Hindawi Publishing Corporation

EURASIP Journal on Image and Video Processing
Volume 2009, Article ID 432853, 8 pages
doi:10.1155/2009/432853

Research Article

Texture Classification for 3D Urban Map

Hiroyuki Inatsuka, Makoto Uchino, Satoshi Ueno, and Masahiro Okuda

Department of Information and Media Sciences, Faculty of Environmental Engineering, The University of Kitakyushu,
1-1 Hibikino, Wakamatu Kitakyushu, Fukuoka 808-0135, Japan

Correspondence should be addressed to Masahiro Okuda, okuda-m@env.kitakyu-u.ac.jp

Received 27 February 2008; Revised 15 December 2008; Accepted 23 February 2009

Recommended by Stefano Tubaro

This paper proposes a method to control texture resolution for rendering large-scale 3D urban maps. Since on the 3D maps
texture data generally tend to be far larger than geometry information such as vertices and triangles, it is more effective to reduce
the texture by exploiting the LOD (Level of Detail) in order to decrease whole data size. For this purpose, we propose a new method
to control the resolution of the texture. In our method we classify the textures to four classes based on their salient features. The
appropriate texture resolutions are decided based on the classification resulsts, their rendered sizes on a display, and their level of
importance. We verify the validity of our texture classification algorithm by applying it to the large-scale 3D urban map rendering.

Copyright © 2009 Hiroyuki Inatsuka et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

Three-dimensional urban maps (3D map) have a variety of
applications such as navigation systems and disaster manage-
ment and simulations of urban planning. As the technology
that acquires 3D range data and models of cities from the real
world has advanced [1-4], more sophisticated visualization
of photo-realistic 3D map is becoming available.

In general the 3D map has geometry information of 3D
meshes and texture images. Since the amount of the data
is huge, its data size often becomes a problem when it is
treated in devices including PCs, car-navigation systems, and
portable devices. Therefore, the reduction in the volume of
data becomes important to make the 3D map applications
user friendly.

Many methods on the LOD control of general 3D models
have been proposed so far [5-7]. Moreover there exist
some visualization techniques [7-12] of terrain data that
express the surfaces of a ground with geographical features
like mountain district. While these conventional methods
assume that a single model is locally smooth and consists
of topological manifold that contains a large number of
meshes, the city model consists chiefly of buildings. Since
the data in the 3D map mostly consist of many small,
already simplified meshes (like buildings made of some

cuboids), these simplification methods cannot be applied
to it. Although some methods on modeling and rendering
of the 3D maps have been already proposed [13-15], there
exist few methods concerning the reduction of the texture
data for the 3D map. In the 3D map, the proportion
of the total amount of texture data tends to be much
higher than that of geometrical information such as vertices
and triangles. For example, in the 3D map we use for a
simulation (Figure 10) the whole size of the textures is
461 MBytes in JPEG format, while the geometry information
has only 15MBytes in gzipped VRML. It means that the
LOD of the texture has a capability of effectively reducing
the whole data size rather than the LOD of the geometry.
For this purpose, we propose the technique for controlling
the resolution of the texture. Wang et al. [16] propose a
method to detect the repetition of content in the textures
to reduce storage and required memory. In this paper we
focus on urban map rendering from a ground level (as
shown in Figure 11) rather than bird’s eye view. These
systems can be used in car-navigation and human-navigation
systems.

In the following sections, we describe the overview of our
rendering system with consideration of the level of texture
importance. In Section 3, we propose our classification
method based on K-Nearest Neighbor approach. Then we

show some experimental results to verify the validity of
our classification method in Section 4. In Section 5 we
summarize the strength of our method.

2. Proposed Method

2.1. Outline. Our 3D map is composed of simplified polyg-
onal meshes (as shown in Figure 3) and textures mapped on
the meshes. The textures are made of photographs of real
scenes.

In order to reduce rendering cost, it is an efficient stategy
that only visible data from a user’s viewpoint are loaded and
rendered. To implement this, we introduce a representative
viewpoint (RV), which is a discrete point in the 3D map
used for a reference point of rendering. In our rendering
system, we spread RVs all over the map in advance. Using
the Z-buffer algorithm, visible objects from each RV are
determined. When rendering, we first find the RV closest to
a current viewpoint of a user. The objects seen from the RV
on the map are found, and then only the visible objects from
it are rendered.

