Hindawi Publishing Corporation

EURASIP Journal on Image and Video Processing
Volume 2008, Article ID 824726, 30 pages
doi:10.1155/2008/824726

Research Article

A Review and Comparison of Measures for
Automatic Video Surveillance Systems

Axel Baumann, Marco Boltz, Julia Ebling, Matthias Koenig, Hartmut S. Loos, Marcel Merkel,

Wolfgang Niem, Jan Karl Warzelhan, and Jie Yu

Corporate Research, Robert Bosch GmbH, D-70049 Stuttgart, Germany

Correspondence should be addressed to Julia Ebling, julia.ebling@de.bosch.com

Received 30 October 2007; Revised 28 February 2008; Accepted 12 June 2008

Recommended by Andrea Cavallaro

Today’s video surveillance systems are increasingly equipped with video content analysis for a great variety of applications.
However, reliability and robustness of video content analysis algorithms remain an issue. They have to be measured against
ground truth data in order to quantify the performance and advancements of new algorithms. Therefore, a variety of measures
have been proposed in the literature, but there has neither been a systematic overview nor an evaluation of measures for
specific video analysis tasks yet. This paper provides a systematic review of measures and compares their effectiveness for specific
aspects, such as segmentation, tracking, and event detection. Focus is drawn on details like normalization issues, robustness, and
representativeness. A software framework is introduced for continuously evaluating and documenting the performance of video
surveillance systems. Based on many years of experience, a new set of representative measures is proposed as a fundamental part

of an evaluation framework.

Copyright © 2008 Axel Baumann et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The installation of videosurveillance systems is driven by the
need to protect privateproperties, and by crime prevention,
detection, and prosecution, particularly for terrorism in
public places. However, the effectiveness of surveillance
systems is still disputed [1]. One effect which is thereby often
mentioned is that of crime dislocation. Another problem is
that the rate of crime detection using surveillance systems is
not known. However, they have become increasingly useful
in the analysis and prosecution of known crimes.

Surveillance systems operate 24 hours a day, 7 days a
week. Due to the large number of cameras which have to
be monitored at large sites, for example, industrial plants,
airports, and shopping areas, the amount of information to
be processed makes surveillance a tedious job for the security
personnel [1]. Furthermore, since most of the time video
streams show ordinary behavior, the operator may become
inattentive, resulting in missing events.

In the last few years, a large number of automatic real-
time video surveillance systems have been proposed in the
literature [2] as well as developed and sold by companies.

The idea is to automatically analyze video streams and alert
operators of potentially relevant security events. However,
the robustness of these algorithms as well as their perfor-
mance is difficult to judge. When algorithms produce too
many errors, they will be ignored by the operator, or even
distract the operator from important events.

During the last few years, several performance evaluation
projects for video surveillance systems have been undertaken
[3-9], each with different intentions. CAVIAR [3] addresses
city center surveillance and retail applications. VACE [9]
has a wide spectrum including the processing of meeting
videos and broadcasting news. PETS workshops [8] focus
on advanced algorithms and evaluation tasks like multiple
object detection and event recognition. CLEAR [4] deals with
people tracking and identification as well as pose estimation
and face tracking while CREDS workshops [5] focus on event
detection for public transportation security issues. ETISEO
[6] studies the dependence between video characteristics
and segmentation, tracking and event detection algorithms,
whereas i-LIDS [7] is the benchmark system used by the UK
Government for different scenarios like abandoned baggage,
parked vehicle, doorway surveillance, and sterile zones.

EURASIP Journal on Image and Video Processing

Decisions on whether any particular automatic video
surveillance system ought to be bought; objective quality
measures, such as a false alarm rate, are required. This is
important for having confidence in the system, and to decide
whether it is worthwhile to use such a system. For the design
and comparison of these algorithms, on the other hand, a
more detailed analysis of the behavior is needed to facilitate
a feeling of the advantages and shortcomings of different
approaches. In this case, it is essential to understand the
different measures and their properties.

Over the last years, many different measures have been
proposed for different tasks; see, for example, [10-15].
In this paper, a systematic overview and evaluation of
these measures is given. Furthermore, new measures are
introduced, and details like normalization issues, robust-
ness, and representativeness are examined. Concerning the
significance of the measures, other issues like the choice
and representativeness of the database used to generate the
measures have to be considered as well [16].

In Section 2, ground truth generation and the choice of
the benchmark data sets in the literature are discussed. A
software framework to continuously evaluate and document
the performance of video surveillance algorithms using the
proposed measures is presented in Section 3. The survey of
the measures can be found in Section 4 and their evaluation
in Section 5, finishing with some concluding remarks in
Section 6.

2. RELATED WORK

Evaluating performance of video surveillance systems
requires a comparison of the algorithm results (ARs) with
“optimal” results which are usually called ground truth
(GT). Before the facets of GT generation are discussed
(Section 2.2), a strategy which does not require GT is
put forward (Section 2.1). The choice of video sequences
on which the surveillance algorithms are evaluated has a
large influence on the results. Therefore, the effects and
peculiarities of the choice of the benchmark data set are
discussed in Section 2.3.

2.1. Evaluation without ground truth

Erdem et al. [17] applied color and motion features instead
of GT. They have to make several assumptions such as object
boundaries always coinciding with color boundaries. Fur-
thermore, the background has to be completely stationary or
moving globally. All these assumptions are violated in many
real world scenarios, however, the tedious generation of GT
becomes redundant. The authors state that measures based
on their approach produce comparable results to GT-based
measures.

2.2. Ground truth

The requirements and necessary preparations to generate GT
are discussed in the following subsections. In Section 2.2.1,
file formats for GT' data are presented. Different GT gen-

eration techniques are compared in Section 2.2.2, whereas
Section 2.2.3 introduces GT annotation tools.

2.2.1. File formats

For the task of performance evaluation, file formats for GT
data are not essential in general but a common standardized
file format has strong benefits. For instance, these include
the simple exchange of GT data between different groups
and easyintegration. A standard file format reduces the effort
required to compare different algorithms and to generate GT
data. Doubtlessly, a diversity of custom file formats exists
among research groups and the industry. Many file formats
in the literature are based on XML. The computer vision
markup language (CVML) has been introduced by List and
Fisher [18] including platform independent implementa-
tions. The PETS metric project [19] provides its own XML
format which is used in the PETS workshops and challenges.
The ViPER toolkit [20] employs another XML-based file
format. A common, standardized, widely used file format
definition providing a variety of requirements in the near
future are doubtful as every evaluation program in the past
introduced new formats and tools.

2.2.2. Ground truth generation

A vital step prior to the generation of GT is the defini-
tion of annotation rules. Assumptions about the expected
observations have to be made, for instance, how long does
luggage have to be left unattended before an unattended
luggage event is raised. This event might, for example, be
raised as soon as the distance between luggage and person
in question reaches a certain limit, or when the person who
left the baggage leaves the scene and does not return for at
least sixty seconds. ETISEO [6] and PETS [8] have made their
particular definitions available on their websites. As with
file formats, a common annotation rule definition does not
exist. This complicates the performance evaluation between
algorithms of different groups.

Three types of different approaches are described in the
literature to generate GT. Semiautomatic GT generation
is proposed by Black et al. [11]. They incorporate the
video surveillance system to generate the GT. Only tracks
with low object activity, as might be taken from recordings
during weekends, are used. These tracks are checked for
path, color, and shape coherence. Poor quality tracks are
removed. The accepted tracks build the basis of a video
subset which is used in the evaluation. Complex situations
such as dynamic occlusions, abandoned objects, and other
real-world scenarios are not covered by this approach. Ellis
[21] suggests the use of synthetic image sequences. GT
would then be known a priori, and tedious manual labeling
is avoidable. Recently, Taylor et al. [22] propose a freely
usable extension of a game engine to generate synthetic
video sequences including pixel accurate GT data. Models
for radial lens distortion, controllable pixel noise levels, and
video ghosting are some of the features of the proposed
system. Unfortunately, even the implementation of a simple
screenplay requires an expert in level design and takes a lot

Axel Baumann et al.

of time. Furthermore, the applicability of such sequences to
real-world scenarios is unknown. A system which works well
on synthetic data does not necessarily work equally well on
real-world scenarios.

Due to the limitations of the previously discussed
approaches, the common approach is the tedious labor-
intensive manual labeling of every frame. While this task
can be done relatively quickly for events, a pixel accurate
object mask for every frame is simply not feasible for
complete sequences. A common consideration is to label
on a bounding box level. Pixel accurate labeling is done
only for predefined frames, like every 60th frame. Young
and Ferryman [13] state that different individuals produce
different GT data of the same video. To overcome this
limitation, they suggest to let multiple humans label the
same sequence and use the “average” of their results as
GT. Another approach is labeling the boundaries of object
masks as an own category and exclude this category in the
evaluation [23]. List et al. [24] let three humans annotate
the same sequence and compared the result. About 95%
of the data matched. It is therefore unrealistic to demand
a perfect match between GT and AR. The authors suggest
that when more than 95% of the areas overlap, then the
algorithm should be considered to have succeeded. Higher
level ground truth like events can either be labeled manually,
or be inferred from a lower level like frame-based labeling of
object bounding boxes.

2.2.3. Ground truth annotation tools

A variety of annotation tools exist to generate GT data
manually. Commonly used and freely available is the ViPER-
GT [20] tool (see Figure 1), which has been used, for
example, in the ETISEO [6] and the VACE [9] projects. The
CAVIAR project [3] used an annotation tool based on the
AviTrack [25] project. This tool has been adapted for the
PETS metrics [19]. The ODViS project [26] provides its own
GT tool. All of the above-mentioned GT annotation tools
are designed to label on a bounding box basis and provide
support to label events. However, they do not allow the user
to label the data at a pixel-accurate level.

2.3. Benchmark data set

Applying an algorithm to different sequences will produce
different performance results. Thus, it is inadequate to
evaluate an algorithm on a single arbitrary sequence. The
choice of the sequence set is very important for the meaning-
ful evaluation of the algorithm performance. Performance
evaluation projects for video surveillance systems [3-9]
therefore provide a benchmark set of annotated video
sequences. However, the results of the evaluation still depend
heavily on the chosen benchmark data set.

The requirements of the video processing algorithms
depend heavily on the type of scene to be processed.
Examples for different scenarios range from sterile zones
including fence monitoring, doorway surveillance, parking
vehicle detection, theft detection, to abandoned baggage
in crowded scenes like public transport stations. For each

Cae || o || oustan

£ 4956 names| Mark

v
il
g

rrrrrrr

FIGURE 1: Freely available ground truth annotation tool Viper-GT
[20].

of these scenarios, the surveillance algorithms have to be
evaluated separately. Most of the evaluation programs focus
on only a few of these scenarios.

To gain more granularity, the majority of these evaluation
programs [3-5, 8, 9] assign sequences to different levels of
difficulty. However, they do not take the step to declare due
to which video processing problems these difficulty levels
are reached. Examples for challenging situations in video
sequences are a high-noise level, weak contrasts, illumination
changes, shadows, moving branches in the background, the
size and amount of objects in the scene, and different weather
condition. Further insight into the particular advantages and
disadvantages of different video surveillance algorithms is
hindered by not studying these problems separately.

ETISEO [6], on the other hand, also studies the
dependencies between algorithms and video characteristics.
Therefore, they propose an evaluation methodology that
isolates video processing problems [16]. Furthermore, they
define quantitative measures to define the difficulty level of
a video sequence with respect to the given problem. The
highest difficulty level for a single video processing problem
an algorithm can cope with can thus be estimated.

The video sequences used in the evaluations are typically
in the range of a few hundred to some thousand frames. With
a typical frame rate of about 12 frames per second, a sequence
with 10000 frames is approximately 14 minutes long. Com-
paring this to the real-world utilization of the algorithms
which requires 24/7 surveillance including the changes from
day to night, as well as all weather conditions for outdoor
applications, raises the question of how representative the
short sequences used in evaluations really are. This question
is especially important as many algorithms include a learning
phase and continuously learn and update the background to
cope with the changing recording conditions [2]. i-LIDS [7]
is the first evaluation to use long sequences with hours of
recording of realistic scenes for the benchmark data set.

3. EVALUATION FRAMEWORK

To control the development of a video surveillance system,
the effects of changes to the code have to be determined and

EURASIP Journal on Image and Video Processing

Resync sources

PC1 \L—\L
master

Local resync

Local resync
Data
base
Start testenv

T

Compile

Consist check

2
XML HTML e e Process data
results [l logfiles \l/—\l/

Consist check

Compile

\

HTML XML
logfiles @ results

\L—I

Calculate measures

/

PostGreSQL database server

HTML-embedded
gnuplot charts

o IM‘ g!}?ﬂ#é

F1GURE 2: Schematic workflow of the automatic test environment.

GT AR
CVML input CVML input

|

Calculation of frame-wise
measures

Segmentation

Detection

Localization

Classification

Calculation of global
measures

Tracking

Event detection

Alarm

Frame-wise

output Global output

Ficure 3: Workflow of the measure tool. The main steps are
the reading of the data to compare, the determination of the
correspondences between AR and GT objects, the calculation of the
measures, and finally the output of the measure values.

evaluated regularly. Thereby modifications to the software
are of interest as well as changes to the resulting performance.
When changing the code, it has to be checked whether
the software still runs smoothly and stable, and whether

changes of the algorithms had the desired effects to the
performance of the system. If, for example, after changing
the code no changes of the system output are anticipated, this
has to be verified with the resulting output. The algorithm
performance, on the other hand, can be evaluated with the
measures presented in this paper.

As the effects of changes of the system can be quite
different in relation to the processed sequences, preferably a
large number of different sequences should be used for the
examination. The time and effort of conducting numerous
tests for each code change by hand are much too large,
which leads to assigning these tasks to an automatic test
environment (ATE).

In the following subsections, such an evaluation frame-
work is introduced. A detailed system setup is described
in Section 3.1, and the corresponding system work flow is
presented in Section 3.2. In Section 3.3, the computation
framework of the measure calculation can be found. The
preparation and presentation of the resulting values are
outlined in Section 3.4. Figure 2 shows an overview of the
system.

