOVs of all cameras in the network. They can
be manually chosen or automatically set by clustering the
ends of object trajectories. If they are in the same FOV or
in the overlapping FOVs, it is easy to infer the connectivity
between them by checking object trajectories through the
views. In this paper, we focus on the inference of connectivity
between nodes in non-overlapping FOVs, which are blind
to the cameras. The network topology at the lowest level
is represented by a weighted, directed graph with nodes as
entry/exit points and the links indicating the connectivity
between nodes.

Suppose that we are checking the link from node i
to node j. We observe objects departing at node i and
arriving at node j. The departure and arrival events are
represented as temporal sequences X;(t) and Y;(t), respec-
tively. We define Ax ;(t) and Ay () as the observed appear-
ances in the departure and arrival sequences, respectively.
The identities of the objects observed at the departure
node i and at the arrival node j are Ix;(t) and Iy (1),
respectively.

Niu and Grimson [5] present an appearance similarity-
weighted cross correlation method to infer the connectivity
of nodes. To alleviate the sole dependence on appearance,
which is deceiving when the objects are humans, we propose
to use the appearance and identity information to weigh the
statistical dependence between different nodes, that is, the
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cross-correlation function of departure and arrival X;(f) and
Yi(t):
j

Rij(1) = E[Xi(t) . Yj(t+T):| = > Xi(t) - Yi(t+71)

t=—o00

= E[f(AX,i(t),AY,j(t + T),Ix),‘,Iy,j(t + T))],
(1)

where f is the statistical similarity model of appearances
and identity, which implicitly indicates the correspondence
between subjects observed in different views. The joint model
of f and its components are presented in the following
subsections. An example is given in Figure 4. From now on,
we assume that departure and arrival nodes are always i and
j, respectively, so that the subscripts i and j can be omitted.

3.2.2. Statistical Model of Identity. The working principles
of the human identification are as follows: (1) detect the
departure/arrival objects and employ image enhancement
techniques if needed (e.g., the superresolution method for
face recognition); (2) the objects departing from node i are
represented by unique identities Ix(¢), which are used as the
gallery; (3) the identities Iy of the objects arriving at the node
j are identified by comparing it with all objects in the gallery,
that is,

Sip (Ty> = arg max(sim(ly, Ix)), (2)

Ix

where sim(Iy, Ix) is the similarity score between Iy and Ix,
and Sip(-) is the similarity score of the identified identity.

We use the mixture of Gaussian distributions (e.g.,
as shown in Figure 5) to model the similarity scores of
identities:

am - N(phm>a2),  (3)
1

i

Pp = P<SID<TY> | X = Y) =

where k is the number of components, a,, is the weights,
tm and o2, are the mean and variance of the mth Gaussian
component, and X = Y means that they correspond to the
same object.

The unknown parameters {k,au,pm,and o2} can be
estimated by using the Expectation-Maximization (EM)
algorithm [26] in face recognition experiments on large
datasets. The mixture of Gaussians in Figure 5, which has
four components, is obtained by using EM algorithm in the
identification experiments [27].

3.2.3. Statistical Model of Appearance Similarity. We employ
the comprehensive color normalization (as in [5]) to alleviate
the dependence of appearances on the illumination condi-
tion. Then, the color histograms in the hue and saturation
space, that is, h and s, respectively, are calculated on the
normalized appearance. Note that we do not incorporate
the size information in the appearance metrics because the
observed objects are humans. We first normalize the sizes
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FIGURE 4: An example of observed “departure/arrival” sequences and corresponding appearance (as the normalized color histogram)and

identities for two distinct subjects.
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F1GURE 5: The Gaussian mixture model of the identity similarity.

(i.e., heights and widths) of objects before calculating color
metrics.

Next, a multivariate Gaussian distribution (N (g5, Zp,s))
is fitted to the color histogram similarity between the two
appearances:

Papp = P<hX - hy)SX —sy | X = Y) ~ N(ﬂhm zh,s)) (4)

where pps and 2, are the mean and covariance matrix of the
color histogram similarity, which can be learned by using the
EM algorithm on the labeled training data.