To further reuduce the rendering cost, we introduce a
method to determine an appropriate resolution for texture.
In the framework of our rendering system, first of all, a set of
images at multiple resolutions is prepared for all the texture
images beforehand. Our strategy is that an appropriate
resolution is found for each texture, and the texture at
the resolution is loaded. The appropriate resolution is
determined for each texture image by two criteria “Level”
and “Class”. The former considers a look from a specific
viewpoint, and the latter evaluates importance of the texture,
which we will explain in Section 3. The entire algorithm is
depicted in Figure 1.

Note that in our setting, different types of objects are
separately saved to different image files, for example, no
image includes a billboard and a window simultaneously.
Since our classification is done for images directly, the
algorithm would fail for images that simultaneously contain
objects to be classified to different classes.

2.2. Selection of Representative Viewpoints. In this step we
select the representative viewpoints (RVs) on the 3D map.
In our framework, we suppose that a user walks on a
street of the 3D map. Only rendering from a ground
level is considered. Although to make the points equally
spaced in the map, one has to define them based on the
geometrical form of terrain data, we adopt the following
simple procedure to reduce its computational complexity, as
we assume the terrain associated with the map is flat.

To select the RVs, the entire map is divided into rectangle
areas, and then we set the points on the grids as candidates
for the RVs. Figure 2 shows an example of the RVs (note
that in actual cases the distance between the lattice points is
shorter, and the points are more densely located).

Next, the points in the area thought to be paths when
the user actually walks through in the 3D map are selected as
the RVs from the candidates on the lattice points in Figure 2.

EURASIP Journal on Image and Video Processing

Preparation processes

| Definition of representative viewpoints |

1

| Finding visible objects |

1

| Determination of texture level |

| Classification of textures |

1

| Preparation of several levels of textures |

| Rendering scene |

Figure 1: Outline of our method.

= F

. =
Fx = F
= =
i B e

: e 7 2 2
A NV
.'.:I"E\ .n" :

= F A"
“'[n‘:, kg] 2

FIGure 2: Candidates for representative viewpoints.

This is done simply by excluding the candidate points in high
places such as the tops of the buildings.

2.3. Determination of Visible Objects. A set of the objects that
are visible from each of the RVs are determined by using the
Z-buffer algorithm [17]. The accuracy of the determination
depends on the resolution of the Z-buffer. Increasing the
resolution, both of the accuracy and the computational cost
increase, and vice versa. We have determined the resolution
of the buffer by trial and error. Note that one needs to do
this processing to a 3D map only once as preprocessing.
For example, Figure 3 depicts the objects judged as “visible”
from the RV denoted by the sphere in the middle. The
determination is done for all the RVs, and we store the
indices of the objects in a list.

2.4. Texture Resolution. In general there is a trade-off
between the quality of the texture and its computational cost
to load and render it. It is necessary to find an appropriate
resolution of the texture that maintains an adequate image
quality and low computational cost in order to enhance the
efficiency in rendering the 3D map. The determination of the
resolution is done for all the textures on the visible objects
from each RV. Our previous work [18] defines the “Level” of

EURASIP Journal on Image and Video Processing

F1GURE 3: Objects visible from a viewpoint.

the importance for each texture, and then based on the level
we select an appropriate resolution for the texture among
several resolutions prepared in advance. We determine the
level by two criteria: (1) the size of the texture on a display
and (2) the “look” of the texture. The size of the rendered
texture is decided by the following three elements.

(i) The distance d between the RV and the surface where
the textures are mapped.

(ii) The area S of the texture in the 3D map.

(iii) The number of repeats r.

The distance d can be found by the barycentric coordi-
nates of the surface where the texture is mapped and the xyz
coordinates of the RV. When the surface is slant to the RV,
the area of the texture is narrower than the one seen from
the front. To take this into account, we first consider a virtual
plane P that is perpendicular to the line connecting center
of the plane and the RV. The area S in the new surface made
by projecting each vertex of the surface, where the texture is
mapped, to the plane P is calculated. Sometimes one texture
is repeatedly mapped on a large surface. The number of the
repeats r can be found by the texture coordinate (s, t). Finally
the size of the texture is estimated by using d, S, and r.