3.1. System setup

The system consists of two computers operating in synchro-
nized work flow: a Windows Server system acting as the
slave system and a Linux system as the master (see Figure 2).
Both systems feature identical hardware components. They
are state-of-the-art workstations with dual quad-core Xeon
processors and 32 GB memory. They are capable of simul-
taneously processing 8 test sequences under full usage of
processing power. The sources are compiled with commonly
used compilers GCC 4.1 on the Linux system and Microsoft
Visual Studio 8 on the Windows system. Both systems are
necessary as the development is either done on Windows
or Linux and thus consistency checks are necessary on both
systems.

Axel Baumann et al.

3.2. Work flow

The ATE permanently keeps track of changes to the source
code version management. It checks for code changes and
when these occur, it starts with resyncing all local sources
to their latest versions and compiling the source code. In
the event of compile errors of essential binaries preventing
a complete build of the video surveillance system, all
developers are notified by an email giving information about
the changes and their authors. Starting the compile process
on both systems provides a way of keeping track of compiler-
dependent errors in the code that might not attract attention
when working and developing with only one of the two
systems.

At regular time intervals (usually during the night,
when major code changes have been committed to the
version management system), the master starts the algorithm
performance evaluation process. After all compile tasks
completed successfully, a set of more than 600 video test
sequences including subsets of the CANDELA [27], CAVIAR
[3], CREDS [5], ETISEO [6], i-LIDS [7], and PETS [8]
benchmark data sets is processed by the built binaries on
both systems. All results are stored in a convenient way for
further evaluation.

After all sequences have been processed, the results
of these calculations are evaluated by the measure tool
(Section 3.3). As this tool is part of the source code, it is also
updated and compiled for each ATE process.

3.3. Measure tool

The measure tool compares the results from processing
the test sequences with ground truth data and calculates
measures describing the performance of the algorithm.
Figure 3 shows the workflow. For every sequence, it starts
with reading the CVML [18] files containing the data to
be compared. The next step is the determination of the
correspondences between AR and GT objects, which is
done frame by frame. Based on these correspondences, the
frame-wise measures are calculated and the values stored
in an output file. After processing the whole sequence, the
frame-wise measures are averaged and global measures like
tracking measures are calculated. The resulting sequence-
based measure values are stored in a second output file.

The measure tool calculates about 100 different mea-
sures for each sequence. Taking into account all included
variations, their number raises to approximately 300. The
calculation is done for all sequences with GT data, which
are approximately 300 at the moment. This results in about
90000 measure values for one ATE run not including the
frame-wise output.

3.4. Preparation and presentation of results

In order to easily access all measure results, which represent
the actual quality of the algorithms, they are stored in a
relational database system. The structured query language
(SQL) is used as it provides very sophisticated ways of
querying complex aspects and correlations between all

measure values associated with sequences and the time they
were created.

In the end, all results and logging information about
success, duration, problems, or errors of the ATE process are
transferred to a local web server that shows all this data in an
easily accessible way including a web form to select complex
parameters to query the SQL database. These parts of the
ATE are scripted processes implemented in Perl.

When selecting query parameters for evaluating mea-
sures, another Perl/CGI-script is being used. Basically, it
compares the results of the current ATE pass with a previ-
ously set reference version which usually represents a certain
point in the development where achievements were made
or an error-free state had been reached. The query provides
an evaluation of results for single selectable measures over a
certain time in the past, visualizing data by plotted graphs
and emphasizing various deviations between current and
reference versions and improvements or deteriorations of
results.

The ATE was build in 2000 and since then, it runs
nightly and whenever the need arises. In the last seven years,
this accumulated to over 2000 runs of the ATE. Started
with only the consistency checks and a small set of metrics
without additional evaluations, the ATE grew to a powerful
tool providing meaningful information presented in a well
arranged way. Lots of new measures and sequences have
been added over time so that new automatic statistical
evaluations to deal with the mass of produced data had to be
integrated. Further information about statistical evaluation
can be found in Section 5.4.

4. METRICS

This section introduces and discusses metrics for a number
of evaluation tasks. First of all, some basic notations and
measure equations are introduced (Section 4.1). Then, the
issue of matching algorithm result objects to ground truth
objects and vice versa is discussed (Section 4.2). Structuring
of the measures themselves is done according to the differ-
ent evaluation tasks like segmentation (Section 4.3), object
detection (Section 4.4), and localization (Section 4.5), track-
ing (Section 4.6), event detection (Section 4.7), object clas-
sification (Section 4.8), 3D object localization (Section 4.9),
and multicamera tracking (Section 4.10). Furthermore, sev-
eral issues and pitfalls of aggregating and averaging measure
values to obtain single representative values are discussed
(Section 4.11).

In addition to metrics described in the literature, custom
variations are also listed, and a selection based on their
usefulness is made. There are several criteria influencing
the choice of metrics to be used, including the use of only
normalized metrics where a value of 0 represents the worst
and a value of 1 the best result. This normalization provides
a chance for unified evaluations.

4.1. Basic notions and notations

Let GT denote the ground truth and AR the result of the
algorithm. True positives (TPs) relate to elements belonging

EURASIP Journal on Image and Video Processing

TaBLE 1: Frequently used notations. (a) basic abbreviations. (b)
indices to distinguish different kinds of result elements. An element
could be a frame, a pixel, an object, a track, or an event. (c) some
examples.

(a) Basic abbreviations

GT Ground truth element
AR Algorithm result element

Fp False positive, an element present in AR, but not in GT

FN False negative, an element present in GT, but not in AR
TP True positive, an element present in GT and AR

TN True negative, an element neither present in GT nor AR
number of

- Left element assigned to right element

(b) Subscripts to denote different elements

Element Index Used counter
Frame f j
Pixel p k
Object 0)
Track tr i
Event e m
(c) Examples
4GT, Number of objects in ground
truth
#GT; Number of frames containing at

least one GT,

Number of GT tracks which are

#(GTe ~ AR« (i) assigned to the ith AR track

to both GT and AR. False positive (FP) elements are those
which are set in AR but not in GT. False negatives (FNs), on
the other hand, are elements in the GT which are not in the
AR. True negatives (TNs) occur neither in the GT nor in the
AR. Please note that while true negative pixels and frames
are well defined, it is not clear what a true negative object,
track, or event should be. Depending on the type of regarded
element—a frame, a pixel, an object, a track, or an event—a
subscript will be added (see Table 1).

The most common measures precision, sensitivity
(which is also called recall in the literature), and F-score
count the number of TP, FP, and FN. They are used in
small variation for many different tasks and will thus occur
many more times in this paper. For clarity and reference, the
standard formulas are presented here. Note that counts are
represented by a #.

Precision (Prec)

Measures the number of false positives:

#TP
Prec = b+ #rp° 1)

Sensitivity (Sens)

Measures the number of false negatives. Synonyms in
literature are true positive rate (TPR), recall and hit rate
#TP

SenS = bt #EN)

Specificity (Spec)

The number of false detections in relation to the total
number of negatives. Also called true negative rate (TNR)

#IN

#TN + #FP’ 3

Spec =

Note that Spec should only be used for pixels or frame
elements as true negatives are not defined otherwise.

False positive rate (FPR)

The number of negative instances that were erroneously
reported as being positive:

#FP

FPR = SFpr#TN ~

1 — Spec. (4)

Please note that true negatives are only well defined for pixel
or frame elements.

False negative rate (FNR)

The number positive instances that were erroneously
reported as negative:

#FN

FNR = SEN+#TP ~

1 — Sens. (5)

F-Measure

Summarizes Prec and Sens by weighting their effect with the
factor a. This allows the F-Measure to emphasize one of the
two measures depending on the application

1
F-M =
casure = . (1/Sens) + (1 — «)-(1/Prec) (6)
- #TP
" ¥TP+ a-#FN + (1 — a)-#FP’
F-Score

In many applications the Prec and Sens are of equal
importance. In this case, « is set to 0.5 and called F-Score
which is in this case the the harmonic mean of Prec and Sens:
2-Preceg - Sensseg #TP
F-Score = = .
Preceeg + Sensgeg #TP + (1/2)(#FN + #FP)

(7)

Usually, systems provide ways to optimize certain aspects
of performance by using an appropriate configuration or

Axel Baumann et al.

parameterization. One way to approach such an optimiza-
tion is the receiver operation curve (ROC) optimization [28]
(Figure 4). ROCs graphically interpret the performance of
the decision-making algorithm with regard to the decision
parameter by plotting TPR (also called Sens) against FPR.
Each point on the curve is generated for the range of decision
parameter values. The optimal point is located on the upper
left corner (0, 1) and represents a perfect result.

As Lazarevic-McManus et al. [29] point out, an object-
based performance analysis does not provide essential true
negative objects, and thus ROC optimization cannot be used.
They suggest to use the F-Measure when ROC optimization
is not appropriate.

4.2. Object matching

Many object- and track-based metrics, as will be presented,
for example, in Sections 4.4, 4.5, and 4.6, assign AR objects
to specific GT objects. The method and quality used for this
matching greatly influence the results of the metrics based on
these assignments.

In this section, different criteria found in the literature to
fulfill the task of matching AR and GT objects are presented
and compared using some examples. First of all, assignments
based on evaluating the objects centroids are described
in Section 4.2.1, then the object area overlaps and other
matching criteria based on this are presented in Section 4.2.2.

4.2.1. Object matching approach based on centroids

Note that distances are given within the definition of the
centroid-based matching criteria. The criterion itself is
gained by applying a threshold to this distance. When the
distances are not binary, using thresholds involves the usual
problems with choosing the right threshold value. Thus,
the threshold should be stated clearly when talking about
algorithm performance measured based on thresholds.

Let bgr be the bounding box of an GT object with
centroid J—CGT and let dgr be the length of the bounding box’
diagonal of the GT object. Let bag and X g be the bounding
box and the centroid of an AR object.

Criterion 1. A first criterion is based on the thresholded
Euclidean distance between the object’s centroids, and can
be found for instance in [14, 30]

Dy = | Xgr — Xar|. (8)

Criterion 2. A more advanced version is given by normaliz-
ing the diagonal of the GT object’s bounding box:

Xgr — X
NLEEE M .
GT
Another method to determine assignments between GT
and AR objects checks if the centroid ;i of one bounding box

b; lies inside the other. Based on this idea, different criteria
can be derived.

7
Criterion 3.
D; = 0: Xxgr is inside bag, (10)
1: else
Criterion 4 (e.g., [30]).
D, = 0: Xxar is inside bgr, (11)
1: else

Criterion 5.

Ds = 1? leT is inside bag,or Xar is inside bgr, (12)
: else.

Criterion 6 (e.g., [30]).
De — 0: ;CGT is inside EAR, and ;CAR is inside BGT,
¥ 1: else.
(13)

Criterion 7. An advancement of the Criterion 6 uses the
distances dgrar and darcr from the centroid of one object
to the closest point of the bounding box of the other object
[10]. The distance is 0 if Criterion 6 is fulfilled,

0: Xgr 1is inside bag,

D7 = and xR is inside bgr,

min(dgrar, darcr) @ else,
(14)

where dj is the distance from the centroid Xk to the closest

point of the bounding box b1 (see Figure 5).

Criterion 8. A criterion similar to Criterion 7 but based on
Criterion 5 instead of Criterion 6:

0: Xgr is inside bag,

Dg = or Xg is inside EGT, (15)

min(dgrar, dargr) @ else.

Criterion 9. Using the minimal distance affects some draw-
backs, which will be discussed later, we tested another
variation based on Criterion 7, which uses the average of the
two distances:

0: Xgr 1s inside bar,

Dy = and ;CAR is inside EGT, (16)
dcrar +darcr

Ise.
5 else

The above-mentioned methods to perform matching
between GT and AR objects via the centroid’s position are
relatively simple to implement and incur low calculation
costs. Methods using a distance threshold have the disadvan-
tage of being influenced by the image resolution of the video

EURASIP Journal on Image and Video Processing

True positive rate

False positive rate

FIGURE 4: One way to approach an optimization of an algorithm
is the receiver operation curve (ROC) optimization [28, 31].
ROC:s graphically interpret the performance of the decision making
algorithm with regard to the decision parameter by plotting TPR
(also called Sens) against FPR. The points OP; and OP, show two
examples of possible operation points.

bar b Ar
d GT, AR
% .
b AR _ XGT X AR

d AR, GT X
- x

o Gl

bcr

F1GURE 5: Bounding box distances ;IGT,AR and (}AR,GT in two simple
examples. Blue bounding boxes relate to GT, whereas orange
bounding boxes relate to AR. A bounding box is quoted by b, the
centroid of the bounding box is quoted by X.

input, if the AR or GT data is not normalized to a specified
resolution. One way to avoid this drawback is to append a
normalization factor as shown in Criterion 2 or to check only
whether a centroid lies inside an area or not. Criteria based
on the distance from the centroid of one object to the edge of
the bounding box of the other object instead of the Euclidean
distance between the centroids have the advantage that there
are no skips in split and merge situations.

However, the biggest drawback of all above-mentioned
criteria is their inability to perform reliable correspondences
between GT and AR objects in complex situations. This
implies undesirable results in split and merge situations
as well as permutations of assignments in case of objects
occluding each other. These problems will be clarified by
means of some examples below. The examples show diverse
constellations of GT and AR objects, where GT objects are
represented by bordered bounding boxes with a cross as
centroid and the AR objects by frameless filled bounding

3 4

1 2

TP FN FP TP FN FP TP FN FP

e X e

TP EN

leo]

P

O 0N U W =
—_ o = W W
MO MNNONONO
co~m—~moocooo
O 0N U W =
OCWOoO o WO WO
MO MNNONONO
—_O O O = O
O 0N U W N =
—_— = = W W = W W
coocococoocooo
MO MNMNOoOOoONO O
O 0N U W =
ON OO NNO NN
=TI I I =)
MOoOMNMNOoOOoONOO

Ficure 6: Examples for split and merge situations. The GT object
bounding boxes are shown in blue with a cross at the object
center and the AR in orange with a black dot at the object center.
Depending on the matching Criteria (1-9), different numbers of
TP, FN, and FP are computed for the chosen situations.

boxes with a dot as centroid. Under each constellation, a table
lists the numbers of TP, FN, and FP for the different criteria.

