
Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2008, Article ID 824195, 14 pages
doi:10.1155/2008/824195

Research Article
A Color Topographic Map Based on the Dichromatic
ReflectanceModel

Michèle Gouiffès and Bertrand Zavidovique

Institut d’Electronique Fondamentale, CNRS UMR 8622, Université Paris-Sud 11, 91405 ORSAY Cedex, France
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Topographic maps are an interesting alternative to edge-based techniques common in computer vision applications. Indeed, unlike
edges, level lines are closed and less sensitive to external parameters. They provide a compact geometrical representation of images
and they are, to some extent, robust to contrast changes. The aim of this paper is to propose a novel and vectorial representation
of color topographic maps. In contrast with existing color topographic maps, it does not require any color conversion. For this
purpose, our technique refers to the dichromatic reflectance model, which explains the distribution of colors as the mixture of
two reflectance components, related either to the body or to the specular reflection. Thus, instead of defining the topographic map
along the sole luminance direction in the RGB space, we propose to design color lines along each dominant color vector, from the
body reflection. Experimental results show that this approach provides a better tradeoff between the compactness and the quality
of a topographic map.
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1. INTRODUCTION

According to the morphology concepts [1], the most relevant
information of an image is provided by the level sets,
independently of their actual level. The topographic map [2]
embeds the boundaries of the level sets, that is, it is defined
as the collection of level lines. Their computation is quite
simple, since they can be obtained by a multithresholding
procedure. However, they are said to be more stable than
edges which suffer from incompleteness and sensitivity to
external parameters, for example, threshold to extract them
after some gradient computation. The level lines never cross
but superimpose and completely structure the image. More-
over, this representation is invariant against uniform contrast
changes. These properties explain the interest in computer
vision applications: extraction of meaningful lines to pro-
duce a more compact representation of the image [3–5],
robust image registration and matching correspondences
[6, 7], segmentation through variational approaches [8, 9],
where level sets provide a good initialization for the iterative
process. Moreover, robust features, such as junctions and

segments of level lines, have been used successfully in match-
ing processes, for instance in the context of stereovision for
obstacle detection [10].

The challenging problem addressed in this paper is the
definition of a color extension to gray-level lines. Due to
the increased volume of data by a factor of three, expected
benefits are an improved robustness of the application, that
is usually the case with multispectral fusion in general, and
a significant compression for the same information. The
computer vision procedure has to be robust to illumination
changes, especially to contrast changes, else than respective
to some class of visual context (e.g., given contrast changes)
then through experiments. Information would better relate
to some tasks to be completed in a satisfactory manner.
Indeed, using color in the context of segmentation or
matching can largely reduce ambiguities while improving the
quality of results.

The main difficulty in defining color lines is to satisfy at
least the same properties as those of the gray lines, beginning
with the inclusion property. Only few extensions have been
proposed so far, as in [11, 12]. Both works agree not to treat
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each color component in a marginal manner. This would
produce some redundant results and artifacts, and bring a
puzzling question up: fusing lines from different color bands
while maintaining the inclusion property. The authors use
the HSV color space, the components of which are less
correlated than RGB’s. Also, this representation is claimed
to be in adequacy with perception rules of the human visual
system. However, they favor the intensity for the definition
of the topographic map. Unfortunately, since the hue is ill-
defined with unsaturated colors, this kind of a representation
may output irrelevant level sets due to the noise produced by
the color conversion at a low saturation. A sensible and trivial
solution should be to use a modified HSV space able to take
the color relevancy into account, as done for instance in [13]
for the definition of a color gradient.

In order to avoid this kind of issue, we define a novel
concept of color lines by considering the physical process
of interaction between light and matter, which explains
the color perception. Indeed, the spectrum of the radiance
reaching the sensor depends jointly on the light spectrum
and on the material features. This phenomenon can be
described in the RGB space by the dichromatic reflectance
model [14]. Notwithstanding its simplicity, this model has
proved to be relevant for many kinds of materials and it is
widely used in computer vision [15–20].

In this formalism, any color of a uniform inhomoge-
neous and Lambertian object is located roughly along a
straight line linking the origin of the RGB space (black) to the
intrinsic color of the material. Motivated by such modeling,
the proposed color topographic map is a multidirectional
extension of the unidirectional gray-level lines, since the
color sets and lines are defined along every diffuse color
in a polar fashion. Thus, it is additionally adaptive to the
image content, since the directions of the diffuse colors
are computed. Last but not least, this new representation
does not require any nonlinear color conversion, therefore
reducing the subsequent artifacts. The main expected benefit
is a reduction of the amount of level lines while preserving
the image structure so that the complexity of the appli-
cation concerned, for example matching or tracking, be
lowered.