The “look” of the texture is evaluated by (1) the ratio of
sharp edges in the texture and (2) the number of colors used
in the texture. As for texture with sharp edges, one can easily
identify what it is due to its recognizable feature in a real
scene and is often used as markers in some applications such
as a navigation system. Thus in our framework, we consider
that such a texture has high level of importance. Conversely,
for a texture without sharp edges the level of importance
is considered low and low resolution is enough to express
such texture. To distinguish these types of images, we first
introduce the ratio of sharp edges. To actually evaluate the
edges, first we calculate the intensity Y from RGB values:

Y = 0.299R +0.587G + 0.114B. (1)

Then, the edges are detected by applying the Laplacian filter
to Y. Two thresholds t; and ¢, (f; < t;) are prepared, and the
number of pixels whose absolute values exceed each of the
thresholds is counted. Denoting, the numbers of pixels that

exceed f; and £, as ¢(#;) and c(t;) respectively, the ratio of the
sharp edges R, is given by

()
Re= @

The threshold # is used for saliency detection and ¢, control
a weight on images with smooth background. Of course the
two thresholds affect the performance of the algorithm, for
example, the smaller #; put more weights on images with flat
background. However the thresholds do not sensitively affect
a final result. We choose these thresholds by trial and error.
Next we consider the colors of the texture. In this
method, the texture composed of the wide variety of colors
is considered as “less important” texture, since in many
applications including the navigation system, too complex
information seldom plays an important role, and it is
even unrecognizable from a distance. To evaluate the color
complexity, we use the variance 02 of the RGB histograms.
Note that as each bin of the histogram means its frequency, a
low variance indicates that the texture contains a wide variety
of colors and a small number of colors mean a high variance.
Finally we simply combine the measures

V= % - min {BR,, 0*}, (3)
where f3 is a normalization factor. We use this V' for judging
the level of importance of the texture.

3. Texture Classification

In the previous section, we define the value V that is obtained
from the display size and the features of the texture. In
our previous report [18], one of the multiple resolutions
is assigned according to V of each texture, when actually
rendering the 3D map. In the system of [18] , we prepare four
levels of the textures, which are simply created by reducing
the resolution of an original texture by 1/2, 1/4, 1/8. However
with this method, salient texture such as road traffic signs
and unremarkable texture like the walls of buildings are
treated similarly. To address the problem, we introduce a
new LOD control based on the texture classification. We
make it possible to control the resolution more reasonably
based on image features by classifying the texture into some
classes, and then changing the reduction ratio based on the
classes. By using this method it becomes possible to make the
resolution of the image in one class smaller than the one in
an other class even if it has larger V in (3).

3.1. Definition of Class. We first define some classes. Figure 4
shows some examples of the textures that are often used for
walls of buildings. These textures mainly have soft edges, and
their colors are apt to be saturated. As these types of textures
have simple patterns, they rarely have remarkable meaning
like letters and marks. Therefore a low resolution is often
enough to maintain its visual quality in the 3D map.

On the other hand, the textures with sharp edges and
vivid colors shown in Figure 5, unlike in Figure 4, have salient

F1GURre 5: Billboards and directional signs (Class 2).

features, and often contain important information. They are
often used as landmarks in the application of navigation
system. Moreover, a human easily perceives blurring and
ringing artifacts when the texture is rendered at a low
resolution, which results in a decrease of visual quality. Thus
a higher resolution should be allocated for this kind of the
textures.

The texture that contains some sharp and soft edges
simultaneously like in Figure 6 is located between those in
Figures 4 and 5. In other words they are less simple than those
in Figure 4 but also less significant than those in Figure 5. The
low resolution display will somewhat decrease the quality of
such textures. However it will not become a serious problem
since those seldom contain significant features.

Some example of the fourth class is shown in Figure 7.
The textures with minute and complex structures are not
often used as markers and considered less important. And
the visual quality of these images are not very much affected
by reducing the resolution, since a masking effect of such
complex images is higher than smooth images from a
psychophysical point of view [19]. Moreover this kind of

EURASIP Journal on Image and Video Processing

FiGure 6: Walls with sharp edges (Class 3).

FiGURE 7: Detailed texture.

textures is less compressible due to its granularity, which is
inefficient in terms of overall trade-off between data sizes and
data visual quality.