Example 1 (see Figure 6) shows a typical merge situation
in which a group of three objects is merged in one blob. The
centroid of the middle object exactly matches the centroid
of the AR bounding box. Regarding the corresponding
table, one can see that Criterion 1, Criterion 3, Criterion
5, and Criterion 8 rate all the GT objects as detected and,
in contrast, Criterion 4 and Criterion 6 only the middle.
Criterion 1 would also results in the latter when the distance
from the outer GT centroids to the AR centroid exceeds the
defined threshold. Furthermore, Criterion 7 and Criterion 9
penalize the outer objects, depending on the thresholds, if
they are successful detections.

Example 2 (see Figure 6) represents a similar situation
but with only two objects located in a certain distance from
each other. The AR merges these two GT objects, which could
be caused for example by shadows. Contrary to Example 1,
the middle of the AR bounding box is not covered by a GT
bounding box, so that Criterion 4 and Criterion 6 are not
fulfilled, hence it is penalized with 2 FN and one FP. Note
that the additional FP causes a worse performance measure
than when the AR contained no object.

Problems in split situations follow a similar pattern.
Imagine a scenario such as Example 3 (see Figure 6): a vehicle
with 2 trailers appearing as 1 object in GT. But the system
detects 3 separate objects. Or Example 4 (see Figure 6): a
vehicle with only 1 trailer is marked as 2 separate objects. In
these cases, TPs do not represent the number of successfully
detected GT objects as usual, but successfully detected AR
objects.

The fifth example (see Figure 7) shows the scenario of a
car stopping, a person opening the door and getting off the
vehicle. Objects to be detected are therefore the car and the
person. Recorded AR shows, regarding the car, a bounding
box being slightly too large (due to its shadow), and for the
person a bounding box that stretches too far to the left. This
typically occurs due to the moving car door, which cannot
be separated from the person by the system. This example
demonstrates how, due to identical distance values between

Axel Baumann et al.

T

Ficure 7: Example 5: person getting out of a car. The positions of
the object centroids lead to assignment errors as the AR persons
centroid is closer to the centroid of the car in the GT and vice versa.
The GT object bounding boxes are shown in blue with a cross at the
object center and the AR in orange with a black dot at the object
center.

GT-AR object combinations, the described methods lack a
decisive factor or even result in misleading distance values.
The latter is the case, for example, Criterion 1 and Criterion
2, because the AR centroid of the car is closer to the centroid
of the GT person, rather than the GT car, and vice versa.

Criterion 3 and Criterion 5 are particularly unsuitable,
because there is no way to distinguish between a comparably
harmless merge and cases where the detector identifies large
sections of the frame as one object due to global illumination
changes. Criterion 4 and Criterion 6 are rather generous
when the AR object covers only fractions of the GT object.
This is because a GT object is rated to be detected as soon as
a smaller AR object (according to the size of the GT object)
covers it.

Figure 8 illustrates the drawback of Criterion 7, Criterion
8, and Criterion 9. This is due to the fact that for the
human eye quality wise different detection results cannot be
distinguished by the given criteria. This leads to problems
especially when multiple objects are located very close to
each other and distances of possible GT/AR combinations
are identical. Figure 8 shows five different patterns of one
GT and one AR object as well as the distance values for
the three chosen criteria. In the table in Figure 8, it can be
seen that only Criterion 9 allows a distinct discrimination
between configuration 1 and the other four. Furthermore,
it can be seen that using Criterion 7, configuration 2 gets a
worse distance value than configuration 3. Aside these two
cases, the mentioned criteria are incapable of distinguishing
between the five paradigmatic structures.

The above-mentioned considerations demonstrate the
capability of the centroid-based criteria to represent simple
and quick ways of assigning GT and AR objects to each
other in test sequences with discrete objects. However, in
complex problems such as occlusions or split and merge,
their assignments are rather random. Thus, the content of
the test sequence influences the quality of the evaluation
results. While replacing object assignments has no effect on
the detection performance measures, it impacts strongly on
the tracking measures, which are based on these assignments,
to.

9
1 2 5
» X o
3 4 e
* e X
Criterion 1 2 3 4 5
7 0 d72 0 =0 =0
8 0 0 0 ~0 ~0
9 0 dyp dy~dy doy=~dos dos=do

FiGURrE 8: Drawbacks of matching Criterion 7 to Criterion 9. Five
different configurations are shown to demonstrate the behavior of
these criteria. The GT object bounding boxes are shown in blue
with a cross at the object center and the AR in orange with a
black dot at the object center. The distances dyitcont Of possible GT-
AR combinations as computed by the Criterion 7 to Criterion 9
are either zero or identical to the distances of the other examples
through these distances are visually different.

At

\

i

A i
oo
T

7

AN
A\

M

NN

FI1GURE 9: The area distance computes the overlap of the GT and AR
bounding boxes.

4.2.2. Object matching based on object area overlap

A reliable method to determine object assignments is
provided by area distance calculation based on overlapping
bounding box areas (see Figure 9).

Frame detection accuracy (FDA) [32]

Computes the ratio of the spatial intersection between two
objects and their spatial union for one single frame:

overlap(GT, AR)
(1/2) (#GT, + #AR,)’

FDA = (17)

where again #GT, is the number of GT objects for a given
frame (#AR, accordingly). The overlap ratio is given by
#(AR,~GT,

S5 " Acr(l) 0 Axr(D) |

overlap(GT,AR) = = At u ARO[

(18)

Here, #(AR, — GT,) is the number of mapped objects in
frame ¢, by mapping objects according to their best spatial
overlap (which is a symmetric criterion and thus #(AR, —
GT,) = #(GT, — AR,)), Agr is the ground truth object
area and Aagr is the detected object area by an algorithm
respectively.

10

EURASIP Journal on Image and Video Processing

Overlap ratio thresholded (ORT) [32]

This metric takes into account a required spatial overlap
between the objects. The overlap is defined by a minimal
threshold:

ORT = #(AREGT”) OT (Acr(1), Aar(D))
= |Aecr()uAR(D |’
. |A1 N A, |
Ayl UA,|, if ———— > threshold,
OT(A},A;) = Ao 42| A]
|A1 NA,|, otherwise.

(19)

Again, #(AR, — GT,) is the number of mapped objects in
frame ¢, by mapping objects according to their best spatial
overlap, Agr is the ground truth object area and Axg is the
detected object area by an algorithm.

Sequence frame detection accuracy (SFDA) [32]

Is a measure that extends the FDA to the whole sequence. It
uses the FDA for all frames and is normalized to the number
of frames where at least one GT or AR object is detected in
order to account for missed objects as well as false alarms:

#frames .
i FDA
SFDA = Z"l,) : .
#{frames| (#GT,(j) > 0) v (#AR,(j) > 0)}

(20)

In a similar approach, [33] calculates values for recall
and precision and combines them by a harmonic mean in
the F-measure for every pair of GT and AR objects. The
F-measures are then subjected to the thresholding step and
finally leading to false positive and false negative rates. In the
context of the ETISEO benchmarking, Nghiem et al. [34]
tested different formulas for calculating the distance value
and come to the conclusion that the choice of matching
functions does not greatly affect the evaluation results. The
dice coefficient function (D1) is the one chosen, which leads
to the same matching function [33] used by the so-called F-
measure.

First of all, the dice coefficient is calculated for all GT and
AR object combinations:

_ 2-#(GT, N AR,)

bl = #GT, + #AR, 1)

After thresholding, the assignment commences, in which
no multiple correspondences are allowed. So in case of
multiple overlaps, the best overlap becomes a correspon-
dence, turning unavailable for further assignments. Since this
approach does not feature the above-mentioned drawbacks,
we decided to determine object correspondences via the
overlap.

4.3. Segmentation measures

The segmentation step in a video surveillance system is
critical as its results provide the basis for successive steps

TN

FP TR

GT

Ficure 10: The difference in evaluating pixel accurate or using
object bounding boxes. Left: pixel accurate GT and AR and their
bounding boxes. Right: bounding box-based true positives (TPs),
false positives (FPs), true negatives (TNs), and false negatives (FNs)
are only an approximation of the pixel accurate areas.

and thus influence the performance in subsequent steps.
The evaluation of segmentation quality has been an active
research topic in image processing, and various measures
have been proposed depending on the application of the
segmentation method [35, 36]. In the considered context of
evaluating video surveillance systems, the measures fall into
the category of discrepancy methods [36] which quantify
differences between an actually segmented (observed) image
and a ground truth. The most common segmentation
measures precision, sensitivity, and specificity consider the
area of overlap between AR and GT segmentation. In [15],
the bounding box areas and not the filled pixel contours
are pixel-wise taken into account to get the numbers of true
positives (TPs), false positives (EPs), and false negatives (FN’s)
(see Figure 10) and to define the object area metric (OAM)
measures Precoam, Sensoam, Specopy, and F-Scorepam.

Precision (Precoam)

Measures the false positive (FP) pixels which belong to the
bounding boxes of the AR but not to the GT

—— 2
#TP, + #FP, (22)

PreCoAM =

Sensitivity (Sensoam)

Evaluates false negative FN pixels which belong to the
bounding boxes of the GT but not to the AR:

#TP,

. 2
#TP, + #FN, (23)

SenSOAM =

Axel Baumann et al.

11

Specificity (Specoam)

Considers true negative (TN) pixels, which neither belong to
the AR nor to the GT bounding boxes:

#TN
Specoam = N P (24)

N is the number of pixels in the image.

F-Score (F-Scoreoam)

Summarizes sensitivity and precision:

2-Precgeg - Sensgeq

F-Scoreoam = (25)

Precseg + Sensgeg

Further measures can be generated by comparing the
spatial, temporal, or spatiotemporal accuracy between the
observed and ground truth segmentation [35]. Measures
for the spatial accuracy comprise shape fidelity, geometrical
similarity, edge content similarity and statistical data sim-
ilarity [35], negative rate metric, misclassification penalty
metric, rate of misclassification metric, and weighted quality
measure metric [13].

Shape fidelity
Is computed by the number of misclassified pixels of the AR

object and their distances to the border of the GT object.

Geometrical similarity [35]

Measures similarities of geometrical attributes between the
segmented objects. These include size (GSS), position (GSP),
elongation (GSE), compactness (GSC), and a combination of
elongation and compactness (GSEC):

GSS= |area(GT) — area(AR) |,
GSP = [(gravy (|area(GT) — gravy (AR) |))2

— (gravy (|area(GT) — gravy (AR) | N1,
GSE(0) = area(O)
(2 x thickness(0))*’
_ perimeter’(0)
GSClo)= area(0)
GSEC= GSE(GT)I—OGSE(AR) .\ GSC(GT)I - OGSC(AR) ,

(26)

where area represents the segmented area of the objects,
grav, (O) and grav,(O)are the center coordinates of the
gravity of an object O, and thickness(O)is the number of
morphological erosion steps until an object disappears.

Edge content similarity (ECS) [35]
Yields a similarity based on edge content
ECS = avg(|Sobel(GT — AR)|) (27)

with avg as average value and Sobel the result of edge
detection by a Sobel filter.

Statistical data similarity [35]

Measures distinct statistical properties using brightness and
redness (SDS)

3
= %058 |avgY (GT) — avgY (AR) | o8)

+ |avgV(GT) — avgV(AR)]|.

SDS

Here, avgY and avgV are average values calculated in the
YUV color model.

Negative rate (NR) metric [13]

Measures a false negative rate NRpy and false positive rate
NRpp between matches of ground truth GT and result AR on
a pixel-wise basis. The negative rate metric uses the number
of false negative #FN,, and false positive pixels #FP, and is
defined via the arithmetic mean in contrast to the harmonic
mean used in the F-Scoregg:

1
NR =2 (NRgy + NRgp),

#FN,

NRiN = 27p, T #EN,” (29)
#FP,

NRw = 2TN, + 4FD,"

Misclassification penalty metric (MPM) [13]

Values misclassified pixels by their distances from the GT
object border
MPM = %(MPMFN + MPMFP),
#FN,

1
MPMgy = D g:l den(k), (30)

] #FP,
MPMyp = > dpp(k),
k=1

where dpn/pp (k) is the distance of the kth false negative/false
positive pixel from the GT object border, and D is a
normalization factor computed from the sum over all
distances between FP and FN pixels and the object border.

Rate of misclassification metric (RMM) [13]

Describes the false segmented pixels by the distance to the
border of the object in pixel units

1
RMM = E (RMMFN + RMMFP),

#EN,
1 den (k)
RMMgN = —— N
N #FN, & D (31)
4P,
RMM;p = 1 drp (k)

#FPp = Diing

where Dy, is the diagonal distance of the considered frame.

12

EURASIP Journal on Image and Video Processing

Weighted quality measure metric (WQM) [13]

Evaluates the spatial difference between GT and AR by the
sum of weighted effects of false positive and false negative
segmented pixels

WQM = 111(% (WQMy + WQMFP)),
4N,
WQMpy = #FN, g:l win (den (k) dien (),
s
WQMgp = ﬁg wep (drp (k) drp (K),
wep (dep) = By + ﬁj&’ wen (din) = C-dpx.

(32)

The constants were proposed as By = 19, B, = 178.125, B3 =
9.375,and C = 2 [13].

Temporal accuracy takes video sequences into con-
sideration and assesses the motion of segmented objects.
Temporal and spatiotemporal measures are often used in
video surveillance, for example, misclassification penalty,
shape penalty, and motion penalty [17].

Misclassification penalty (MPpix) [17]

Penalizes the misclassified pixels that are farther from the GT
more heavily:

Zx,y I(x, y, t)cham(x, y, t)
2x,y cham(x, y, 1)

MPyix = , (33)

where I(x, y,t) is an indicator function with value 1 if AR
and GT are different, and cham denotes the chamfer distance
transform of the boundary of GT.

Shape penalty (MPspape) [17]

Considers the turning angle function of the segmented
boundaries:

K t ot
MPypape = k=1 |®GT2(7]3< Ohr (k)| ,

(34)
and ®L1(k), ®4z(k) denote the turning angle function of

the GT and AR, and K is the total number of points in the
turning angle function.

Motion penalty (MPpo) [17]
Uses the motion vectors v (t) of GT and AR objects

[Ver(t) — var(®)|

IvarOll +[1var(®)]]

(35)

mot =

Nghiem et al. [16, 34] propose further segmentation
measures adapted to the video surveillance application.
These measures take into account how well a segmentation
method performs in special cases such as appearance of

shadows (shadow contrast levels) and handling of split and
merge situations (split metric and merge metric).