This article is organized as follows. Section 2 recalls
the definition and main properties of gray-level lines and
details the principles of the existing color topographic maps.
Then, Section 3 details the image formation model on which
the proposed method is based: the dichromatic reflectance
model. The novel color topographic map is the subject of
Section 4. We first explain its main principles, and second
we focus on its technical implementation. Its invariance
to color changes is also discussed. To conclude, Section 5
asserts the relevance of the proposed method by comparing
our topographic map with results from preiously existing
techniques.

2. TOPOGRAPHIC REPRESENTATION OF
THE IMAGE

The topographic map was introduced in [2]. This section
recalls its definition and its main properties.

2.1. Gray topographicmap

Definition 1. Let I(p) be the image intensity at pixel p. I can
be decomposed into upper level sets

N u(E) = {p, I(p) ≥ E
}

(1)

or lower level sets

N l(E) = {p, I(p) ≤ E
}
. (2)

The parameter E expresses the considered level. The topo-
graphic map is obtained by computing the level sets for each
E in the gray-level range: E ∈ [0, . . . , 2nb − 1], for an image
coded on nb digits.

Property 1. Equations (1) and (2) yield the inclusion prop-
erty of level sets:

N u(E + dE) ⊂ N u(E), N l(E) ⊂ N l(E + dE),

where E + dE ≥ E .
(3)

Property 2. Both images of upper level sets IN u or lower level
sets IN l contain all information needed to reconstruct the
initial image I by using the occlusion O and transparency
T operations :

I(p) = O
[
IN u(p)

] = sup
{
E , p ∈ N u

E
}

(4)

or

I(p) = T
[
IN l (p)

] = inf
{
E , p ∈ N l

E
}
. (5)

Definition 2. Boundaries of level sets are called level lines
LE and form a set of Jordan curves. This set provides a
comprehensive description of the image. Indeed, the latter
can be reconstructed from it, unlike from edges. The set of
the level lines is called the topographic map and forms an
inclusion tree.

Property 3. Because of the inclusion property of level sets
(Property 1), level lines do never overlay or cross.

Despite the good properties of gray-level lines, few
works have been carried out to propose their extension to
multispectral images. To our knowledge, only two methods
have been proposed, they are detailed hereafter.

2.2. Color topographicmap

The main difficulty to obtain an adequate description of
color lines (i.e., showing the same properties as level lines:
completeness, inclusion, and contrast invariance) is to deal
with the three-dimensional nature of color. The gray scale
is naturally, totally, and well ordered, whereas the 3D color
cube is not easily ordered in a way that fits the rules of color
perception.

Colored topographic map

To overcome the difficulty, the authors of [11] propose to
compute the lines in the HSV space, less correlated than
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RGB and better fitting the human perception. First, they
compute the topographic maps of luminance and for each
connected component they consider it as piecewise constant,
the color of which is given by the mean saturation and
hue. They show that the geometric structure of a color
image is contained in its gray-level topographic map and
the geometric information provided by color, far from
contradicting the gray-level geometry, is complementary. As
a conclusion, the color lines are similar to the gray-level lines,
but the colors of the sets can be quite different from the
original image content.

Total order in the HSV space

However, two different colors can have the same intensity
values, therefore some information is lost by considering
gray levels only. The method proposed by [12] is to our
mind more appropriate to color handling since the three
components of HSV are considered. The authors define
a total lexicographic order of colors on R3 by favoring
intensity first, then hue and saturation, in order to imitate
the perception rules of the human visual system. Let U1 =
(L1,H1, S1) and U2 = (L2,H2, S2) be two colors; the order
between U1 and U2 is given by

U1 � U2 if
(
L1 � L2

)
or
[(
L1 = L2

)
and

(
H1 < H2

)]

or
[(
L1 = L2

)
and

(
H1 = H2

)
and

(
S1 < S2

)]
.

(6)

Although it follows the human visual system, this specific
order does not take into account specificities of the HSV
space, namely, the fact that hue is ill-defined for low
saturation. Defining directly color sets in the RGB space is
one of the solutions to address that question.

In the next section, we detail the reflectance model used
to define our color topographic map.