In the end, we define the following four classes.

Class 1: walls with soft edges.

Class 2: texture with some clearly outlined objects with
smooth background.

Class 3: walls with sharp edges.

Class 4: others.

In our framework, we select the resolution based on
these classes besides the levels based on (3). We consider
the case that four levels of textures are prepared, where the
reduction ratios are 1, 1/2, 1/4, and 1/8, and all the textures
are labeled as each of the Levels 1 to 4. Then we classify
all of the original texture to Class 1 to 4. For the textures
in Class 2, their original images are allocated to the Level 1
and 2 and the images shrunk to a half are allocated to other
levels, while for Class 1 the images shrunk to 1/8 are used
for all the levels. By this strategy, efficient LOD control of the
texture is made possible than the case of only taking (3) into
account.

EURASIP Journal on Image and Video Processing

3.2. Classification Method. The K-Nearest Neighbor (K-NN)
algorithm is used to automatically classify a large amount of
textures. In general the selection of feature vectors greatly
affects the accuracy of the classification. Here we introduce
two feature vectors based on colors and edges.

The first feature is color moments of color. The color
moments have been widely used in conventional image
retrieval systems [20, 21]. The first order moment (mean)
roughly measures the appearance of images. Although it has
been proved to be efficient in the retrieval system, in our
application measuring the color difference does not improve
this classification, that is, blue and red signboards should
be equally treated. On the other hand, the second moment
(variance) of the color measures the minuteness and has the
capability of discriminating simplicity and complexity of the
textures. The third (skewness) and forth (kurtosis) moments
may also be applied, but these high-order moments are often
sensitive to small changes and may degrade the performance.
For the reasons stated above, we adopt the second-order
moment for the feature of colors.

The choice of color space is also an important issue.
The drawback of directly using the RGB pixel values is that
the RGB color space lacks perceptual uniformity. Uniform
color spaces such as CIE 1976 L*a*b* and L*u*v* have
been successfully used in some retrieval methods. However
to transform the RGB space to these uniform spaces, the
information of the three primaries and reference white are
needed, since they are device independent. Instead the HSV
is used in our system. The HSV is suitable for our application
since it is easily translated from RGB, and color saturation
plays an important role to evaluate the saliency of images. In
the end, we calculate the variances of H, S, and V channels
with respect to all the pixels, and then the three variances
are adopted as the first feature. As the second element for
the feature vector, we use the energy of edges derived by the
anisotropic diffusion filter [22]. The anisotropic diffusion
filter is an iterative nonlinear lowpass operator that flattens
smooth regions while keeping sharp edges. At each iteration,
one multiplies the weights called “edge-stopping function”
w(-) to the difference between a current pixel I; and its
neighbors, and then it is added to the current pixel value.
The output at each iteration is expressed by

> w(rh. 1) - (. -15), @

{m,n}EN;;

k+1 _ 7k A
=18+ 2

where k is an iteration number and Nj; is a neighborhood of
(i, 7). A is a parameter that controls the smoothing effects. In
[22], they introduce two functions for w(-). We adopt one of
them:

2
wij = e (mi/K) (5)

where K is a parameter that controls the strength of the
edges to remain, and m;; is the intensity of the edge at site
(i, j). When m;; > K, the weight w; ; becomes small, which
reduces the affects of smoothing. Oppositely when m;; <
K, w;; approaches to 1 and it reduces the difference from
its neighbors. Figure 8 illustrates the effect of the anisotropic

A

FIGURE 8: Anisotropic diffusion (left) before filtering and (right)
after filtering.

RV,
Obj; Obj, -+ Objy
Texy.1 Texi.2 Tex1.m

(class, level) (class, level) (class, level)

FiGURE 9: Hierarchical structure of RV list.

diffusion. After the operation, we calculate the difference
between an original image I and its smoothed version 1%,
and then we adopt the energy of the difference as the second
feature F,, that is,

(6)

where M is the number of pixels. The role of the feature is to
take only sharp edges into consideration.

3.3. Rendering. By applying the pre-processing of Sections
2 and 3, all the objects that are visible from each RV are
selected, and the classes and levels of all the texture for the
RVs are determined. Then we construct the list of the RVs.
In the list, each RV has the indices of all the visible objects
and textures that belong to the objects. The class and level
assigned to the texture are listed as in Figure 9.