4.3.1. Chosen segmentation measure subset

Due to the enormous costs and expenditure of time to gener-
ate pixel-accurate segmentation ground truth, we decided to
be content with an approximation of the real segmentation
data. This approximation is given by the already labeled
bounding boxes and enables us to apply our segmentation
metric to a huge number of sequences, which makes it easier
to get more representative results. The metrics we chose is
equal to the above mentioned object area metric proposed in
[15]:

(i) Precoam (22),
(i) Senspam (23),
(iii) F-Scorepam (25).

The benefit of this metric is its independence from
assignments between GT and AR objects as described in
Section 4.2. Limitations are given by inexactness due to
the discrepancy between the areas of the objects and their
bounding boxes as well as the inability to take into account
the areas of occluded objects.

4.4. Object detection measures

In order to get meaningful values that represent the ability of
the system to fulfill the object detection tasks, the numbers
of correctly detected, falsely detected, or misdetected objects
are merged into appropriate formulas to calculate detection
measures like detection rates or precision and sensitivity.
Proposals for object detection metrics mostly concur in their
use of formulas, however the definition of a good detection
of an object differs.

4.4.1. Object-counting approach

The simplest way to calculate detection measures is to
compare the AR objects to the GT object according only to
their presence whilst disregarding their position and size.

Configuration distance (CD) [33]

Smith et al. [33] present the configuration distance, which
measures the difference between the number of GT and AR
objects and is normalized by the instantaneous number of
GT objects in the given frame

#AR, — #GT,
b= max (#GT,, 1)’ (36)

where #AR, is the number of AR objects and #GT, the
number of GT objects in the current frame. The result is
zero if #GT, = #AR,, negative when #GT, > #AR,, and
positive when #GT, < #AR,, which gives an indication of
the direction of the failure.

Axel Baumann et al.

Number of objects [15]

The collection of the metrics evaluated by [15] contains a
metric only concerning the number of objects, consisting of
a precision and a sensitivity value

min (#AR,, #GT,)
PI‘CCNQ = #AR 5
? 37
min (#AR,, #GT,) (37)
Sensno = “GT .

The global values are computed by averaging the frame-wise
values taking into account only frames containing at least one
object. Further information about averaging can be found in
Section 4.11.

The drawback of the approaches based only on counting
objects is that multiple failures could compensate and
result in an apparently perfect values for these measures.
Due to the limited significance of measures based only on
object counts, most approaches for detection performance
evaluation contain metrics taking into account the matching
of GT and AR objects.

4.4.2. Object-matching approach

Object matching based on centroids as well as on the object
area overlap is described in detail in Section 4.2. Though the
matching based on object centroids is a quick and easy way
to assign GT and AR objects, it does not provide reliable
assignments in complex situations (Section 4.2.1). Since the
matching based on the object area overlap does not feature
these drawbacks (Section 4.2.2), we decided to determine
object correspondences via the overlap and to add this metric
to our environment. After the assignment step, precision and
sensitivity are calculated according to ETISEO metric M1.2.1
[15]. This corresponds to the following measures which we
added to our environment:

#TP,
p S
TeCdet = TP+ #FP, (38)
#TP,
Sensqe = oot
CNSdet = 21D | #FN, (39)
F_Scoreg = 2-Precget - Sensget (40)

Precger + Sensget |

The averaged metrics for a sequence are computed as
the sum of the values per frame divided by the number
of frames containing at least one GT object. Identical to
the segmentation measure, we use the harmonic mean of
precision and sensitivity for evaluating the balance between
these aspects.

The fact that only one-to-one correspondences are
allowed results in the deterioration of this metric in merge
situations. Thus, it can be used to test the capabilities of the
system to separately detect single objects, which is of major
importance in cases of groups of objects or occlusions.

The property mentioned above makes this metric only
partly appropriate to evaluate the detection capabilities of
a system independently from the real number of objects

13

DetOvl Det

TP EN FP TP EN FP
2 00 1 10
TP FN FP TP FN FP
2 10 1 20
TP FN FP TP EN FP
2 00 1 0 1

TP EN FP TP FN FP

2 01 1 0 2

[] N (] TP
M rr

FiGure 11: Comparison of strict and lenient detection measures.

in segmented blobs. In test sequences where single persons
are merged into groups, for example, this metric gives the
illusion that something was missed, though there was just no
separation of groups of persons into single objects.

In addition to the strict metric, we use a lenient metric
allowing multiple assignments and being content with a
minimal overlap. Calculation proceeds in the same manner
as for the strict metric, except that due to the modified
method of assignment, the deviating definitions of TP, FP,
and FN result in these new measures.

(1) PrecdetOVl)
(11) SensdetOvla

(iii) F-Scoredetovl-

Figure 11 exemplifies the difference between the strict
and the lenient metric applied to two combinations for the
split and the merge case. The effects of the strict assignment
can be seen in the second column where each object is
assigned to only one corresponding object, and all the others
are treated as false detections, although they have passed the
distance criterion. The consequences in the merge case are
more FNs and in the split case more FPs.

There are metrics directly addressing the split and merge
behavior of the algorithm. In the split case, the number of AR
objects which can be assigned to a GT object is counted and

14

EURASIP Journal on Image and Video Processing

in the case of a merge, it is determined how many GT objects
correspond to an AR object. This is in accordance with the
ETISEO metrics M2.2.1 and M2.3.1 [15]. The definition of
the ETISEO metric M2.2.1 is

1 1 ek 1
Split = . , (41)
P~ %Gt %(#GTO Z:ZI #(AR, — GTo(l))>

where #(AR, — GT,(I)) is the number of AR objects for
which the matching criteria allow an assignment to the
corresponding GT objects and #GT is the number of frames
which contain at least one GT object. For every frame, the
average inverse over all GT objects is computed. The value
for the whole sequence is then determined by summing the
values of every frame and dividing by the number of frames
in which at least one GT object occurs.

For this measure, the way of assigning the objects is of
paramount importance. When objects fragment into several
smaller objects, the single fragments often do not meet the
matching criteria used for the detection measures. Therefore,
a matching criterion that allows to assign AR objects which
are much smaller then the corresponding GT' objects needs
to be used. For the ETISEO benchmarking [6], the distance
measure D5-overlapping [15] was used as it satisfies this
requirement.

Another problem is that in the case of complex scenes
with occlusions, fragments of one AR object should not
be assigned to several GT objects simultaneously as this
would falsely worsen the value of this measure. Each AR
object which represents a fragment should only be allowed
to be counted once. Therefore, the following split measure is
integrated in the presented ATE:

Split resistance (SR)
T #GT, = 1+ #add. split fragments (1’
-) (42)
SRavmt = ———- SR.
#GTf G%f

The assignment criteria used here are constructed to allow
minimal overlaps to lead to an assignment, thus avoiding the
overlooking of fragments.

The corresponding metric for the merge case presented
by ETISEO M2.3.1 [15] is

1 1 1
Merge = #GT; '%(#ARO lzzl #(GT, — AR,(I))) (43)

where #(GT, — AR,(I)) is the number of GT objects which
can be assigned to the corresponding AR objects due to the
matching criterion used.

For the merge case, the same problems concerning the
assignment must be addressed as for the split case. Thus, the
proposed metric for the merge case is

Merge resistance (MR)
#AR
1 ’ 1
MR = ,
#AR, g(:) 1 + #add. merged objects (/)
(44)
MRawm = ——— > MR
#ARy AR

The classification if there is a split or merge situation
can also be achieved by storing matches between GT and AR
objects in a matrix and then analyzing its elements and sums
over columns and rows [37]. A similar approach is described
by Smith et al. [33], which use configuration maps contain-
ing the associations between GT and AR objects to identify
and count configuration errors like false positives, false
negatives, merging and splitting. An association between a
GT and an AR object is given if they pass the coverage test,
that is, the matching value exceeds the applied threshold.
To infer FPs and merging, a configuration map from the
perspective of the ARs is inspected, and FN's and splitting are
identified by a configuration map from the perspective of the
GTs. Multiple entries indicate merging, respectively, splitting
and blank entries indicate FPs, respectively, FNs.

4.4.3. Chosen object detection measure subset

To summarize the section above, these are the object
detection measures used in our ATE.

(i) Detection performance (strict assignment):

(a) Precget (38),
(b) Sensqger (39),
(c) F-Scorege; (40).

(ii) Detection performance (lenient assignment):

(a) Precgetov,
(b) SensdetOvI)
(c) E-Scoregetom.

(iii) Merge resistance:
(a) MR (44).

(iv) Split resistance:
(a) SR (42).

In addition, we use a normalized measure for the rate of

correctly detected alarm situations, where an alarm situation
is a frame containing at least one object of interest.

Alarm correctness rate (ACR)

The number of correctly detected alarm and nonalarm
situations in relation to the number of frames:

B #TPf +#TNf

ACR
#frames

(45)

Axel Baumann et al. 15
4.5. Object localization measures Relative object area match (ROAM)
The metrics above give insight into the system’s capability of ROAM = min(Acr, Aar) (48)

detecting objects. However, they do not provide information
of how precisely objects have been detected. In other words,
how precisely region and position of the assigned AR match
the GT bounding boxes.

This requires certain metrics expressing the precision
numerically. The distance of the centroids discussed in
Section 4.2.1 is one possibility, which requires normalization
to keep the desired range of values. The problem lies in
this very fact, since finding a normalization which does
not deteriorating the metric’s relevance is difficult. The
following section introduces our experiment and finally
explains why we are not completely satisfied with its results.
In order to make O the worst, and 1 the best value,
we have to transform the Euclidean distance used in the
distance definitions of the object centroid matching into a
matching measure by subtracting the normalized distance
from 1. Normalization commences along the larger of the
two bounding box’s diagonals. This results in the following
object localization measure definitions for each pair of
objects:

Relative object centroid distance (ROCD)

\/(xGT - XAR)Z + (yor —)/AR)2

ROCD = , 46
max (dGT) dAR) (46)

Relative object centroid match (ROCM)
ROCM = 1 — ROCD. (47)

In theory, the worst value 0 is reached as soon as the
centroid’s distance equals or exceeds the larger bounding
box’s diagonal. In fact, this case will not come about, since
these AR/GT combinations of the above-described matching
criteria are not meant to occur in the first place. Their
bounding boxes do not overlap anymore here. Unfortunately,
this generous normalization results in merely exploiting only
the upper possible range of values, and in only a minor
deviation between the best and worst value for this metric.
In addition, significant changes in detection precision are
represented only by moderate changes of the measure.
Another drawback is at hand. When an algorithm tends to
oversegment objects, it will have a positive impact on the
value of ROCM, lowering its relevance.

A similar problem occurs when introducing a metric
for evaluating the size of AR bounding boxes. One way
to resolve this would be to normalize the absolute region
difference [14], another would be using a ratio of AR and
GT bounding boxes’ regions. We added the metric relative
object area match (ROAM) to our ATE, which represents the
discrepancy of the sizes of AR and GT bounding boxes. The
ratio is computed by dividing the smaller by the larger size,
in order to not exceed the given range of value, that is,

max(Agr, Aar)

Information about the AR bounding boxes being too
large or too small compared to the GT bounding boxes is
lost in the process.

Still missing is a metric representing the precision of
the detected objects. Possible metrics were presented with
Precoam, Sensoam, and F-Scorepan in Section 4.3. Instead of
globally using this metric, we apply them to certain pairs of
GT and AR objects (in parallel to [33]) measuring the object
area coverage. For each pair, this results in values for Precoac,
Sensoac, and F-Scorepac. As mentioned above, F-Scorepac is
identical to the computed dice coefficient (21).

The provided equations of the three different metrics that
evaluate the matching of GT and AR bounding boxes relate
to one pair in each case. In order to have one value for each
frame, the values, resulting in the object correspondences,
are averaged. The global value for a whole sequence is the
average value over all frames featuring at least one object
correspondence.

Unfortunately, averaging raises dependencies to the
detection rate, which can lead to distortion of results when
comparing different algorithms. The problem lies in the fact
that only values of existing assignments have an impact
on the average value. If a system is parameterized to be
insensitive, it will detect only very few objects but these
precisely. Such a system will achieve much better results than
a system detecting all GT objects but not matching them
precisely.

Consequently, these metrics should not be evaluated
separately, but always together with the detection measures.
The more the values of the detection measures differ, the
more questionable the values of the localization measures
become.

4.5.1. Chosen object localization measure subset

Here is a summarization of the object localization measures
chosen by us:

(i) relative object centroid match:
(a) ROCM (47),
(ii) relative object area match:
(a) ROAM (48),
(iii) object area coverage:

(a) Precoac,
(b) Sensoac,
(c¢) F-Scorepac.

4.6. Tracking measures

Tracking measures apply over the lifetime of single objects,
which are called tracks. In contrast to detection measures,

16

EURASIP Journal on Image and Video Processing

which evaluate the detection rate of anonymous objects for
every single frame, tracking measures compute the ability
of a system to track objects over time. The discrimination
between different objects is usually done via an unique ID
for every object. The tracking measures for one sequence are
thus not computed via an averaging of frame-based values,
but rather by using averaging over the frame-wise values
of the single tracks. The first step consists therefore of the
assignment of AR to GT tracks. Two different approaches can
be found for this task.

4.6.1. Track assignment based on trajectory matching

Senior et al. [10] match the trajectories. For this purpose,
they compute for every AR and GT track combination a
distance value which is defined as follows:

1
Nargr (i1, 12)

X Z(|}AR(11,]) - ;GT(iZaj) }
J

Dargr (i, iz) =

2

- - 2
+ [var (i1, j) = var(ia, j) |

B B 5 12
+|sar(in, j) — sar(ia)|) >
(49)

where Nargr(i1, 1) is the number of points in both tracks
AR (i1) and GTy (i), ;CAR(il,j) or ;GT(iz,j) is the centroid
of the bounding box of an AR or GT track at frame
j» ;AR(il,j) or ;GT(ig,j) is the velocity and ZAR(il,j) or
EGT(iz, 7) is the vector of width and height of track i; or i,
at frame j.

This way of comparing trajectories, which takes the
position, the velocities, and the objects’ bounding boxes
into account, is also used in a reduced version of (49) in
[11, 14, 30] considering only the position of the object:
Z|xAR i, j

Dargr (i, iz) = - ;CGT(izaJ') l.