3.2.4. Joint Model of Identity and Appearance Similarity. By
integrating the above statistical models of appearances and
identity, the statistical model f in (1) can be updated as
the joint distribution of appearance similarity and identity
similarity, which are collectively denoted as S = {hx—hy,sx—
sy>Smn}:

Psimilarity(s | X(t)> Y(t + T))

= Papp(X(8), Y(£ + 7)) - Pip(X(2), Y (£ + 7))

= P(hx - hy,SX — Sy | X(t) = Y(t+ T)) (5)

- P(Sip(Ir) 1X(8) = Y(t+1)).

In (5), the joint distribution of appearance similarities
and identity similarity is the product of the marginal distri-
butions of each under the assumption that the appearance
and identity are statistically independent. For each possible
node pair, there is an associated multivariate mixture of
Gaussians with unknown mean and variance, which can
be estimated by using the EM algorithm. We can even
relax the independence assumption provided that we have
enough training samples to learn the covariance matrix of
the joint distribution. Then, the cross-correlation function
of departure and arrival sequences is updated as

RX,Y(T) = Z Psimilarity(s | X(t)) Y(t+ T)) (6)

t=—o00
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Cross-correlation of number 2 & 4
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F1Gure 6: Example of a simple 4-node network for analysis. (a) The network topology. (b)—(e) The cross-correlations of node pairs 1-2, 2—4
of different approaches: (b), (c) are as in [15] and (d), (e) are our approach.

3.3. Network Topology Inference. We build a 4-node network
(as shown in Figure 6(a)) to illustrate the importance of
the identity in determining the network topology and the
transition time between nodes. In the network, nodes 1
and 3 are departure nodes; 2 and 4 are the arrival nodes.
The network is fully connected by the four links shown
as arrows. The traffic data of 100 points is generated by a
Poisson departure process Poisson(0.1), and the transition
time follows the Gamma distribution Gamma(100, 5) as in
[14]. The probability of the appearance similarity Pypp is
generated as a univariate Gaussian distribution N(0, 1), and
that of identity similarity Pip from the mixture of Gaussians
as in Figure 5.

The noisy cross-correlations by the previous approach in
[5] (shown in Figures 6(b), and 6(c)) are replaced by the
cleaner plots of our method (as in Figures 6(d), and 6(e)).
Thus, the existence of possible links between different node
pairs can be easier to infer from the cross-correlations with a

loose threshold. Another possible advantage of our approach
is that it can relieve the dependence on a large number of data
samples for statistical estimation.

The mutual information (MI) between two temporal
sequences ([5]) reveals the dependence between them:

pX,Y)

p(X) - p(v) XY

I(X,Y) J p(X,Y)log

(7)

—%logz(l —Piy)>

where P)z(’y ~ max(Ryx,y) — median(Rx,y)/(0x - 0y).

Thus, we can use the mutual information to validate the
existence of the links identified in the network. As shown
in the adjacency matrix in Figure 7(a), the links of “I to
2% “1 to 47, “3 to 2%, and “3 to 4” can be verified by the
higher mutual information between them, which are shown
as brighter grids.
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FiGure 7: The network topology inference of the 4-node network:
(a) the adjacency matrix of the mutual information between
departure (row) and arrival (column) sequences; (b) the inferred
weighted, directed graph of the connectivity.
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The normalized mutual information is used as the weight
of the links in the network topology graph (Figure 7 (b)):

1 (XY)

Wi = , in which M; = arg max(li,j(X, Y)).

M )
(8)

3.3.1. Identifying Network Traffic Patterns. The traffic pattern
over a particular link is characterized by the time-delay
distribution, Px,y (1), which can be estimated by normalizing
the cross-correlation Ry y(7):

Ry y(T)

PX,Y(T) = ||RX,Y(T)H >

)

where [|Ry,y(7)]l is the area under the cross-correlation.