3. THE DICHROMATIC REFLECTANCEMODEL

The dichromatic reflectance model proposed by Shafer [14]
is based on the Kubelka-Munk theory. It states that any
inhomogeneous dielectric material, uniformly colored and
dull, reflects light either by interface reflection or by body
reflection. In the first case, the reflected beam preserves more
or less the spectral characteristics of the incident light, thus
the color stimulus is generally assumed to be the same as
the illuminant color. The body reflection results from the
penetration of the light beams in the material, and from
its scattering by the pigments of the object. It depends
on the wavelength λ and on the physical characteristics
of the considered material. Theoretically, the dichromatic
reflectance model is only valid for the scenes which are
lighted by a single illuminant without any interreflections.
Despite these limitations, it has proved to be appropriate for
many materials and many acquisition configurations.

Let P be a point of the scene and p its projection into the
image. In general, the object radiance L(λ,P) can be seen as

the sum of two radiative terms, the body reflection Lb(λ,P)
and the surface radiance Ls(λ,P):

L(λ,P) = Lb(λ,P) + Ls(λ,P). (7)

Each of the terms Lb and Ls can be decomposed, such that

L(λ,P) = I(λ,P)Rb(λ,P)mb(P) + I(λ,P)ms(P), (8)

where mb and ms are two functions which depend only
on the scene geometry, whereas Rb(λ,P) and I(λ,P) refer,
respectively, to the diffuse radiance and illuminant spectrum.

By integration of the stimulus on the tri-CCD camera,
of sensitivities Si(λ) (i = R,G,B), it leads to the color
component of the diffuse reflection cb(p) = (

cRb , cGb , cBb
)T

and the color vector of the specular reflection cs(p) =
(
cRs , cGs , cBs

)T
at pixel p:

cib(p) = Ki

∫

λ
Si(λ)I(λ,P)Rb(λ,P)dλ,

cis(λ, p) = Ki

∫

λ
Si(λ)I(λ,P)dλ.

(9)

The term Ki expresses the gain of the camera in the sensor i.
Thus, the dichromatic model in RGB space becomes

c(p) = mb(p)cb(p) + ms(p)cs(p). (10)

According to (10), the colors of a material are distributed
in the RGB space on a planar surface defined by cs(p) and
cb(p) as it is sketched in Figure 1(a). However, according to
[21–23], the colors of a specular material are located more
precisely in an L-shape cluster; the vertical bar of the L
goes from the origin RGB = (0, 0, 0)T to the diffuse color
component cb, and the horizontal bar of the L goes from cb to
the illuminant color cs. That case is illustrated in Figure 1(b).
For faintly saturated images, colors are distributed roughly
along the intensity direction.

In the remaining of the article, the objects are assumed
to be Lambertian, so that the illuminant contribution is
neglected and the term ms(p)cs(p) vanishes in (10).

Remark 1. In other words, an approximation is made here:
in changing the location of the illuminant color in the RGB
space, translation is the same for all represented diffuse
colors. Therefore, colors are supposed to be located around
a few dominant directions, which appears to be true in
practice. As an example, Figure 2 shows two color images
with the representation of their colors in the RGB space.
The image “Caps” is an ideal example since the objects are
well uniform and the dominant colors are quite different.
Therefore, each diffuse vector is related to a single object
in the image. On the other hand, the image “Baboon”
is a strongly textured image for which it is difficult to
distinguish between dominant color directions. In spite of
being based on the approximation of the dichromatic model,
the proposed algorithm has to be efficient on all kinds of
images .
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Figure 1: (a) General dichromatic model. The colors of a homogeneous material are located on a plane defined by cb and cs. (b) The L-shape
dichromatic model. This sketch corresponds to the specular case with mb = ms = 1/2.
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Figure 2: Examples of color images with their color distribution in the RGB space (ColorSpace Software, available on http://www.couleur
.org/). Body vectors are perfectly visible in the case of little textured images of “Caps.” The vectors are less distinguishable on the image of
“Baboon.”

4. A COLOR TOPOGRAPHICMAP IN ACCORDANCE
WITH THE DICHROMATICMODEL

One of our motivations is to extract color sets and lines
in accordance with the image content without any color
conversion. As underlined in the previous section, the colors
of most natural images are roughly located along a finite
number of straight lines in the RGB space, that is along
each body reflection vector cb. Our idea is to split the color
space up along these lines, around which the meaningful
information is contained. Consequently, our problem is
to lose the least possible of the meaningful information
conveyed by the image while scanning the RGB space in
accordance with this information in a polar fashion. Unlike
existing color sets [11, 12] (see Section 2.2), the proposed
technique does not require any color conversion and does not
favor the intensity as in [11].