When walking through the 3D map, a current position
and its closest RV are found, and then loaded are all the
textures at the appropriate resolutions that belong to the
nine RVs, that is, closest RV and eight neighboring RVs. The
reason why the neighboring RVs are loaded is that loading
cost can be reduced and scenes can smoothly change when
the user moves to the area of another RV.

4. Experimental Results

4.1. Precision of Classification. In our experiment, we use
a 3D map with 5140 textures shown in Figure 10. For
learning of the K-NN, 400 textures are used for the four
classes, and we set K = 30. To evaluate the validity of our
classification method, we manually classify the textures to
the four classes randomly select 50 textures in each class, and
then use them as ground truth. Then, we count the numbers

FIGURE 10: 3D map used for our experiment.

of correctly classified textures and calculate the precision of
the classification by

_ ZiRC,‘

P - >
2.iNg,

(7)

where C; is the classes and R¢, and N¢, are the number of
the textures that are correctly classified and are manually
classified as the ground truth (in our experiment N¢, = 50),
respectively. The precision for each class is defined as

Re,
Pec = —.
= Ne, (8)

First of all we verify the validity of our feature vector: the
moment of the color and the edge energy based on the
anisotropic diffusion. The feature vectors in our method are
compared with features that are often used for general image
retrieval [20, 21, 23-25]. Table 1 shows the comparison in
color, as follows.

(i) Var. Hist.: the variance of the color histogram.
(ii) Hist(512): the color histogram quantized to 512 bins.
(iii) CCV: color Coherent Vector proposed in [23].

(iv) Moment: proposed feature vector.

In Table 2 we show the comparison in the features of
edges, as follows.

(i) Sharp edges: the cost in (2) that we use to determine
the texture level.

(ii) Wavelet coeffs.: quantized wavelet coefficients (high
pass outputs of the dyadic wavelet).

(iii) Directionality: the quantized direction of the edges
that is obtained by Sobel filter.

(iv) Anisotropic diffusion: proposed feature vector.

Among the feature vectors in colors, our method gives
the highest score. For the edges, our method and the wavelet
coefficients perform better than others. In Table 3, we show
the precision of the combination of the two feature vectors.
After experiments for every combination of the vectors
in Tables 1 and 2, we have confirmed that our method
outperforms others. Note that although it is possible to
increase the dimension of vectors to add some features, we
have seen little improvement with more vectors.

EURASIP Journal on Image and Video Processing

TaBLE 1: Precision of features on colors.

Class 1 Class 2 Class 3 Class 4 All
Var. Hist. 0.96 0.18 0.60 0.82 0.64
Hist(512) 0.46 0.54 0.12 0.98 0.53
CCV 1.00 0.36 0.42 0.84 0.66
Moment 0.90 0.66 0.66 0.74 0.74

TABLE 2: Precision of features on edges.

Class1 Class2 Class3 Class4 All
Sharp edges 0.92 0.62 0.38 0.52 0.61
Wavelet coeffs 0.92 0.54 0.60 0.76 0.71
Directionality 0.88 0.44 0.34 0.74 0.60

Anisotropic diffusion 0.88 0.66 0.38 0.86 0.70

TABLE 3: Precision of two features.

Class1 Class2 Class3 Class4 All
Moment + Wavelet 0.96 0.76 0.68 0.84 0.81
Hist(512) + Wavelet 0.96 0.40 0.56 0.74 0.67

Moment +
Anisotropic diffusion

0.96 0.92 0.82 1.00 0.93

TaBLE 4: Reduction ratio of texture resolution.

Level 1 Level 2 Level 3 Level 4
Classl 1 1 1/2 1/2
Class2 1/2 1/4 1/8 1/8
Class3 1/8 1/8 1/8 1/8
Class4 1/2 1/4 1/8 1/8

4.2. Data Size and Quality of 3D Map. We investigate the
data size and the quality of the 3D map with and without
our resolution control technique. In this experiment, we set
the reduction ratio of the resolutions as in Table 4, where 1/2
means that the resolution is reduced by half both in rows and
columns. Note that all the texture images are stored in JPEG
format.