Depending on the moving object type, for example,
pedestrians of different ages, mixture of pedestrians and
vehicles, and so forth, the transition time distribution P(1)
has just a single mode (e.g., To = 20 in Figure 6(d)), or
multiple modes (e.g., 10, 20, 30 and 40 in Figure 8, resp.).
The multi-modal transition time distribution in Figure 8
was obtained on the simulated 4-node network as in [14].
Specifically, the simulated distribution was generated by a
mixture of Gamma distributions, that is, Gamma(100, 5),
Gamma(25, 2.5), Gamma(225, 7.5), and Gamma(400, 10),
to simulate the various speeds of objects.

3.4. Continuous Learning of Traffic Patterns and Network
Topology. The learning algorithm described below operates
at the lowest level, in the current implementation, where
the bulk of work computation takes place. The same
learning algorithm does not operate at different levels. At
the camera level the results of entry/exit patterns form
the association among cameras. In particular, the links
between the entry/exit nodes from different cameras form
the links between camera nodes. Similar association process
is performed at the higher levels of the hierarchy.

The inferred traffic pattern (i.e., time delay distribu-
tion) is modeled as Gaussian Mixture Model (GMM) with
parameters 0 = (k, am,ym,afn) by using the Expectation-
Maximization (EM) algorithm:

k
Pxy(t) = Px,y(t 1 0) ~ > - N(tm, 02). (10)
m=1

In Figure 9, we show an example of GMM for modeling a
single Gaussian of the time delay distribution. The statistics
(i.e., the normalized occurrence as from (9)) of the time
delays in the link “1 to 4” is shown in Figure 9(a), and its
parameters are (k = 1, 1 = 1, y; = 10, o? = 4), of which the
Gaussian distribution is shown in Figure 9(b). The estimated
GMM parameters by the EM algorithm are k =1, & =
1, fii = 9.956, &} = 4.247) shown in Figure 9(c). We can
find that the estimated GMM is capable to model the true
traffic pattern. For the efficiency of the continuous learning
system, a “change-detection” mechanism is employed to
determine if the latent traffic pattern changes or not. The
further time-consuming MCEM-based continuous learning
is triggered only if a significant deviation of the current traffic
pattern from the historical ones stored in the database is
detected. After the continuous learning, the inferred GMM:s
of the traffic pattern are sent to update the traffic-pattern
database. The overview of the continuous learning of traffic
patterns and network topology is illustrated in Figure 10.

3.4.1. Traffic Pattern Change Detection. When the new
data (departure/arrival sequences, the identities, etc.) for
an established link (“i — j”) arrive at time t and
the approximate correspondence between departures and
arrivals is established by the recognized identities (Ix,Iy),
the time-delay distribution (i.e., traffic pattern P y(7))
at time t can be approximately inferred by the temporal
correlation function as described in Sections 3.2 and 3.3.
The current traffic pattern Py y(7) will be checked with the
corresponding historical traffic pattern at day / (modeled as
the GMM 6") stored in the database by using the Kullback-
Leibler divergence:

d(Pyy(1),0") = Dx1(Q1I P)

Qo

Pyy(r)

- [ amiog

where

k
Q1) = GMM (7 | 00) ~ Y o) - N (ul, c20).  (12)

m=1
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FIGURE 9: (a) The true distribution of time delay between nodes 1 and 4, (b) the GMM of the true time delay distribution, and (c) the
estimated GMM of the time delay distribution by the EM method.
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The “distance” measure between the current and histor-
ical patterns will be evaluated with a predefined threshold
(x,v) to detect if there is a significant change.

The following MCEM-based continuous learning of
traffic patterns and network topology is triggered after the
detection of a significant change in the current traffic pattern.

3.4.2. MC-EM Algorithm. When the new input data (depar-
ture/arrival sequences, the identities, etc.) arrive at time f,
the approximate correspondence between departures and
arrivals can be established by the recognized identities
(Ix, Iy). However, there exist some false correspondences
indicated by identities with low similarity scores. There
may be ¢ of false identities assuming that the average
accuracy of the face recognition system is (1- €). We need
to reestimate the correspondence for the ¢ of identities with
the lowest similarity score probability to approach the true
correspondence 7. The reestimation is performed by an EM
algorithm with the Markov Chain Monte Carlo (MCMC)
technique.

The classical EM algorithm is not appropriate for this
purpose since the enumeration of all possible correspon-
dences is intractable. Therefore, the MC-EM algorithm is
used for this task in which the MCMC sampling technique
is used in the E step.