NARGT i, i)
(50)

The calculation of the distance matrix according to (50) is
included in Figure 12 and marked as Step 2. Step 1 represents
the analysis of temporal correspondence and hence the
calculation of the number of overlapping frames. In order
to actually establish the correspondence between AR and GT
tracks, a thresholding step (Step 3 in Figure 12) has to be
applied. The resulting track correspondence is represented by
a binary mask, which is simply calculated by assigning a one
to those matrix elements which exceed a given threshold and
zero in the alternative case.

Track correspondence is established by thresholding this
matrix. Each track in the ground truth can be assigned to
one or more tracks from the results. This accommodates
fragmented tracks. Once the correspondence between the
ground truth and the result tracks is established, the follow-
ing error measures are computed between the corresponding
tracks:

False positive track error rate (TERgp)

_ #ARtr - #(ARU - GT“«)
TERgp = 4G, , (51)
False negative track error rate (TERgy)
_ #ARtr - #(GTtr - ARtr)
TERpy = T, . (52)
Object detection lag

This is the time difference between the ground truth
identifying a new object and the tracking algorithm detecting
it. Time-shifts between tracks and an evaluation of (spatio-
Jtemporally separated GT and AR tracks using statistics are
discussed in more detail by [38].

If an AR track is assigned to a GT track, metrics are
needed to assess the quality of the representation by the AR
track. One criterion for that is the temporal overlap, respec-
tively, the temporal incongruity as rated in the following
metric.

Track incompleteness factor (TIF)

#FN (i) + #FP £ (i)

T = VO

(53)

where FN¢ (i) is the false negative frame count, that is, the
number of frames that are missing from the AR Track, FP ¢ (i)
is the false positive frame count, that is, the number of frames
that are reported in the AR which are not present in the GT,
and TP(i) is the number of frames present in both AR and
GT.

Once not only the presence but also the the correspon-
dence between the ground truth and the result tracks is
established according to the trajectory matching, the follow-
ing error measures are computed between the corresponding
tracks.

Track detection rate (TDR)

The track detection rate indicates the tracking completeness
of a specific ground truth track. The measure is calculated as
follows

#TP (i)
#frames GT (i)’

where #frames GTy (i) is the number of the frames of the ith
GT track. In [11], #TP (i) is defined as the number of frames
of the ith GT track that correspond to an AR track.

TDR = (54)

Tracker detection rate (TRDR)

This measure characterizes the tracking performance of the
object tracking algorithm. It is basically similar to the TDR
measure, but considers entities larger than just single tracks

2 #TP (i)

TRDR = R
> #frames GTy (i)

(55)

Axel Baumann et al.

17

Ground truth (GT)
tracks Result tracks

|

Checking for temporal
correspondence and calculation of
number of overlapping frames
Result tracks

Step 1
[o-11,0.12,...,0_1Nr]

[0-21,0.22,...,02Nr]

GT tracks

[0-Ngl,...,0_-NgNr]

NgxNr correspondence
matrix with number of
overlapping frames

Calculation of distance d for each
temporal corresponding result track /

GT track combination
Result tracks

[d-11,d12,...,d-1Nr]
[d21,d22,...,d2Nr]

Step 2

GT tracks

[dNgl,...,d_NgNr]

Calculation of a threshold matrix
mask (threshold depending on used

distance function d_ij)
Result tracks

Step 3
" [10---11]
4
9 [01---10]
£
= [............]
0 [01---10]

Measure calculation, classification of
true positive and false negative
tracks

Step 4 Result tracks

GT tracks

NgxNr distance /
measure matrix

Statistical analysis of matrix
elements (e.g. averaging)

Step 5 l
d_avg

GT track i
Result track j

Overlap o0_ij Frame no (time)
N

/

dij = 5 f(BB,eudD,...)
7 overlapping

frames

NgxNr distance matrix

NgxNr binary matrix

[d-11,d-12,...,d_1Nr]
[d21,d22,...,d_2Nr]

[d_Ng1,...,d_NgNr]

FIGURE 12: Overview of the measure calculation procedure as applied in [14]. Step I represents the analysis of temporal correspondence and
hence the calculation of the number of overlapping frames. The calculation of the distance matrix according to (50) is performed in Step 2.
In order to actually establish the correspondence between AR and GT tracks, a thresholding step has to be applied (Step 3). The resulting
track correspondence is represented by a binary mask, which is simply calculated by assigning a one to those matrix elements which exceed
a given threshold and zero in the alternative case. In Step 4, the actual measures are computed. Further, additional analysis is performed in

18

EURASIP Journal on Image and Video Processing

where #frames GTy (i) is the number of the frames of the ith
GT track.

False alarm rate (FAR)

The FAR measures also the tracking performance of the
object tracking algorithm. It is defined as follows

2. #FP £ (i)
> #frames ARy (i)’

FAR = (56)

where #frames AR (i) is the number of the frames of the ith
AR track. In [11], FP;(i) is defined as one object of the ith
AR track, that is tracked by the system and does not have a
matching ground truth point.

Track fragmentation (TF)

Number of result tracks matched to a ground truth track

1

TF =
#TPGT" ;

#(ARy — GTu(i)). (57)

Occlusion success rate (OSR)

Number of successful dynamic occlusions

OSR =
Total number of dynamic occlusions

(58)

Tracking success rate (TSR)

Number of non-fragmented tracked GT tracks

TSR = #GT,

(59)

4.6.2. Track assignment based on frame-wise
object matching

The second approach to assign the AR to the GT tracks
is to use the same frame-wise object correspondences as
for the detection measures as mentioned in Section 4.4.
However, those correspondences are not always correct.
Ideally, each GT track is matched by exactly one AR track,
though it does not necessary hold in practice. To associate
identities properly it has been proposed that identification
associations can be formed on a “majority rule” basis [33],
where an AR track is assigned to the GT track with which
it has the maximal corresponding time, and a GT track is
assigned to the AR track which corresponds to it for the
largest amount of time. Based on the definitions above, four
tracking measures are introduced. Two of them measure the
identification errors.

Falsely identified tracker (FIT)

An AR track segment which passes the coverage test for a GT

track but is not the identifying AR track for it (see Figure 13):
1 #FIT(j)

FIT = .

#frames ; max (#GT(i)(j),1)

(60)

AR,
M GTy
AR, FIT oT

2
\\/ GT;
P[O

Ficure 13: Example for identification errors proposed by [33].
Three GT objects are tracked by three AR objects. A falsely identified
tracker error (FIT) occurs when GT,; is tracked by a second
corresponding AR track ARs. A falsely identified object error (FIO)
occurs when an AR track swaps the corresponding GT track, here
this is the case for AR, swapping from GT, to GT;. The time
intervals where a FIT, respectively, FIO occur are marked.

Falsely identified object (FIO)

A GT track segment which passes the coverage test for an AR
but is not the identifying GT track (see Figure 13):

1 #FI10O(j)
FIO = .
© #frames ; max (#GT(j),1)

(61)

The other two measures are similar to TDR and FAR but
more strict, because they rate only correspondences with the
identifying track as correct.

Tracker purity (TPU)

The tracker purity indicates the degree of consistency to
which an AR track identifies a GT track

#correct frames AR (7)

TPU =)
#frames AR (i)

(62)

where #framesag (i) is the number of frames of the ith AR
track and #correct framesag (i) the number of frames that the
ith AR track identifies a GT track correctly.

Object purity (OPU)

The object purity indicates the degree of consistency to which
a GT track is identified by an AR track:

#correct frames GT (i)

PU = ,
OPU #frames GT(7)

(63)

where #frames GTy (i) is the number of the frames of the
ith GT track and #correct frames GTy (i) is the number of
frames that the ith GT track is identified by an AR track
correctly.

The ETISEO metrics [15] provide tracking measures
which are similar to the above-mentioned ones. Met-
ric M3.2.1 calculates a track-based Precyack, Sensiacks
and F-Scoreyac. The Sensyaac conforms to (52), because
Sensirack = 1—TERgN, but the Precyaqc differs from 1—TERgp
(51), because it refers to the number of AR tracks instead
of the number of GT tracks. Another metric in [15] is the

Axel Baumann et al.

19

“tracking time” (M3.3.1), which is the same as the OPU
above.

To assess the consistency of the object IDs, the metrics
persistence (M3.4.1) and confusion (M3.5.1) are used.

Persistence (Per)
Evaluates the persistence of the ID

1 1
Per = : 4
er #GTtrZ,‘:#(ARtr - GTtr(i)) (6)

Confusion (Conf)
Indicates the robustness to confusion along the time

1 1
f= ,
Cont = 2 (GTy — ARy) ;#(GTU — ARG

where #(AR, — GTy (7)) indicates the number of AR tracks
that correspond to the ith GT track and vice versa for
#(GTy — ARy ().

4.6.3. Chosen tracking measure subset

For our evaluations, the assignment of tracks is done via
frame-based correspondences as described in Section 4.6.2.
Using that strategy, we compute the following measures.

False positive track resistance (TRgp)

Assesses the ability of the system to prevent FP tracks, which
are AR tracks without any correspondence to a GT track:

#ARU« - #(ARtr - GTtr)

TRpp = 1 —
Rep #AR,,

(66)

Note the division by #AR instead of #GT (compare to
(51)).

False negative track resistance (FNTR)

Assesses the ability of the system to prevent FN tracks, which
are GT tracks without any correspondence to an AR track

TReny = 1 — TERgn. (67)

Track coverage rate (TCR)

Measures how long an AR track has correspondences to GT
tracks in relation to its lifetime

#ass. frames GT (i)

TCR = #frames GTy (i)

(68)

where #frames GT (i) is the number of frames of the ith GT
track and #ass. frames GT (i) is the number of frames that
the ith GT track is identified by at least one AR track.

Track fragmentation resistance (TFR)

Assesses the ability to track an GT object without changing
the ID of the AR track. The more AR tracks are assigned over
the GT track’s lifetime, the worse is the value of this metric:

1 1
TER = N 69
#1Pgr, 2#(ARU — GTu(i),,)

where #(ARy — GT(i)),,; indicates the number of AR
tracks that correspond to the ith GT track. If there are
multiple correspondences at the same time for one GT
track, the best one is taken into account. GT tracks without
correspondences (FNy,) are omitted.

Tracking success rate (TSR)

Analogue to (59). We also adopt the four tracking measures
from [33] with partially small modifications.

Tracker purity (TPU)

Is identical to (62), but with Nar as the number of AR
tracks excluding FP tracks. Otherwise, the FP tracks would
dominate this measure and the changes that this measure is
established to assess would be occluded.

Object purity (OP)

Equal to (63).
To fulfill our normalization constraints, we transform the
errors FIT and FIO into resistances.

Falsely identified tracker resistance (FITR)

) . #FIT(j)
FIR=1- s framesap Gt %max (#GTu(j), 1)
(70)
Falsely identified object resistance (FIOR)
i 1 #F1O(j)
FIOR =1 - framesar Gt ; max (#GTe(j), 1)’
(71)

where #ass. framesag gr is the number of frames containing
at least one correspondence between a GT and an AR object.
Using the frame count of the sequence according to the
definition in [33] would give empty scenes an occluding
influence on the value of this measure. #FIT(j) and #FIO(j)
are the number of FIT and FIO, respectively, in frame j
according to the definitions of (60) and (61).

4.7. Event detection measures

The most important step for event detection measures is
the matching of GT data and AR data, which can be

20

EURASIP Journal on Image and Video Processing

AR Time
GT [D]

F1GURE 14: Time-line of events. What is the best matching between
events?

solved by simple thresholding. Most of the proposals in
the literature match events by using the shortest time delay
between the events in GT and AR. In the event that the
time delay exceeds a certain threshold, matching fails. This
is a reliable approach for simple scenarios with few events.
However, considering real world scenarios, this approach
does not return the correct match. A simple example is
depicted in Figure 14, where one match might be A-1, B-
2, and C-4 and a second one might be A-1, B-2, C-3, D-
4, among other possible matches. Desurmont et al. [39]
propose a dynamic realignment algorithm using dynamic
programming to compute the best match between GT and
AR events. The algorithm incorporates a maximum allowed
delay between events.

The CREDS project [40] classifies correct detection
into three categories: perfect, anticipated, and delayed. Each
event in the GT data may be associated to a single correct
detection. Multiple overlaps in time are not covered in detail,
the first occurrence is matched and the remaining events
are treated as FP. The authors define a score function of
delay/anticipation and a ratio between GT event duration
(GTeq) and AR event duration (AR.q):

0, (t<B)V (t>D),
AisB(t—B), B<t<A,
Scp(t, ARed, GTed) = -
cp(d 4) S, A<t<o,
S
B(D—t), 0<t=<D.
(72)

S represents the maximum score associated with a correct
detection. The authors compute it as follow:

2
50% 2—(1—AR“‘) , OSARedSZ,
— GTed GTed
S = (73)
50 AR
’ GTed '

The maximum tolerated delay is expressed by D in
milliseconds, whereas A represents the accepted anticipation
in milliseconds. B stands for the maximum tolerated antici-
pation in milliseconds. The values D, A, and B are dependent
on the event type (warning event, alarm event, or critical
event).

The ETISEO [15] project defined a set of metrics for
events to. Measures for correctly detected events over the
whole sequence are defined. In the first set of event detection
measures M5.1.1, only whether events occurred is compared
and not their time of occurrence nor object association. Time
constraints are added to M5.1.1 in the second measure set
M5.1.2. A last set of measures M5.3.1 is defined which facil-
itates correct detection in time and parameters. Parameters

are object classes, so called contextual zones (areas such as a
street, a bus stop) and involved physical objects. For instance,
an event “car parked in forbidden zone” has to be raised
once a physical object, which has been classified as car, is
idle for longer than a defined time interval in a contextual
zone which is marked as “no parking area.” The formulas for
measures M5.1.1, M5.1.2, and M5.3.1 are defined identically,
only the matching criteria are different. Precevent, S€NSevent,
and F-Scoreeyen are used by ETISEO [15]:

Preco. . — — TTPe
event = 4TP, + #FP,’
#TP,
Sensevent = #TP, + #EN, (74)

2- PreCevent) Sensevent

F-Scoreeyent = .
Preceyent + Sensevent

TP relates to a match between GT and AR.