Figure 11 illustrates a snapshot of the 3D map from some
viewpoint, in which our resolution control is not applied,
that is, the textures at original resolutions are used. Figure 12
shows the result obtained by our resolution control with the
reduction ratio of Table 4.

We adopt the Visual Difference Predictor (VDP) [26]
to quantitatively evaluate the visual quality. The VDP is an
image assessment tool that models some properties of the
HVS, such as nonlinearity, frequency selectivity, direction
selectivity, and masking. The VDP outputs a probability
map that predicts a probability of error visibility for each
pixel. Thus higher values represent that errors are more
perceivable. The numerical comparison is shown in Table 5
when it is displayed at the resolutions of 1024 X 768 and 640 x
480. The values in VDP75 and VDP95 of this table indicate
the ratio of pixels in percentage that have higher probability
than 75% and 95% in the probability map. Thus only a few
percentages of pixels may be perceptually different. The data

EURASIP Journal on Image and Video Processing

‘/Jﬂ'[l‘ AR wn——

FIGURE 12: Rendering scene with our method.

TasLE 5: VDP and data size.

Original Our method Our method
(2024 x 768) (640 x 480)
Data size (MB) 41.1 10.6 10.6
VDP75 (%) 0 5.17 0
VDP95 (%) 0 2.8 0

size in Table 5 is the total sum of the texture data sizes to load
and render for displaying Figures 11 and 12. In practice 25.8
% of data reduction is achieved. The total number of pixels to
load can also be reduced by 25%. Note that, however, storage
required by the algorithm is larger than the method without
the data reduction by 87.5% since we need to prepare the
textures of the sizes 1/2, 1/4, and 1/8 as well as the original
textures. In the end, it can be seen from Figure 12 and Table 5
that we achieve a rendering quality without any significant
visual loss while the amount of the data to load is reduced to
one quarter. In other rendering examples we have tested, we
have confirmed that our algorithm significantly reduces the
data with little visual differences.

5. Conclusion

In this paper, we proposed the method that controls
texture resolutions based on their features. By allocating low
resolutions to visually unimportant textures, we reduce the
data size to load for rendering without much degradation of
quality.

Acknowledgments

The authors are grateful for the support of a Grant-in-Aid for
Young Sciences (#14750305) of Japan Society for the Promo-
tion of Science, fund from MEXT via Kitakyushu innovative
cluster project, and Kitakyushu IT Open Laboratory.

References

[1] N. Haala, C. Brenner, and K. Anders, “3D urban GIS from
laser altimeter and 2D map data,” in Proceedings of the ISPRS
Commission IIT Symposium on Object Recognition and Scene
Classification from Multispectral and Multisensor Pixels, pp.
339-346, Columbus, Ohio, USA, July 1998.

N. Haala, M. Peter, J. Kremer, and G. Hunter, “Mobile LIDAR

mapping for 3D point cloud collection in urban areas: a

performance test,” in Proceedings of the 21st International

Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences (ISPRS °08), vol. 37, part B5, Commission

5, p. 1119ff, Beijing, China, July 2008.

[3] N. Cornelis, K. Cornelis, and L. Van Gool, “Fast compact city

modeling for navigation pre-visualization,” in Proceedings of

the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR ’06), vol. 2, pp. 1339-1344, New

York, NY, USA, June 2006.

M. Pollefeys, D. Nistér, J.-M. Frahm, et al., “Detailed real-time

urban 3D reconstruction from video,” International Journal of

Computer Vision, vol. 78, no. 2-3, pp. 143-167, 2008.

[5] H. Hoppe, “Progressive meshes,” in Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’96), pp. 99-108, New Orleans, La,
USA, August 1996.

[6] H. Hoppe, “View-dependent refinement of progressive
meshes,” in Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH
’97), pp- 189-198, Los Angeles, Calif, USA, August 1997.

[7] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson,
and R. Huebner, Level of Detail for 3D Graphics, Morgan
Kaufmann, San Francisco, Calif, USA, 2003.

[8] R. Pajarola, “Large scale terrain visualization using the
restricted quadtree triangulation,” in Proceedings of the IEEE
Visualization Conference (Vis ’98), pp. 19-26, Research Trian-
gle Park, NC, USA, October 1998.