E-step. It calculates the expected log likelihood of the
complete data given the current parameter guess:

Q(6,09°V) = E[log p(r | 0) | X, Y,m,01V]

| M (13)
=M’ Z logp<n("‘),X,Y | 6).
m=1

The expectation in (13) is intractable to enumerate
all possible permutations. Therefore, we use the MCMC
sampling to generate M samples for approximation as in
(9). The parameter guess is initialized as the prior inferred
parameters (6 = §'-1).

M-step. It updates our current parameter guess with a value
that maximizes the expected log likelihood:

o = arg maxQ(@, 9“’”)
0

M (14)
= ! m X Y18)].
arg;nax[MZ ng(T[ )}

m=1

We iterate over the E and M steps until we obtain a
final estimate of 6. At each iteration of the algorithm, the
likelihood increases and the process is terminated when
subsequent iterations result in very small changes to 6.
Algorithm 1 shows the pseudocode for the MCMC sampling.

11

LOOP:
1. sample 75V from proposal;
2. sample U from an uniform distribution U(0, 1);
. p(r* D XY | 0)
3.a = mln(l, m)
4.1f U < a, then
%D s accepted;
else
fi1
end if
end LOOP

k+1

>

(*+1) s rejected.

AvrcoriTHM 1: Markov Chain Monte Carlo Sampling Algorithm.

4. Experimental Results

We tested our proposed approach in simulation and in the
real-life experiments, and compared it with the appearance-
integrated approach [5], when applicable.

4.1. Simulated Experimental Results

4.1.1. Description of Network Simulation. The simulation is
based on the “entry/exit” level of the multilayered network
architecture illustrated in Figure 3. Since we focus on the
connectivity inference in non-overlapping FOVs, the nodes
with all connections within the same FOV are omitted.
Thus, the simulated network has 18 departure/arrival nodes
and 13 valid directed links. Some nodes, for example, node
11, work as both “departure” and “arrival” Some node
pairs, for example, 6 and 22, have two unidirectional links,
which models the asymmetric traffic patterns between the
throughput nodes such as doors. The traffic data of 100
points are generated by a Poisson(0.1) departure process,
and the transition time follows Gamma distributions, for
example, Gamma(100, 5), Gamma(25, 2.5), and so forth.
The probability of identity similarity P;p is generated by a
mixture of Gaussians as shown in Figure 4. For simplicity,
the probability of appearance similarity is modeled by a
univariate Gaussian N (0, 1).

4.1.2. Learning Network Topology. The appearance and
identity-based approach proposed in the paper is tested on
the simulated traffic data. We assume that all the transition
time distributions are single-mode. The cross-correlations
with the appearance and identity (as in (6)) for twelve
valid and twelve invalid links are shown in Figures 11(a)
and 11(b), respectively. For comparison, Figures 10(c) and
10(d) show appearance-based cross-correlations [5] for the
same valid and invalid links, respectively. It can be seen that
our approach can highlight the peaks for the valid links
and repress fluctuations for the invalid links, which greatly
improves the peak signal-to-noise ratios of the estimation.
As to the link validation, we calculate the mutual
information of departure and arrival sequences at various
nodes and show the adjacency matrices in Figures 12(a) and
12(b). Based on the adjacency matrices, the topology graphs
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Figure 11: The estimated cross-correlations. (a), (b) our proposed approach, (c), (d) The previous approach in [5]. (a), (c) are for valid
links and (b), (d) for invalid links.
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FIGURE 12: The adjacency matrices of mutual information: (a) by our approach; (b) by the previous approach in [5]; (c) the inferred topology
graph. Those nine false links inferred by the adjacency matrix in (b) are marked as dashed links in (c).
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FIGURE 13: The estimated multi-modal traffic patterns by (a), (b) our approach; (c), (d) as in [5].
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FIGURE 14: (a) The true distribution of time delay between nodes 1 and 4, (b) the Gaussian distribution of the true time delays, (c) the
estimated time delay distribution by the cross-correlation method, and (d) the estimated time delay distribution (single Gaussian) by the

MC-EM method.

are inferred as shown in Figure 12(c). In addition to the 13
valid links (shown as the solid lines), the appearance-based
approach [5] also generates nine invalid links (dashed lines),
which are mainly concentrated on the throughput nodes, for
example, 6, 11, and 21.