4.7.1. Chosen event detection measure subset

We choose M5.1.2 defined in [15] with the dice coefficient
(21) for the matching of the time intervals as event detection
metric:

(1) Precevent TI>
(11) Sensevent TI>

(iii) F-ScoreeyentT1-

4.8. Object classification measures

Senior et al. [10] propose the measure Object type error which
simply counts the number of tracks with incorrect classifi-
cation. The definition is somewhat vague as it is unknown
if a track has to be classified more than fifty percent of the
time correctly to be treated as correctly classified. ETISEO
[15] uses different measures classes. A simple class (M4.1.1)
uses the number of correctly classified physical objects of
interest in each frame. The second measure class (M4.1.2)
matches, in addition to M4.1.1, the bounding boxes of
the objects. ETISEO distinguishes between misclassifications
caused by classification shortcomings and misclassifications
caused either in the object detection or the classification step:

#TP,
P T ——
T€Cclass #TPC + #FPC (75)
#TP,
S R —
€N Sclass #TPC +#PNC (76)
#TP,
Sensclass,det = #TPC + #FNC)det, (77)

2-Precjass - Senscass
F-Scoreass = =, (78)
Precjass + Sensclass

2-PrecCjass - SeNSlass det

F-Scorelass det = (79)

Precjass + Sensclags,det

Axel Baumann et al.

#TP, refers to the number of objects types classified
correctly. #FN, is the number of false negatives caused by
classification shortcomings, for example, unknown class,
#FN_ det refers to the number of false negatives, caused by
object detection errors or by classification shortcomings.

In M4.1.3, the measures in M4.1.2 are enhanced by the
ID persistence criteria. Precyss, Sensclass, and F-Scoregas
are computed and used as measure. Due to the separation
between misclassifications, two Sensda.ss and F-Scoregass
measures are defined in each measure class. The measures
in M4.1.1 through M4.1.3 are computed at frame level.
Percentages for a complete sequence are computed as follows.
The sum of percentages per image divided by the number of
images containing at least one GT object.

Preciass, Senscass, and F-Scoreq,ss are computed per
object type in M4.2.1. Therefore, the number of measures
equals the number of existing object types. The time
percentage of good classification is computed in M4.3.1:

|GT4 N ARy, Type(AR,) = Type(GTy) | (80)

|GT4 N ARy | '

GT relates to the time interval in GT data, whereas ARy

relates to the time interval in AR data. Nghiem et al. [34]
suggest to use M4.1.2.

4.8.1. Chosen classification measure subset

Class correctness rate (CCR)

Assesses the percentage of correctly classified objects. There-
fore, the types of the objects, which are assigned to each
other by the assignment step described in context of the
detection measures, are compared and the correct and false
classifications are counted:

#CC(j)

1
#ass. framesag g1 ;#CC(j) +#FC(j)’

CCR = (81)

where #CC(j) and #FC(j) are the number of correctly,
respectively, falsely classified objects in frame j, and
#ass. framesar gr is the number of frames containing at least
one correspondence between GT and AR objects.

We also use a metric according to ETISEO’s M4.2.1,
which consists of two different specifications. The first
considers only the classification shortcomings and the other
includes the shortcomings of the detection to. With the first
specification, we agree, leading to the definition in (75), (76),
and (78).

Object classification performance by type

(1) Precclass (75):
(i) Senscass (76),
(iii) F-Scoregass (78).

In the second specification, we differ from ETISEO
because we also take FP objects into account.

21
Object detection and classification performance by type
Precdass.det = 7#“)6 >
: #TP, + #FP. det
Sensass,det = %ﬁ&l\lm) (82)

2-PrecCjass - S€NSlass det
bl
Precjass + Sensclags,det

F'Scoreclass,det =

where, in contrast to (75), FPqe is used as the number of
false positives caused by shortcomings in the detection or
classification steps.

4.9. 3D objectlocalization measures

3D object localization measures are defined in [15]. The
average, variance, minimum, and maximum of distances
between objects in AR as well as the trajectories of the objects
in GT are computed. Object gravity centers are used to
calculate the distances.

Average of object gravity center distance (AGCD) [15]

Measures the average of the distance between gravity centers
in AR and GT:

N
. . 1
d; = |[TOCqgr (i) — TOCar(1)||,, AGCD = NZ d;,

(83)

where TOC(i) is the trajectory of the object’s center of gravity
at time i and N is the amount of elements.

Variance of object gravity center distance (VGCD) [15]

Computes the variance of the distance between gravity
centers in AR and GT:
1Y 2
VGCD = Nz(d" — AGCD)". (84)

1

Minimum and maximum distance of object gravity centers
(MIND, MAXD) [15]

Considers the minimum distance between centers of gravity
in AR and GT:

MIND = inf{d € D}, MAXD = sup{d € D}, (85)
where D is the set of all d;. Nghiem et al. [34] state that
detection errors on the outline are not taken into account
in [15]. Moreover there is no consensus on how to compute
the 3D gravity center of certain objects, like cars.

Note that when evaluating 3D information inferred from
2D data, the effects of calibration have to be taken into
account. If both AR and GT are generated from 2D data and
projected into 3D, the calibration error will be systematic.

22

EURASIP Journal on Image and Video Processing

If the GT is obtained in 3D, for example, using a differential
global positioning system (DGPS), and the AR still generated
from 2D images, then the effects of calibration errors have to
be taken into account.

4.10. Multicamera measures

Tracking across different cameras includes identifying an
object correctly in all views from different cameras. This
task, and possibly a subsequent 3D object localization
(Section 4.9), are the only differences to tracking within one
camera view only. Note that an object can be in several
views from different cameras at once, or it can disappear
from one view to appear in the view of another camera
some time later. The most important measure to quantify
the object identification is the ID persistence (64), which can
be evaluated for each view separately once the GT is labeled
accordingly and averaged afterwards. Again, the averaging
has to be chosen carefully, just as in the computation of mea-
sures within one camera view (Section 4.11). Multicamera
measures applying tracking measures (Section 4.6) using 3D
instead of 2D coordinates have been proposed for specific
applications such as tracking football players [41] or objects
in traffic scenes [42].

4.11. The problem of averaging

At different stages during the computation of the measures,
single results of the measures are combined by averaging.
Within one frame, for example, the values for different
objects may be merged into one value for the whole frame.
The single frame-based values of the measures are then
aggregated to gain a value for the whole sequence. These
sequence-based values are again combined for a subset of
examined sequences to one value for each metric.

Regarding the performance profile for a set of different
sequences, it has to be known which averaging strategy
was used for the aggregation of the measures. The chosen
averaging strategy may tip the scales of the resulting measure
value. In the following sections, several issues concerning the
different averaging steps are highlighted.

4.11.1. Averaging within a frame

The metrics concerning object localization (Section 4.5)
are an example for the combination of measure values of
several objects to an aggregated value for one frame. The
unique assignment as used for the strict detection measures
(Section 4.4.2) provides a basis for the computation here.
For each GT object to which an AR object was assigned,
a value exists for the corresponding metric. Concerning
the averaging, two different possibilities exist. Either the
unassigned GT objects get the worst value of zero for not
being localized and the averaging is done via the number of
GT objects, or only the existing assignments are considered
and the averaging and normalization is done via their
number.

The first approach has the disadvantage of placing too
much emphasis on the detection performance and thus

masking the localization effects. A bad detection rate would
thus decrease the values of the localization significantly. The
second approach favors algorithms which detect only a few
objects but do so precisely. Algorithms, which find objects
which are hard to detect and localize precisely, are at a
disadvantage here. This disadvantage could be avoided by
using only these GT objects which were detected by both
algorithms in the averaging for the algorithm comparison.

4.11.2. Averaging within a sequence

Basically, there are two ways to combine object-based
measures for a sequence. One is to calculate a total value for
each GT track and then to average over all GT tracks. The
other way is to average the frame-wise results into one total
value for the whole sequence.

Averaging by track values

On the one hand, localization metrics for example do
not have to be combined frame-wise only, as described
above. They can be combined track-wise as well. In this
case, each measure is averaged over the lifetime of the
track. Similar to averaging frame-wise, time instants, when
the corresponding track cannot be assigned, have different
effects on the averaging. On the other hand, there are
pure track-based measures such as track coverage rate (68)
or track fragmentation resistance (69). On averaging track
values, the way in which FN tracks, which are GT tracks
that are never assigned to an AR track, are handled has to
be considered in both cases. Identical conclusions have to
be drawn as for frame-wise averaging regarding FN objects
mentioned above.

Averaging by frame values

Calculating an average value of a metric for the whole
sequence can be done in various ways. An important factor
in this is mainly the number of frames to average over. Which
way is more meaningful depends on the corresponding
metric. The problem is that for certain measures there is
not necessarily a defined value in all frames. For a frame,
which has no GT object, there is no value for example
for detection sensitivity. In parallel, there is no value for
detection precision for a frame lacking an AR object. As a
result of this, there is no value for the F-Score for frames
not featuring values for sensitivity nor precision. One way
to handle this is to define missing values, that is, assuming an
optimal value of 1 and dividing the sum of all frame values by
the number of frames in the sequence. As consequence, these
values would prefer sequences with only objects appearing
for a short duration. Another method is to sum up values
and divide by the number of frames, showing at least on GT
object [15]. This is an appropriate approach for those metrics
that can only be calculated when a GT object exists, as for the
detection sensitivity. There are drawbacks in this approach
for other metrics. The value for detection precision is also
defined in frames, not showing a GT object. It is defined
as 0. This results in FP objects being excluded from the

Axel Baumann et al.

23

averaging of the detection precision in frames not showing
a GT object. Such a method would result in strict detection
precision (38) and lenient detection precision (Section 4.4.2)
being incapable of representing an increase or decrease of
FP objects in empty scenes when comparing two algorithms.
This is not an issue when dividing by the number of frames
with AR objects in these situations, instead of using the
number of frames with GT objects. A deterioration of values
for detection precision as predicted can be ensured, when AR
objects are falsely detected in frames not showing GT objects.
Accordingly, the sum of all F-Score values has to be divided
by the number of frames showing at least one GT object or
at least one AR object.

4.11.3. Averaging over a collection of sequences

The single performance profiles for different sequences have
to be combined in the last step to an overall profile for
a sequence subset. The obvious approach is to sum the
sequence values for each measure and divide by the number
of sequences. The disadvantage is that the value of each
sequence is weighted the same for the overall value. As the
sequences differ greatly in length, number of GT objects, and
level of difficulty, this distorts the overall result. An extreme
example is a sequence with 200 000 frames and numerous
challenges for the algorithm being weighted the same as a
sequence with 200 frames showing only some disturbers,
but no objects of interest. For the latter, even one FP object
leads to a detection precision of zero. Combining these two
sequences equally weighted leads to a performance profile
which does not represent the performance of the algorithm
appropriately.

To avoid these effects, weights could be assigned to the
sequences and included in the computation of the averaging.
However, a sensible choice of the weighting factors is neither
easy nor obvious. A second possibility is the purposeful
selection of sequence subsets for which the averaging of the
measure values results in an adequately representative result.

5. EVALUATION

The above-mentioned metrics provide information about
various aspects of the system’s performance. As indicated
already, it is usually not possible to draw conclusions con-
cerning the differences in performance of two algorithms by
means of a single measure without considering the interplay
of interdependent measures. This section also shows how
to recognize strengths and weaknesses of an algorithm
by means of the metrics chosen in Section 4. Therefore,
considering various performance aspects, relevant combi-
nations of different metrics are listed and their evaluation
is explained starting with general remarks about measure
selection (Section 5.1) and sequence subsets (Section 5.2).
The ATE (Section 3) is generally used to compare perfor-
mances of different versions of the video surveillance systems
in the development stage. Usually, two different versions
are chosen and their results compared. On the one hand,
this happens graphically by means of bar charts featuring
predefined subsets of calculated measures. Evaluating these

so-called performance profiles is described by means of two
examples in Section 5.3. One the other hand, a statistical
evaluation is done as will be described in Section 5.4. The
metrics used in the ATE (Section 3) are all normalized,
so at evaluation time they can all be treated alike. This
simplifies the statistical evaluation of results as well as their
visualization.

5.1. Selecting and prioritizing measures

After having presented measures for each stage of a
surveillance system such as segmentation (Section 4.3),
object detection (Section 4.4), object localization
(Section 4.5), tracking (Section 4.6), event detection
(Section 4.7), object classification (Section 4.8), 3D object
localization (Section4.9), and multicamera tracking
(Section 4.10), is there any importance ranking between the
different families of measures? What are the most reliable
measures for an end-user? Is there a range or threshold for
some or all measures which qualifies a surveillance system
to be “good enough” for a user? The only general answer to
these questions is that it usually depends on the chosen task.

5.1.1. Balancing of false and miss detections

In assessing detection rates by means of precision and
sensitivity, for example, it was assumed that false and miss
detections are equally spurious. Based on this assumption,
the F-Score was used as a balancing measure. In fact,
depending on the application either FPs or FNs can represent
a greater problem.

Concerning live alarming systems, FPs are at least
distracting, since too many false alarms distract security
personnel. Consequently, parameterization makes the system
less sensitive to keep the false alarm rate low, thus accepting
missed events. For retrieval applications, FPs are less prob-
lematic, because they can be identified and discarded quickly.
ENs, on the other hand, would diminish the benefit of the
retrieval system and are therefore especially spurious.

In these cases, the F-Score is less useful, because nonequal
weighting of precision and sensitivity is necessary. The F-
Measure provides a solution for the discussed drawback by
adjusting the weighting.

5.1.2. Priority selection of measures

Depending on the performance aspect to be assessed, the
measures are also examined with different priorities. The
end-user may be interested in a specific event in a well-
defined scene, for example, “intrusion: detect an object going
through a fence from a public into a secure area” or “check
if there are more than 15 objects in the specified area at
the same time.” In scenarios like these, the end-user is most
interested in best performance regarding event detection
measures (detect all events without any false positives). In
comparison of different surveillance systems, the one with
the best event detection results is preferred. This is how i-
LIDS [7] benchmarks their participants.

24

EURASIP Journal on Image and Video Processing

For a developer of an existing system, the event measures
may be too abstract to get an insight if a small algorithm
change; a new feature or a different parameter set has
improved the system. Depending on the modification,
the most significant measure may be that for detection,
localization or tracking, or a combination of all of them.