The first subsection hereafter explains the main princi-
ples of the color set extraction, which involves two steps,
while the second subsection details more accurately the
technical steps of the algorithm.

4.1. Principles

While gray-level sets are extracted along the luminance axis
of theRGB space, our color sets are extracted along each body
reflection vector cb revealed by the image.

In that context, we can consider a spherical frame in the
RGB space, each color being located by its distance to the
origin (the black color) and its zenithal and azimuthal angles.
The first step of the algorithm captures colors according to
their distance from the black without distinguishing between
directions cb. Second, and that is one of the originalities
of the proposed method, the sets are defined independently
along each color dominant vector.

4.1.1. Stage 1: extraction of color setsN (E)

Privileging the distance instead of color directions stems
from this remark: when colors are not saturated, the
proposed method is equivalent to the gray-level sets, since
they are directly extracted along the luminance direction.
Similarly, when all colors are located on the same straight
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Figure 3: (a) Two isosurfaces in the RGB space. (b) Comparison between the isodistance sphere and its corresponding intensity plane.

line, treating the distance is sufficient. Favoring the distance
levels instead of the luminance ones allows to treat every
direction of the RGB space without any preference.

We choose to quantize this distance uniformly. Let us
consider K color sets at a distance E ∈ {Emin . . .Emax}. These
color sets consist of points such that their color distance to
the black is greater than E (for upper color sets).

Definition 3 (isosurface ΠE ). One calls ΠE the spherical
isosurface which is the locus of any color appearing at a
distance E from the black. As an example, Figure 3(a) shows
two isosurfaces, ΠE and ΠE+dE , in the RGB space.

Definition 4 (color set N (E)). Colors c can be layered into
upper level sets in the following way:

N u(E) =
{
p,
∥
∥c(p)

∥
∥ ≥ E

}
(11)

and the lower color sets are defined as

N l(E) =
{
p,
∥
∥c(p)

∥
∥ ≤ E

}
(12)

on the luminance axis, where R = G = B = I , that is strictly
equivalent to gray-level sets computed along the luminance
axis as in [2, 12]. For a given distance E , the surfaces ΠE

intersect each and every body vector color with regular and
identical steps E in the whole RGB space (see Figure 3(b))
which sketches a section along the luminance axis). On the
other hand, the corresponding intensity planes, called IE ,
intersect these vectors with varying steps E ′ ≥ E . Moreover,
since E ′ ≥ E , the upper gray-level sets are included in the
corresponding color sets.

Theoretically, the RGB components of the pixels belong-
ing to a color set N (E) are located along the straight line cb,
either above the spherical isosurface ΠE for upper color sets
or under ΠE for lower color sets.

Obviously, an upper color set N u(E + dE) is included
in the upper level set N u(E). Let us underline again that
the first interlevel sets contain the shading and dark pixels.
In opposition, the last ones are likely to contain specular
reflection and white objects.

Remark 2. The distance used here to define the color sets is
the Euclidean distance, but one could use distances related
to the sensitivity of the human visual system, such as
the CIELAB distance. Unfortunately, it would require the
conversion in the CIELAB space which needs some a priori
information about the illuminant color.

Definition 5 (connected component CCE ). One calls CCi
E

the ith connected component of the color set N (E) for a
given region 2D-ordering in the picture.

Remark 3. At this stage, a given object (or CCE ) can consist
of several dominant colors in the RGB space and, conversely,
the same body color can appear as several regions (objects)
in the image. In that respect, Figure 3(a) is likely representing
the colors of two real objects O1 and O2, the colors of which
are mixed on the same body vector.

Figure 4 illustrates the extraction of the CCE on the
image “House” (see Figure 4(a)). The upper color set (for
E = 60) produces two connected components, drawn in
white in Figure 1(b).

In addition to the physical interpretation, rather than
psychological, central to our approach, the prime difference
at that stage between [12] and ours is to (partially) order the
color cube in a polar fashion rather than Cartesian.

4.1.2. Stage 2: extraction of color subsetsM

Of course, most natural images contain several bodies of
different colors cb

i for i = 1 . . . Nt , where Nt is the unknown
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Figure 4: Color sets and subsets extraction in the image “House.” (a) Initial image. (b) Extraction of the first color set (E = 60). The white
pixels are the pixels belonging to the upper color set. (c) After spherical projection and clustering, the connected component CCE
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by two connected components of different colors CS2
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Figure 5: Projection of two body vectors onto the isosurface ΠE .
The body color cb

i projects in bi
E onto ΠE . In the image, pixels are

clustered to the nearest color.

number of body colors. In that case, the color sets defined in
stage 1 cannot be distinguished from one another, therefore
the angular information (zenithal and azimuthal angles) is
required. Figure 5 illustrates this situation for two dominant
vectors of the RGB space.