4.1.3. Learning Multimodal Traffic Patterns. To illustrate the
capability of learning multi-modal traffic patterns, we sim-
ulate the two-mode (e.g., at 10 seconds and 40 seconds) and
four-mode (e.g., at 10, 20, 30s and 40s) transition time
distributions by using the mixture of Gamma distributions as
in Section 3.3.1 . The estimated cross-correlations are shown
in Figure 13. Our approach (as in Figures 13(a), and 13(b))
correctly restores the two modes and four modes, while there
are three outstanding peaks in Figure 13(c) and multiple
peaks in Figure 13(d) by the appearance-based approach [5].

This result illustrates the capability of our approach to learn
the multi-modal traffic patterns.

4.1.4. Example of Continuous Learning of Traffic Patterns in
a Less Cluttered Scenario. First, we examine the continuous
learning in a less cluttered scenario, for example, the hall way
in a building on campus. The subjects in the traffic are mostly
adults with very few disabled. Therefore, the traffic pattern
usually shows a single peak centered at the most common
transition time. The location of the peak (i.e., the common
transition time) depends on the density of traffic: the more
crowded the traffic is, the longer the common transition
time will be taken. It is well known that the traffic in the
school buildings varies a lot between the instruction time
and the off-peak time. It constitutes a dynamically changing
environment, which is ideal for the continuous learning.
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FIGURE 15: (a) The true distribution of time delay between nodes 1 and 4, (b) the Gaussian distribution of the true time delays, (c) the
estimated time delay distribution by the cross-correlation method, and (d) the estimated time delay distribution (GMM) by the MC-EM

method (at the fist iteration).

In this example, a significant change has been detected
in the distribution of time delays at a later time, that is,
P y(7). It still contains a single Gaussian with the different
means (u4 = 20) and the same variance (6> = 4). The time
delay distribution is continuously learned by the MC-EM
algorithm with the initial guess as the previously estimated
parameters (6~!) and the comparison between the estimated
traffic pattern estimated by the MC-EM and the cross-
correlation methods is shown in Figure 14.

4.1.5. Example of Continuous Learning of Traffic Patterns in a
Cluttered Scenario. Let us consider a more cluttered scenario,
for example, a pedestrian path in a shopping center. The
composition of the pedestrians varies during the business
hours and the behaviors of the subjects may also change. In
this example, we examine a special case when the distribution

of time delays has changed from a single-peak to the multi-
modal distribution. The multimodality reflects significantly
different patterns in the group of subjects, that is, the adults
and the elderly, or the normal and the disabled. Therefore,
the Gaussian Mixture Model (GMM) is used to model
the multimodality. As shown in Figure 15, there are two
Gaussian components in the GMM centered at 10 and 20,
respectively.

Figure 16 shows the improved estimation of the multi-
modal time delay distribution at different iterations of the
MC-EM algorithm.

4.1.6. Comparisons of Different Approaches for Topology Infer-
ence. For performance evaluation, we compare the following
four approaches based on the number of correctly detected
links in the camera network:
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FIGURE 16: (a) The estimated time delay distribution by MC-EM at
the 3rd iteration; (b) the estimated time delay distribution (GMM)
by the MC-EM method at the 10th iteration.

(1) “static baseline”: the appearance-integrated method
in [5];

(2) “static CC”: the appearance and identity-integrated
cross-correlation method without continuous learn-
ing;

(3) “continuous baseline”: the continuous learning
method with only appearance considered (without
identity);

(4) “proposed method”: the continuous learning method
as discussed in Section 3.4.