In the case of evaluating, for example, the performance
of an algorithm for perimeter protection, it is first and
foremost important how many of the intruders are detected
in relation to the amount of false alarms. The values of the
event detection measures Preceyent, S€NSevent, and F-Scoreevent
with respect to the event “Intrusion” are of most significance
here.

In a next step, false positive and false negative track resis-
tance (FPTR and FNTR), as well as the frame-based alarm
correctness rate (ACR), can be regarded. All other measures,
like the different detection or segmentation measures, are
only of interest if more precise information is asked for.
As a rule, this is the case if the coarse-granular results are
scrutinized. A meaningful evaluation for this task would
thus cover the above-mentioned measures as well as some
fine-granular like detection measures to support the results
further.

In the case of a less specific evaluation task, the usual
procedure is to start with coarse-granular measures and to
proceed to the more fine-granular measures. That means
that, similar to the example of perimeter protection above,
first of all the event detection measures are regarded,
continuing with tracking measures, which express whether
complete tracks were missed or falsely detected. The next
level is object based and includes the detection measures,
which express how well the detection of objects over time is
done. The finest level corresponds to pixel-based analysis of
the algorithm behavior and includes the segmentation and
object localization measures. Here, it is not analyzed whether
the objects are detected, but how well the detection is done
in terms of localization and precise segmentation.

The measures within the above-mentioned granularity
levels can be again prioritized from elemental measures to
others describing more detailed information. The tracking
measures, for example, can be structured by the following
aspects.

(i) A track was found (FNTR).
(i) Duration of the detected track (TCR).
(iii) Continuity of the tracking (TFR, OP, FITR, ...).

This is also motivated by the observation of dependencies
between different measures. An example is track fragmenta-
tion resistance (TFR) and track coverage rate (TCR). A value
indicating a good track fragmentation resistance becomes
less significant if the track coverage rate is bad because the
TFR is based on only a few matches. If the TFR changes for
the better, but the TCR for the worse, then it can be assumed
that the tracking performance deteriorates.

A complete prioritization of the presented measures is
still an open issue. It is a big challenge as the definition of

Frame 22

S s 8 8 B T OF oz M M QO Y O >
5<<g;gggo[~ysgg-‘:u
S g9 9 g & &8 3 3 ~2Z 9 5 5 5 <
O 2 O % g o §F F 9 K [0S - R
Oﬁhmmuu"’v I-hu_‘:nm!l‘
£$8 m858 M'G'Gu
%) =R R 1 S I
= 2 SRR
~ = &b
a2 = O
2

1 T T T T T T T T -

L L <
g 06 r |
Q
L 04+ i
0.2 F i
O 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
Frames
—— Precsegm —— Sensdet
— Senssegm —— FScoreget
— Precget == Merge resistance

(c)

Ficure 15: Example 1: crossing of a person and a car, an extract
from the PETS 2001 training dataset 1. Simulation of algorithm
deficit by merging the two objects. (a) Three screen shots from the
sequence with bounding boxes of GT (top) and results of simulated
detection algorithm (bottom) added. (b) The performance profile
of the simulated algorithm result. (c) The temporal development of
selected measures displays selected measure values for each frame.

good performance depends often on the chosen task. The
amount of measures and their interdependencies further
complicate the prioritization.

Axel Baumann et al.

25

TABLE 2: Observations (F1-F6) of the behavior of the measures in the performance profile shown in Figure 15(b). Out of these observations,
the above listed assumptions (A1-A3) of the algorithm performance can be made.

F1 Sensoanm is nearly maximal, but Precoan is only around 0.85
F2 The strict detection measures behave the other way round: Precg, is maximal, but Sensge is approximately 0.7
F3 The lenient detection measures are maximal
F4 FP track resistance (FPTR) and FN track resistance (FPTR) are maximal
F5 Merge resistance is about 0.7
F6 Object purity is about 0.7
Al F1, F3, F4
no regions with activity were overlooked
A2 F2, F3, F5

some objects were not separated but merged. This can be derived directly from the nonoptimal values of the merge resistance.
The observation is confirmed by the strict Sensqe; being nonoptimal in contrast to the lenient Sensgetovi

A3 Fo6

at least one GT object is not being tracked correctly for a significant amount of time

5.2. Sequence subsets for scenario evaluation

As described in Section 2.3, it is important to establish the
results using an appropriate sequence subset. In the case
of perimeter protection, for example, it is of no use to
evaluate the algorithms using sequences containing scenarios
from a departure platform. Then, the performance of the
algorithm will depend on acquisition conditions as well as
sequence content, both containing more or less challenging
situations. For a better evaluation of the algorithms, dividing
the sequences into subsets and analyzing each condition
separately are often necessary.

Furthermore, different parameter settings might be used
in the system for day and night scenarios, or other acquisition
conditions. Then, the algorithm should be evaluated for
each of these scenarios separately on representative sequence
sets. However, in practice, the surveillance system will
either run on one parameter set the whole time, or it will
need to determine the different conditions itself and switch
the parameters automatically. Therefore, a wide variety of
acquisition conditions need to be evaluated for an overall
behavior of the system.

In the ATE, the algorithms are evaluated on all available
sequences. For the evaluation task, individual subsets of these
sequences can then be chosen for deeper investigations of
algorithm performance.

5.3. Performance profiles

Parallel visualization of multiple measure values represents
the performance profile for one or several aspects for the
different algorithm versions simultaneously. The bars of
the resulting measures of the two versions to be compared
are always arranged next to each other. This method
immediately highlights to improvements or deterioration.
Evaluating the performance profile requires experience, since
the metrics are subject to certain dependencies. Isolated
observation of some measures, for example, regarding

precision without sensitivity, is thus not very reasonable
either.

Due to the amount of different measures, displaying
them all together in a performance profile is not feasible.
For a specific evaluation task, typically only a certain subset
is of interest. For example, a developer who is interested in
evaluating changes to a tracking algorithm does not want to
regard classification measures. Therefore, a preselection of
measures to be displayed is usually done.

To demonstrate how metrics reflect the weaknesses of
algorithms, two short sections of the well-known PETS 2001
dataset [8] were chosen and typical errors like merging and
disturbance regions were simulated by labeling them. From
the manually generated AR data and the corresponding GT,
selected measures were computed and will be analyzed in the
following.

5.3.1. Example 1: reading performance profiles

Figure 15(a) shows the first simple example from the PETS
2001 training dataset 1, where the passing of a car and a
person can be seen. Here, it is simulated that the video
analysis system is not capable of tracking both objects
separately but rather merging them into a single object.

Usually, the measures are regarded without knowing
which errors the algorithm has made. With the help of
a performance profile (see Figure 15(b)), the performance
and shortcomings of the algorithm can be analyzed. Thus,
the task is to draw conclusions concerning the algorithm
behavior out of the observed measures. For our example, the
observations and subsequent assumptions can be found in
Table 2.

The temporal development of the measures
(Figure 15(c)) displays effectively the frames in which
measures are affected. The upward trend of the curve
representing Precoam is mostly due to the effects of the
approximation using the bounding box. At the beginning
of the merge, a large bounding box is spanned over both

26

EURASIP Journal on Image and Video Processing

Frame 0 Frame 55 Frame 90

(a)

s S 888 FEFEMAMUTETTYYEENAEM
2255588 CEEEBBEEEEE0ET
SESPEE RS2 3RZIZrvEEEEERS
EEE5RsR8EE R EEERZ AR
253 LE32S xeZ3388%5 0
|4 LA | A
=& e u'e s
g, PED
Hw“‘é»F
8 Algorithml
m Algorithm2
(b)

Frame 170 Frame 265 Frame 320
1 'i. : ; " =
i i i I
i i I
1 1
i |
i i
i i
1]
. N L . .
100 150 200 250 300 350
Frames
1 " " —
| Pl ! o
0.8 | po! !]
\ P! oy
0.6 P D o
0.4 f ‘
- === I r= L
0.2 f i '
0 1 1 I 1 1
0 50 100 150 200 250 300 350
Frames
—— Precget == Precgetovl
~— Sensdet — Sensdetovl

(c)

FiGURrE 16: Example 2: two people crossing a waving tree, extract from the PETS 2001 testing dataset 3. Simulation of two algorithms coping
differently with the movement of the tree and generating false detections there. (a) Screen shots from the sequence with bounding boxes of
GT (top) and the results of Algorithm 1 (middle) and Algorithm 2 (bottom) added. (b) Performance profile of the two simulated algorithms
visualized in parallel to compare the overall measures for them. (c) The temporal development of selected measures for Algorithm 1 (top)
and Algorithm 2 (bottom) displays selected measure values for each frame.

car and person. This bounding box shrinks successively, and
thus also the segmented space between the two GT objects
which caused the bad values of Precoam.

5.3.2. Example 2: comparing performance profiles

Example 1 (Section 5.3.1) shows a case in which algorithm
errors are successfully identified via their effects on the
chosen measures. In practice, it is usually not so simple.
When several objects occur simultaneously in a sequence,
the complexity grows rapidly. Example 2 (see Figure 16(a))
shows an extract from the PETS 2001 testing dataset 3, in
which two people walk past a moving tree. In contrast to

the last example, two different, fictive algorithm versions
are compared here. The algorithms differ in their reaction
to the moving tree. The first algorithm detects the moving
tree continuously as one single large object, and the second
algorithm finds six small objects in the region of the tree.
Note that the tree should not be detected at all.

Examining the corresponding performance profile (see
Figure 16(b)), several facts can be observed and lead to the
hypotheses in Table 3. Based on these statements, assump-
tions of the changes between the two algorithm versions can
be made. First of all, the presence of permanent disturbances
can be assumed (Al and A2) for both algorithms. For
Algorithm 2, more AR objects result from the disturbance

Axel Baumann et al.

27

TaBLE 3: Observations (F1-F10) on the behavior of the measures in the performance profiles shown in Figure 16(b). Algorithm 1 is used
as reference version, and the changes to Algorithm 2 are described. Out of the observations, the above listed assumptions (A1-A7) of the

algorithm performances can be made.

F1 Precoam is on a low level, but significant improvements can be seen, whereas Sensoay is near maximum but decreases slightly

F2 Precye is on a low level and deteriorates further, whereas Sensge nearly doubles to 0.8

F3 Precgeiow drops from a high level to low values, and Sensgeov is maximal in both cases

F4 Strict FP‘ track.resisFance (FPTR) starts from a middle level and degrades significantly, while the strict FN track resistance
(FNTR) is maximal in both cases

F5 The lenient FP track resistance (FPTR Ovl) drops from maximum to mid-level

F6 Merge resistance, which is considerably lower than maximum, improves slightly

F7 Tracker purity drops from maximum to mid-level

F8 Object purity is on a middle level and changes only marginal

F9 FIT resistance (FITR) drops from maximum to mid-level

F10 The alarm correctness rate (ACR) stays unchanged at around 0.8

Al F3, F10

in about 20 percent of the frames, objects are detected though none are contained in the GT. No alarm case has been overlooked

as Sensgeioyl 1s maximal

the amount of FP tracks is increased. Instead of some large objects, there are now more smaller objects, as Precoam has grown

all FP objects of Algorithm 1 touch for at least one frame a GT Objekt, whereas this is not the case for Algorithm 2 as the

for a large amount of the sequence there exist FP objects as the detection rate is on a low level and the strict FP track resistance

the detection rate is enhanced because of additional AR objects which correspond to GT objects

A2 F4
no GT track has been overlooked
A3 F1, F4, F5
Ad F3, F4, F5
lenient FP track resistance is not maximal there
A5 F2, F3, F4, F10
at middle values
A6 F2, F8, F9
A7 F7

the additional AR objects (A5) of Algorithm 2 only have short correspondences to GT objects in comparison to their lifetime

region but collectively, they are smaller in comparison to
Algorithm 1 (A3). The fundamental problem of Algorithm
1, the alarm status being wrong for 20 percent of the frames
(A5), is still in existence for Algorithm 2. The seemingly
significant improvement of Sensger is due to coincidental
correspondences to the disturbance objects (A6, A7) and
no real performance enhancement of the algorithm. This
conclusion is confirmed by the fact that F-Scorege is equal
for both algorithms.

The performance profile used for this example with a
short sequence, and only one challenge is already quite
complex and not easy to evaluate. Considering the case of
an evaluation over a large number of sequences at once, it
becomes obvious that, due to blending and compensation
effects of algorithm peculiarities, it is even more difficult to
draw conclusions about the change between two versions of
an algorithm. Here, statistical analysis as provided by the
ATE, for example, information about which sequences have
the largest changes for distinct measures, can help. Would
a change like the one of Sensger in Example 2 occur in the
statistics, a next step would be to take a specific look at the
performance profile of this sequence and at the temporal

progress of Sensger and other relevant measures for further
analysis.

Regarding the temporal progress curves in Figure 16(c),
it can be seen that Precger is never maximal for the whole
sequence for both algorithms. This indicates the presence
of FP objects for the duration of the whole sequence. Fur-
thermore, the temporal range in the middle of the sequence,
where both algorithms have problems, attracts attention
immediately as well as the time slots where Algorithm 2
performed better than Algorithm 1 for Sensge. This explains
the strong improvement of the average value of this measure
for Algorithm 2.

A next step could be to look at the frames in which errors
were identified, with GT and AR bounding boxes overlaid, to
find the real cause of the problem. This approach is especially
helpful if the sequence is too long to view it completely at a
reasonable expenditure of time.

5.4. Automatic evaluation

The procedure described in Section 5.3.2 for comparing
two ATE passes by manually comparing their performance

28

EURASIP Journal on Image and Video Processing

profiles is applicable as long as the focus is on only a
few different sequences or all sequences are similar and
not all measures are included into the evaluation process.
If the evaluation commences on a rather large set of
different sequences and the amount of relevant measures
cannot be limited preliminarily, this evaluation method
will be very laborious. This is where automatic statistical
arrangements support in pointing out significant differences
and in visualizing them. ATE output answering for example
the following questions can be considered.

(i) Which measure changed most significantly on aver-
age?

(ii) Which sequences show most changes?

(iii) Which sequences feature the best or worst results for
a certain measure?

(iv) How many sequences show improvements, how
many show deterioration?

Automatic profile evaluation can also support qualitative
statements such as the following.

(1) “The current version is more sensitive than the
reference version.”

(ii) “The current version is more capable of detecting
objects separately than the reference version.”

(iii) “The current version is less sensitive to disturbances.”