First of all, let us assume that the body colors cb
i are

known. We will explain a computation key in Section 4.2.
Let us focus on upper color sets, where all the colors of CCE

are located above the spherical isosurface ΠE . We call c(p) a
color present in CCE and cE (p) its spherical projection onto
the isosurface ΠE . In the same way, we call bi

E the projection
of the body color cb

i. Since the dichromatic model assumes

that the colors c(p) of a body are all located around a vector
cb, then all the spherical projections cE (p) are located around
bi

E onto the surface ΠE . In Figure 5, the projections on ΠE

form two density modes, drawn in red and turquoise in this
example.

Thus, we consider each connected componentCCE of the
color set N (E) and divide it into as many color subsets M as
there are body colors.

Definition 6 (color subset M(bi
E )). The color subset M(bi

E )
is the set of all pixels the color of which clusters around bi

E :

M(bi
E ) =

{
p,
∥
∥cE (p)− bi

E

∥
∥ <

∥
∥cE (p)− b j

E

∥
∥, ∀ j /= i

}
.

(13)

Each pixel gets the color value of the projected body
color b j

E from which it is the closest. Therefore, each color
set N (E) consists of different subsets of colors b j

E , the
corresponding pixels of which are segmented into connected
components of the image.

Definition 7 (connected component CSE ). One calls CSE
i the

ith connected component of the color subset M(bE ) for the
same image region-ordering as in Definition 3.

Figure 4(c) illustrates the color subsets CSE obtained on
the image “House,” for two body colors. We note that a single
color set CC can be divided into several color subsets CSE .

Figure 5 shows more precisely the projection from the
RGB space to the image “House.” Here, two subsets of
colors b1

E and b2
E are extracted, after the colors have been

projected onto ΠE .
At the next step of the algorithm, the color sets of level

E + dE are computed on each and every color subset CSE

previously obtained. Stages 1 and 2 are repeated as necessary.
The procedure stops when the level is equal to Emax.

Definition 8 (color lines). The color lines are defined as
the boundaries of the connected components extracted in
M(bi

E ).
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Eventually, benefits of the inclusion property inherent to
gray-level lines need to be secured. No order is explicitly
required between colors since the order is obtained directly
in the image by inclusion of the connected components. So
far, we did not explain the procedure to compute body colors.

To that aim, the next subsection details the steps involved
in the extraction of the topographic map.

4.2. Implementation

This subsection describes successively the technique chosen
to exhibit the body colors and the underlying data structure.

4.2.1. Computation of the body colors

Once the color sets N (E) have been extracted, the connected
components CCE can consist of several objects of different
body colors cb. Since the number of colors is unknown,
the separation problem translates into a nonsupervised
clustering problem. According to the dichromatic model,
colors are roughly clustered around a straight line linking
the black to the unknown body color. Among that cluster,
we assume that the most likely body color vector is the
line of maximum color density. Similarly, it is assumed
that by projecting these colors spherically onto ΠE , the
intersection of cb with ΠE will be the locus where the density
of projections is maximum.

Thus, for each connected component CCE extracted in
the color set N (E) (see Definition 2), we consider all color
vectors c(p) located in the upper color set and compute their
projection cE (p) = (RE ,GE ,BE )T onto the isosurface ΠE :

RE (p) = R·E
‖c‖ , GE (p) = G·E

‖c‖ , BE (p) = B·E
‖c‖ .

(14)

By considering the angles described in Figure 3(a), we carry
out the transformation from Cartesian coordinates cE to
spherical ones (ρ, θ,φ):

ρ = ∥∥cE

∥
∥,

θ = arctan
(
GE

RE

)
, if RE /= 0, θ = π

2
otherwise,

φ=arctan
(

BE

RE cosθ

)
, if RE cos θ /= 0, φ= π

2
otherwise.

(15)

In this 2D space defined by the zenithal and azimuthal
angles in the RGB space (θ,φ), we compute the histogram
HE (θ,φ) of the color projections originating from the
connected component CCE . Figure 6 shows an example of
histogramHE (θ,φ) for two body colors. Let us underline that
possible values of angles (θ,φ) can be quantized in order to
efficiently reduce the amount of data.