The experiment is conducted at four distinct times:
time instance “1” as the initial time and others mean the
moments when the network topology and traffic patterns
significantly change. The performance accuracy is defined
as the percentage of the correctly detected links versus the
total number of valid links in the changed network, and
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FiGure 17: The performance comparison of the proposed method
with other approaches: “static baseline,” “static CC,” and “continu-

ous baseline.”

the results are shown in Figure 17. From this figure, we can
see that the proposed method achieves the best performance
all the time. On the contrary, the methods without subject
identity are much lower than our proposed method, and the
performance of the “static CC” approach also deteriorates
when the traffic environment changes.

4.2. Real-Life Experimental Results

4.2.1. Description of the Experimental Setup. The experimen-
tal setup of the distributed camera network is illustrated in
Figure 18. As in the simulation, it follows the topology graph
in Figure 3. Within it, there are nine cameras, in which six
are on the tables (marked as circles) and three are on the
ceiling (marked as triangles) distributed in two rooms on
two different floors. There are four doors monitored by four
cameras, where the heavy traffic occurs. There are also some
barriers in the rooms that constrain possible paths.

We collected data on a test set of ten peoples: each person
walked through the monitored environment ten times,
totally 100 observations. The identification system is under
construction so that we simulated the identity similarity
distribution according to the mixture of Gaussians. After a
manual selection of entry/exit points in each FOV (as colored
ellipses in Figure 18), the object detection and tracking
was employed to detect the departure and arrival events.
Subsequently, the appearance similarity was calculated, and
the probability of the appearance similarity was calculated on
the estimated distribution P,p, by using the EM algorithm
and the labeled training data.

4.2.2. Learning Network Topology and Identifying Time-
Varying Traffic Patterns. The proposed approach was tested
on the real-life data to infer the network topology. It
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FIGURE 18: Experiment setup of the camera network showing the locations, FOVs, and entry/exit points of the cameras.

(c)

FIGURE 19: The example of false correspondence by appearance similarity metrics between different subjects. (a), (b) one subject observed

at nodes 16 and 6, respectively; (c) the other one at node 4.

F1GURE 20: The observed departure and arrivals of four male or female objects in the FOVs of two cameras.

successfully recovered the topology of the camera network
without any false link. However, the appearance-based
approach [5] established several false links, to name a few, “4
to 6” and “4 to 16,” by accumulating false correspondences.
For example, in Figures 19(a) and 19(b) is the same subject,
and Figure 19(c) is another one. Their identities (i.e., faces)
are shown in the corners of each frame. Unfortunately, the
false correspondences “a = ¢” and “b = ¢” are established by
using the appearance similarity metrics; therefore, the false

links “4 to 6” and “4 to 16” are inferred by accumulating
these false correspondences.

It is challenging to learn the time-varying traffic patterns
due to the unknown correspondence. Our appearance and
identity-integrated approach provides a possible solution to
this problem. As an example, for the scenes and observed
traffic pattern as shown in Figure 20, the subjects in the
traffic have both genders. In this case we find a two-mode
pattern.
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5. Conclusions

A multi-layered camera network architecture with nodes
as entry/exit points, cameras, and clusters of cameras at
different layers is proposed. Unlike existing methods that
used discrete events or appearance information to infer the
network topology at a single level, this paper integrates face
recognition that provides robustness to appearance changes
and better models the time-varying traffic patterns in the
network. The statistical dependence between the nodes,
indicating the connectivity and traffic patterns of the camera
network, is represented by a weighted directed graph and
transition times that may have multi-modal distributions.
The traffic patterns and the network topology may be
changing in the dynamic environment. We propose a Monte
Carlo Expectation-Maximization algorithm-based contin-
uous learning mechanism to capture the latent dynami-
cally changing characteristics of the network topology. In
the experiments, a nine-camera network with twenty-five
nodes (at the lowest level) is analyzed both in simulation
and in real-life experiments and compared with previous
approaches.

For the applicability of our approach the face of the
subjects should be visible at entry and exit points. Can
this happen in realistic conditions? If the cameras are
placed in corridors frontal face will be visible. For other
situations in a camera network different cameras can be
suitably placed for frontal face recognition in video [23,
24]. However, there will be situations where frontal face
will not be visible at entry/exits. In those situations, side
face (not frontal face) can be recognized in video [22]. In
situations, when face recognition is not at all possible, the
time delay-based approach will characterize the ultimate
performance.
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