Very often it can be observed that optimization of the
algorithm resulting in improvements for certain sequences
has a negative impact on other sequences. Averaging the
measure values over all kinds of sequences may lead to
compensational effects which distort the impression of the
changes. Therefore, it is better to categorize sequences into
subsets which are then evaluated separately. Another way
is to have the ATE cluster single sequences by certain
features and providing statements such as: “64 percent of
the sequences featuring illumination changes have fewer
false alarms.” Meaningfully sorted arrangements give a quick
overview on which performance differences two compared
versions of the algorithm have. Furthermore, they provide
starting points for thoroughly inspecting the results. For
frame-based measures, for example, the temporal progress
of the measures for single sequences can be examined next,
including looking at interesting parts of the video by means
of GT and AR bounding boxes drawn into the frame.

6. SUMMARY AND CONCLUSION

This paper presents an overview of surveillance video algo-
rithm performance evaluation. Starting with environmental
issues like ground truth generation (Section 2.2) and the
choice of a representative benchmark data set to test the
algorithms (Section 2.3), a complete evaluation framework
has been presented (Section 3). The choice of the benchmark
data set is of great importance as the explanatory power of
the measures is not retained for a badly arranged compilation
of the sequences.

The automated test environment (ATE, Section 3) aids
developers in getting a general idea of the performance
of an algorithm via an overview of the measures for a
group of sequences. Furthermore, it aids in systematically
finding critical regions within a single sequence to examine
specific behavioral details of algorithms. However, the test
environment can only be used sensibly if the user has an
accurate knowledge of the employed measures as well as their
interactions. Important questions are, for example, what
does a specific measure actually measure, and how are the
measure values combined. Computational details have to be
considered for these questions as well. It is not possible to
appropriately describe the performance of an algorithm with
only one measured value though, for specific algorithms,
emphasis can be laid on single measures by assigning them
larger weights in their aggregation.

For a better understanding of surveillance video algo-
rithm performance metrics published in the literature, an
exhaustive overview together with an discussion of their
usefulness has been given (Section 4). The definitions of
these measures often differ only marginally or even not at all.
The differences can usually be found in the implementation
details like using different averaging strategies. These com-
putational details are of crucial importance for the result-
ing measure values. However, they are often documented
insufficiently. An example is the assignment of AR and GT
objects (Section 4.2), which is an important step in the
computation of many measures and should be implemented
with particular care. Here, uniqueness and comprehensibility
are of significance. Special attention has also been given to
the problem of averaging measures within the frames as
well as over one or several sequences (Section 4.11) as this
has a large impact on the expressiveness of the computed
measures.

Out of the results of the analysis of the measures and the
presentation of desirable modifications, a subset of expedient
measures is proposed for the thorough analysis of video
algorithm performances. Evaluation of measures has been
done exemplarily for two simple scenarios, the first analyzing
a performance profile of a merge of a car and a person
(Section 5.3.1), and the second analyzing the differences in
the performance of two different fictional algorithms coping
with two people walking past a moving tree (Section 5.3.2).
Even for these simple examples, the derivation of the
algorithm peculiarities out of the regarded measures is a
challenging task. When the sequences are longer, or a large
set of sequences is regarded, the interactions of the different
phenomena and effects on the measures become quite com-
plex. Therefore, statistical analysis for systematic detection
and evaluation of regions of interesting algorithm behavior
in complex scenarios has been introduced (Section 5.4).

With this paper, a better understanding of evaluating
video surveillance system performance is propagated by
increasing the comprehension of the properties and peculiar-
ities of hitherto published measures and the computational
and environmental details which have a large impact on
the evaluation results. Attention is brought to these details
to encourage researchers to document them properly when
describing the performance of their algorithms. Thus, the

Axel Baumann et al.

29

comparability of published algorithms is also augmented as
the understanding of the different measures used for their
evaluations allows a better judgement of their performance.

REFERENCES

[1] H. Dee and S. Velastin, “How close are we to solving
the problem of automated visual surveillance? A review
of real-world surveillance, scientific progress and evaluative
mechanisms,” Machine Vision and Applications. In press.

[2] E Porikli, “Achieving real-time object detection and tracking
under extreme conditions,” Journal of Real-Time Image Pro-
cessing, vol. 1, no. 1, pp. 33—40, 2006.

[3] CAVIAR, “Context aware vision using image-based active
recognition,” http://homepages.inf.ed.ac.uk/rbf/ CAVIAR/.
[4] CLEAR, “Classification of events, activities and

relationships—evaluation campaign and workshop,” http://
www.clear-evaluation.org/.

[5] CREDS, “Call for real-time event detection solutions (creds)
for enhanced security and safety in public transportation,”
http://www.visiowave.com/pdf/ISAProgram/CREDS.pdf.

[6] ETISEO, “Video understanding evaluation,” http://www-sop
.nria.fr/orion/ETISEO/.

[7] i-LIDS, “Image library for intelligent detection systems,”
http://scienceandresearch.homeoffice.gov.uk/hosdb2/
physical-security/detection-systems/i-lids/.

[8] IEEE International Workshop on Performance Evaluation of
Tracking and Surveillance (PETS), http://pets2007.net/.

[9] VACE, “Video analysis and content extraction,” http://www
.perceptual-vision.com/vt4ns/vace_brochure.pdf.

[10] A. Senior, A. Hampapur, Y. Tian, L. Brown, S. Pankanti,
and R. Bolle, “Appearance models for occlusion handling,”
in Proceedings of the IEEE International Workshop on Visual
Surveillance and Performance Evaluation of Tracking and
Surveillance (VS-PETS 01), Kauai, Hawaii, USA, December
2001.

[11] J. Black, T. Ellis, and P. Rosin, “A novel method for video
tracking performance evaluation,” in Proceedings of the IEEE
International Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance (VS-PETS 03), pp.
125-132, Nice, France, October 2003.

[12] L. M. Brown, A. W. Senior, Y. Tian, J. Connell, and A.
Hampapur, “Performance evaluation of surveillance systems
under varying conditions,” in Proceedings of the 2nd Joint IEEE
International Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance (VS-PETS 05), Beijing,
China, October 2005.

[13] D. P. Young and J. M. Ferryman, “PETS metrics: on-line

performance evaluation service,” in Proceedings of the 2nd

Joint IEEE International Workshop on Visual Surveillance and

Performance Evaluation of Tracking and Surveillance (VS-

PETS 05), pp. 317-324, Beijing, China, October 2005.

S. Muller-Schneiders, T. Jager, H. S. Loos, and W. Niem,

“Performance evaluation of a real time video surveillance

system,” in Proceedings of the 2nd Joint IEEE International

Workshop on Visual Surveillance and Performance Evaluation

of Tracking and Surveillance (VS-PETS 05), vol. 2005, pp. 137—

143, Beijing, China, October 2005.

[15] ETISEO, “Internal technical note metrics definition—
version 2.0, 2006, http://www.silogic.fr/etiseo/iso_album/
eti-metrics_definition-v2.pdf.

[16] A. T. Nghiem, E Bremond, M. Thonnat, and R. Ma, “A
new evaluation approach for video processing algorithms,”

(14]

[20]

~
G

in Proceedings of the IEEE Workshop on Motion and Video
Computing (WMVC 07), p. 15, Austin, Tex, USA, February
2007.

C. E. Erdem, B. Sankur, and A. M. Tekalp, “Performance
measures for video object segmentation and tracking,” IEEE
Transactions on Image Processing, vol. 13, no. 7, pp. 937-951,
2004.

T. List and R. B. Fisher, “CVML—an XML-based computer
vision markup language,” in Proceedings of the 17th Interna-
tional Conference on Pattern Recognition (ICPR 04), vol. 1, pp.
789-792, Cambridge, UK, August 2004.
PETS metrics on-line evaluation
.petsmetrics.net/.

ViPER, “The video performance evaluation resource,”
http://viper-toolkit.sourceforge.net/.

T. Ellis, “Performance metrics and methods for tracking in
surveillance,” in Proceedings of the 3rd IEEE International
Workshop on Visual Surveillance and Performance Evaluation
of Tracking and Surveillance (VS-PETS 02), pp. 26-31, Copen-
hagen, Denmark, June 2002.

G. R. Taylor, A. J. Chosak, and P. C. Brewer, “OVVV: using
virtual worlds to design and evaluate surveillance systems,”
in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 07), pp. 1-8,
Minneapolis, Minn, USA, June 2007.

M Nilsback and A. Zimmerman, “Delving into the whorl of
flower segmentation,” in Proceedings of the British Machine
Vision Conference, Warwick, UK, September 2007.

T. List, J. Bins, J. Vazquez, and R. Fisher, “Performance
evaluating the evaluator,” in Proceedings of the 2nd Joint IEEE
International Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance (VS-PETS 05), pp.
129-136, Beijing, China, October 2005.

AVITrack, “Aircraft surroundings, categorised vehicles & indi-
viduals tracking for apron’s activity model interpretation &
check,” http://www.avitrack.net/.

C. Jaynes, S. Webb, R. Steele, and W. Xiong, “An open
development environment for evaluation of video surveillance
systems,” in Proceedings of the 3rd IEEE International Workshop
on Visual Surveillance and Performance Evaluation of Tracking
and Surveillance (VS-PETS 02), pp. 32-39, Copenhagen,
Denmark, June 2002.

CANDELA, “Content analysis and network delivery architec-
tures,” http://www.hitech-projects.com/euprojects/candela/.

T. Fawcett, “An introduction to ROC analysis,” Pattern Recog-
nition Letters, vol. 27, no. 8, pp. 861-874, 2006.

N. Lazarevic-McManus, J. Renno, G. A. Jones, et al., “Perfor-
mance evaluation in visual surveillance using the F-measure,”
in Proceedings of the 4th ACM International Workshop on Video
Surveillance and Sensor Networks, pp. 45-52, Santa Barbara,
Calif, USA, October 2006.

F. Bashir and F Porikli, “Performance evaluation of object
detection and tracking systems,” in Proceedings of the 9th IEEE
International Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance (VS-PETS 06), New
York, NY, USA, June 2006.

N. Lazarevic-McManus, J. Renno, D. Makris, and G. Jones,
“Designing evaluation methodologies: the case of motion
detection,” in Proceedings of the 9th IEEE International Work-
shop on Visual Surveillance and Performance Evaluation of
Tracking and Surveillance (VS-PETS 06), pp. 23-30, New York,
NY, USA, June 2006.

V. Manohar, P. Soundararajan, H. Raju, D. Goldgof, R.
Kasturi, and J. Garofolo, “Performance evaluation of object

service, http://www

30

EURASIP Journal on Image and Video Processing

(33]

[34]

(35]

(37]

(38]

(39]

(40]

[41]

[42]

detection and tracking in video,” in Proceedings of the 7th Asian
Conference on Computer Vision (ACCV 06), vol. 3852 of Lecture
Notes in Computer Science, pp. 151-161, Hyderabad, India,
January 2006.

K. Smith, D. Gatica-Perez,]J. Odobez, and S. Ba, “Evaluating
multi-object tracking,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR 05), vol. 3, p. 36, San Diego, Calif, USA, June 2005.

A. T. Nghiem, F. Bremond, M. Thonnat, and V. Valentin,
“ETISEO, performance evaluation for video surveillance sys-
tems,” in Proceedings of the IEEE Conference on Advanced Video
and Signal Based Surveillance (AVSS 07), pp. 476481, London,
UK, September 2007.

P. Correia and F. Pereira, “Objective evaluation of relative
segmentation quality,” in Proceedings of the IEEE International
Conference on Image Processing (ICIP 00), vol. 1, pp. 308-311,
Vancouver, Canada, September 2000.

Y. Zhang, “A review of recent evaluation methods for image
segmentation,” in Proceedings of the 6th International Sympo-
sium on Signal Processing and Its Applications (ISSPA 01), vol.
1, pp. 148-151, Kuala Lumpur, Malaysia, August 2001.

J. C. Nascimento and J. S. Marques, “Performance evaluation
of object detection algorithms for video surveillance,” IEEE
Transactions on Multimedia, vol. 8, no. 4, pp. 761-774, 2006.
C. Needham and R. Boyle, “Performance evaluation metrics
and statistics for positional tracker evaluation,” in Proceedings
of the 3rd International Conference on Computer Vision Systems
(ICVS 03), pp. 278-289, Graz, Austria, April 2003.

X. Desurmont, R. Sebbe, F. Martin, C. Machy, and J.-E
Delaigle, “Performance evaluation of frequent events detec-
tion systems,” in Proceedings of the 9th IEEE International
Workshop on Visual Surveillance and Performance Evaluation of
Tracking and Surveillance (VS-PETS 06), New York, NY, USA,
June 2006.

F. Ziliani, S. Velastin, F. Porikli, et al., “Performance evaluation
of event detection solutions: the CREDS experience,” in
Proceedings of the IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS 05), pp. 201-206,
Como, Italy, September 2005.

Y. Li, A. Dore, and J. Orwell, “Evaluating the performance of
systems for tracking football players and ball,” in Proceedings
of the IEEE International Conference on Advanced Video and
Signal Based Surveillance (AVSS 05), pp. 632—-637, Como, Italy,
September 2005.

R. Spangenberg and T. Déring, “Evaluation of object tracking
in traffic scenes,” in Proceedings of the ISPRS Commission
V' Symposium on Image Engineering and Vision Metrology
(IEVM 06), Dresden, Germany, September 2006.

	1. INTRODUCTION
	2. RELATED WORK
	2.1. Evaluation without ground truth
	2.2. Ground truth
	2.3. Benchmark data set

	3. EVALUATION FRAMEWORK
	3.1. System setup
	3.2. Work flow
	3.3. Measure tool
	3.4. Preparation and presentation of results

	4. METRICS
	4.1. Basic notions and notations
	4.2. Object matching
	4.3. Segmentation measures
	4.4. Object detectionmeasures
	4.5. Object localization measures
	4.6. Tracking measures
	4.7. Event detection measures
	4.8. Object classification measures
	4.9. 3D object localization measures
	4.10. Multicamerameasures
	4.11. The problem of averaging

	5. EVALUATION
	5.1. Selecting and prioritizing measures
	5.2. Sequence subsets for scenario evaluation
	5.3. Performance profiles
	5.4. Automatic evaluation

	6. SUMMARY AND CONCLUSION
	REFERENCES