Eventually, the number of body colors stems from the
number of connected components in the 2D histogram
HE (θ,φ) (see Figure 6). On each connected component, the

R

π/2
(G)

π/2(B)

b1
E

b2
E

φ

θ

Figure 6: Histogram HE (θ,φ) of the projections of colors onto the
spherical plane ΠE .

body color bi
E is assigned the bin (θ,φ) for which HE (θ,φ) is

maximum.
Once the body colors bE

i have been extracted, each
connected component CCE of the color set N (E) is seg-
mented to produce the color subsets M(bE

i) of color bE
i. The

connected components CS are obtained through a region-
growing procedure by using the homogeneity criterion given
in (13). This mechanism is sketched in Figure 5: two color
vectors form two projection modes on the surface ΠE .
The colors bE

1 and bE
2 are computed, and the image is

segmented.

Remark 4. Either the same quantization of HE (θ,φ) is used
for the whole levels E or it can be adaptive to it, for instance
to maintain the same numberNbins of bins whatever the value
of E . Indeed, the size of the isosurface depends directly on its
location in the RGB space (see Figure 3(a)). It is maximum
when E= 2nb − 1 if the image is coded on nb bits and the
width of a bin in the histogram for a given value of E is S =
(π/2)(E /Nbins).

4.2.2. The data structures

The description of the image in terms of color sets is achieved
in a general tree structure that can be fruitfully exploited in
the image segmentation and for further image matching. Let
us refer to Figure 7 to illustrate the states of the tree during
the first extraction of color sets and color subsets on the
image “House.” The father node is the level set associated to
Emin, but generally Emin = 0 so that this node contains the
entire image. The sons of the top node are the connected
components CCE extracted in the father color set. Then,
after computation of the color subsets, a component CCE

can be replaced by several connected components CS (see
Figure 7(b)).
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E CS3
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E CS2
E CS3

E

CS2
E+dE CS3
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Figure 7: Color sets and subsets extraction in the tree structure
computed from the image “House” (Figure 4). (a) State of the tree
after computation of the first upper color sets. (b) State of the
tree after computation of the first color subsets. The node CC2 is
replaced by two color subsets CS2 and CS3. (c) State of the tree after
the extraction of the second color sets.

At each subsequent stage of the algorithm, the sons at
level E become the fathers of some new color sets at level
E +dE . Each node is thus attributed a distance value E and a
color value.

A stack is used to register nodes to be treated. After all
sons of a node have been computed, this node will not be
visited anymore. The sons are put in the stack to be treated
later and a new current node at color distance E is pulled
out of the stack. On the connected component associated to
the current node, we first compute the color set N (E + dE)
and the color subsets M(bi

E ), as previously explained. The
algorithm stops when the stack is empty.

The flowchart of the algorithm is sketched in Figure 8.
After the color sets extraction, the level lines are defined

as the boundaries of color sets. The following subsection
discusses the invariance of the topographic map towards
color changes.

4.3. Influence of color changes on
the topographicmap

Spherical scale changes. Let I1 and I2 be two color images,
where I2 is obtained from I1 by spherical scale change T . If
we consider a color c1 of I1 and c2 the corresponding one in
I2, they are related by the transform c2 = Tc1 for all c1 in the
RGB space with

T =
∥∥c2
∥∥

∥
∥c1
∥
∥ . (16)

By considering this transformation, it influences the length
of the straight lines without changing their directions. This
color change is sketched in Figure 9(b). For the sake of clarity,
the color vectors are represented on a dichromatic plane
(C1,C2) = {(R,G), (B,R), (G,B)}. The topographic maps
of I2 and I1 are similar when their associated number of
color levels is the same. Therefore, the topographic map
is invariant to spherical scale change when E2 = 	E1/T
,
where E2 and E1 are the color levels used to compute the
topographic maps of I2 and I1, respectively. When colors
are not saturated, the transform T amounts to the classical
intensity contrast change T = I2/I1, with I1 and I2 being two
intensity values.

Angular changes

Since the topographic map is defined along straight lines
from the black to dominant colors, they are invariant to
angular rotations of these vectors with center black. This
change is sketched in Figure 9(c). As noticed in (9) and
subsequent remark, this type of color change would result
either from a shift of the spectrum of the illuminant I(λ,P)
or from a change in the camera sensitivity Si (see conclusion
of Section 3). Section 5 will show some validation results
which compare the robustness of the topographic maps to
illumination changes.

5. VALIDATION

We now compare our representation of color sets with the
topographic maps described, respectively, in [11] (on value
V) and [12] (by a total order in the HSV space).