[9] E Losasso and H. Hoppe, “Geometry clipmaps: terrain
rendering using nested regular grids,” in Proceedings of the 31st
International Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’04), pp. 769-776, Los Angeles, Calif,
USA, August 2004.

[10] H. Hoppe, “Smooth view-dependent level-of-detail control
and its application to terrain rendering,” in Proceedings of the
IEEE Visualization Conference (Vis 98), pp. 35-42, Research
Triangle Park, NC, USA, October 1998.

[11] P. Cignoni, F. Ganovelli, E. Gobbetti, E. Marton, F. Ponchio,
and R. Scopigno, “BDAM—batched dynamic adaptive meshes
for high performance terrain visualization,” Computer Graph-
ics Forum, vol. 22, no. 3, pp. 505-514, 2003.

[12] P. Cignoni, F. Ganovelli, E. Gobbetti, E Marton, F. Ponchio,
and R. Scopigno, “Interactive out-of-core visualization of
very large landscapes on commodity graphics platform,” in
Proceedings of the 2nd International Conference on Virtual Sto-
rytelling (ICVS °03), pp. 21-29, Toulouse, France, November
2003.

S

(4

(13]

J. Dollner and H. Buchholz, “Continuous level-of-detail
modeling of buildings in 3D city models,” in Proceedings of the
13th ACM International Workshop on Geographic Information
Systems (GIS ’05), pp. 173-181, Bremen, Germany, November
2005.

J. Hu, S. You, and U. Neumann, “Approaches to large-scale
urban modeling,” IEEE Computer Graphics and Applications,
vol. 23, no. 6, pp. 62-69, 2003.

Y. Takase, K. Yano, T. Nakaya, et al., “Visualization of historical
city Kyoto by applying VR and web3D-GIS technologies,”
in Proceedings of the 7th International Symposium on Virtual
Reality, Archaeology and Cultural Heritage (VAST ’06), Nicosia,
Cyprus, October-November 2006.

H. Wang, Y. Wexler, E. Ofek, and H. Hoppe, “Factoring
repeated content within and among images,” ACM Transac-
tions on Graphics, vol. 27, no. 3, pp. 1-10, 2008.

J. D. Foley, A. van Dam, S. K. Feiner, and J. E Hughes,
Computer Graphics: Principles and Practice, Addison-Wesley,
Reading, Mass, USA, 1995.

H. Inatsuka, M. Uchino, and M. Okuda, “Level of detail
control for texture on 3D maps,” in Proceedings of 11th
International Conference on Parallel and Distributed Systems
Workshops (ICPADS ’05), vol. 2, pp. 206-209, Fukuoka, Japan,
July 2005.

B. A. Wandell, Foundations of Vision, Sinauer Associates,
Sunderland, Mass, USA, 1995.

E Long, H. J. Zhang, and D. D. Feng, “Fundamentals of
content-based image retrieval,” in Multimedia Information
Retrieval and Management, D. Feng, W. Siu, and H. Zhang,
Eds., pp. 1-26, Springer, Berlin, Germany, 2003.

M. Flickner, H. Sawhney, W. Niblack, et al., “Query by image
and video content: the QBIC system,” Computer, vol. 28, no. 9,
pp. 23-32, 1995.

P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, no. 7, pp. 629-639, 1990.

G. Pass, R. Zabih, and J. Miller, “Comparing images using
color coherence vectors,” in Proceedings of the 4th ACM
International Multimedia Conference, pp. 65—73, Boston, Mass,
USA, November 1996.

R. Zhang and Z. M. Zhang, “A clustering based approach to
efficient image retrieval,” in Proceedings of the 14th Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI
’02), pp. 339-346, Washington, DC, USA, November 2002.

A. A. Goodrum, “Image information retrieval: an overview of
current research,” Informing Science, vol. 3, no. 2, pp. 63—67,
2000.

S. Daly, “The visible difference predictor: an algorithm for
the assessment of image fidelity,” in Digital Image and Human
Vision, A. B. Watson, Ed., pp. 179-206, MIT Press, Cambridge,
Mass, USA, 1993.

EURASIP Journal on Image and Video Processing

	1. Introduction
	2. Proposed
Method
	3. Texture Classification
	4. Experimental Results
	5. Conclusion
	Acknowledgments
	References