Let us define the a priori best collection of level sets as the
one which can reconstruct the image at best with the lowest
number of level sets. Therefore, we consider the conjunction
of the following criteria:

(i) the number of sets Nsets of the topographic map, which
refers to the reduction of the amount of data;

(ii) the dissimilarity between the collection of level sets
extracted and the initial image, to be measured via
the mean CIELAB distance DCIE76. It corresponds
to the Euclidean distance computed in the CIELAB
space, relating to a real perceptual difference (see,
e.g., [24]). We assume an illuminant d65, being most
common since it represents the average daylight. Some
other distances, such as the S-CIELAB [25], are more
efficient but they require some additional knowledge
about the observation distance, which is unknown and
variable. The classical PSNR will be also used later in
the paper for quantitative results.

In addition, we will compare the execution times of the
three techniques and the robustness of the topographic maps
(in terms of lines location) to illuminant changes.

Qualitative comparison.

First of all, let us introduce the five representative images
shown in Figure 2 (“Caps” and “Baboon”) and in Figure 10
(“Synthetic,” “Statue,” and “Girl”) that we focus on here. The
image of “Caps” represents an ideal example where objects
are quite uniform, with almost no texture. “Synthetic” is
an artificial image with color scales. “Statue” (this image
is extracted from the Kodak image database) is almost
unsaturated. “Girl” and “Baboon” show some texture and
color shadings.

Our topographic map is compared to the results obtained
by the two methods described in Section 2.2. To distinguish
between them, we use the following notation:

(i) A: colored topographic map proposed by [11];
(ii) B: total order topographic map proposed by [12];

(iii) C: proposed topographic map in the RGB space.
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Figure 8: Flowchart of the computation of the color topographic map. The image is thresholded with the current parameter E to obtain the
color set N . Then, N connected components are extracted. On each of them the body colors are computed by histogram analysis, and the
image is segmented to obtain M color subsets. They are put in the stack to be treated, with an increased parameter E = E +dE . A new subset
of level E ′ is pulled out of the stack to be processed, and the color sets are extracted from it. The algorithm stops when the stack is empty.

C1

C2 c1

E1

(a)

C1

C2

c1

c2

E2

(b)

C1

C2
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c2

(c)

Figure 9: Invariance to color illuminant changes. (a) Example of two body vectors in the color plane (R,G). (b) Scale change T : c2 = Tc1.
(c) Rotation change.

In order to compare the topographic maps exhibited by
different techniques, it is necessary to choose identical
parameters. Thus, we consider 10 levels on hue and satura-
tion for technique B. Similarly, we use a constant bin size 10
× 10 for the histogram HE (θ,φ) computed in the proposed
method C (see Section 4.2.1). Five quantization levels Nl

(from 8 up to 64 levels) are tested either on luminance for
methods A and B or on the distance to black for method C.

Let us refer to Table 1, which collects the values of Nsets

and DCIE76 for the three methods (columns) and the five
images (rows) and for the different quantization levels.

Naturally, the number of sets is always lower for A than
for B. Indeed, in both cases, the color sets are established
in the HSV space, but A designs them by using luminance
information only, while B scans the whole HSV space. For
the same reason, the DCIE76 is always greater for A than for

B. Thus, B provides a less compact structure of the image but
preserves better the color information.

By considering now the averages of the criteria (item μ
in Table 1), our technique C produces the lowest number of
sets in most cases, even compared to the technique A that
is carried out on luminance. Nevertheless, the DCIE76 result
is not affected by this reduction of data and is even better
in most cases. Thus, for the different images considered, our
topographic map provides a good compactness of data while
preserving correctly the color information.

Figures 11 and 12 show some examples of results
respectively for images “Synthetic” and “Girl.” In each case,
the first row displays the level sets whereas the second one
refers to the level lines. For display purpose, the level lines
inherit the respective color associated to the level set which
they bound. 64 levels are considered here.
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Synthetic

(a)

Statue

(b)

Girl

(c)

Figure 10: Images used in the validation experiments.

(a) (b) (c)

(d) (e) (f)

Figure 11: Color sets (first row) and lines (second row) obtained on the image “Synthetic” for 16 levels.

In Figure 11, we can see that the method A loses some
level lines related to shadings, for instance on the green oval.
Similarly, the blue circle is not segmented correctly. Results
obtained by techniques B and C are globally satisfying, but
C yields 587 lines against 1318 for B, yet including a few
defects. The light part of the blue rectangle is better rendered
with C than with B. That is true also for the purple rectangle.

On the other hand, the lines are less regularly spaced on the
circles, where intensity has been increased regularly. Finally,
the distance DCIE76 computed with technique C is lower than
the distance provided by B (see Table 1). In Figure 12, the
level sets extracted with method A show some color defects,
particularly on the red pullover. That is due to the mean
chrominance computed on the gray-level sets. The results
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Table 1: Comparison of the level sets for several numbers of levels Nl , for 5 images and 3 methods (A: [11], B: [12], C: proposed method).
The comparison criteria are the number of sets Nsets and the mean DCIE76 computed on the whole image. μ refers to the mean criteria,
computed on the 5 Nl .

A [11] B [12] C (our method)

Nl Nsets DCIE76 Nl Nsets DCIE76 Nl Nsets DCIE76

64 879 10,67 64 1318 7,73 64 587 3,22

32 581 10,80 32 976 10,68 32 438 3,34

16 527 14,16 16 901 8,77 16 337 7,65

8 346 24,71 8 719 10,23 8 208 8,29

4 132 36,96 4 543 17,36 4 50 11,78

μ 397 19,46 μ 785 10,95 μ 324 6,86

Synthetic (356× 238)

Nl Nsets DCIE76 Nl Nsets DCIE76 Nl Nsets DCIE76

64 8165 2,78 64 17481 3,21 64 7855 2,10

32 3443 6,03 32 12589 6,56 32 3138 5,22

16 2270 14,34 16 11141 15,42 16 1996 12,86

8 1189 28,02 8 9243 30,23 8 983 22,28

4 371 37,65 4 7566 52,42 4 142 32,01

μ 3088 17,76 μ 11604 21,57 μ 3496 14,89

Statue (200 × 150)

Nl Nsets DCIE76 Nl Nsets DCIE76 Nl Nsets DCIE76

64 6709 4,19 64 12558 2,37 64 5209 1,02

32 2999 11,57 32 9329 4,89 32 2273 2,15

16 2071 15,21 16 8189 7,61 16 1567 4,23

8 1233 22,44 8 7081 11,37 8 889 6,38

4 401 34,67 4 5820 15,46 4 176 15,67

μ 3253 17,62 μ 8595 8,34 μ 2023 5,89

Girl (356 × 236)

Nl Nsets DCIE76 Nl Nsets DCIE76 Nl Nsets DCIE76

64 6751 9,02 64 11591 9,10 64 5919 3,03

32 3424 9,52 32 9785 9,38 32 2958 3,41

16 2349 11,66 16 8941 10,30 16 1878 5,01

8 1221 15,72 8 7896 12,92 8 964 6,99

4 442 31,55 4 6352 21,53 4 273 12,84

μ 2837 15,49 μ 8913 12,65 μ 2389 6,26

Baboon (356 × 356)

Nl Nsets DCIE76 Nl Nsets DCIE76 Nl Nsets DCIE76

64 8001 3,04 64 4805 3,25 64 3900 1,26

32 5469 4,25 32 2382 5,77 32 2109 2,23

16 4770 8,72 16 1763 7,23 16 1352 4,37

8 3864 16,41 8 926 10,74 8 759 6,23

4 3116 19,16 4 257 14,18 4 225 7,64

μ 5044 10,23 μ 2027 8,23 μ 1669 4,35

Caps (356 × 238)

B and C seem qualitatively comparable, however 2273 lines
have been produced by C against 9329 by B, that is about
four times less lines.

Quantitative results.

We have tested both methods B and C as the two most
relevant ones on 210 images from the kodak database

(http://r0k.us/graphics/kodak/ the image size is reduced
by a factor of two) and the University of Washing-
ton (http://www.cs.washington.edu/research/imagedatabase/
groundtruth/ tars.for.download) databases (Arborgreens,
Australia, and Cambridge). They are as representative as
possible of the images generally processed in computer
vision applications. Indeed, they show various outdoor
scenes consisting of people, buildings, manufactured objects,
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(a) (b) (c)

Figure 12: Color sets (first row) and lines (second row) obtained on the image “Girl” for 64 levels.

Table 2: Quantitative results obtained on 210 images (Kodak,
Arborgreens, Australia, Cambridge bases) for (a) 8 levels and (b)
32 levels. Our color sets based on the dichromatic model (method
C) are compared to the color sets designed in the HSV space [12]
(method B) by considering the number of sets and the similarity
simultaneously (μ : average, σ : SD).

Method
Number of sets DCIE76

μ σ μ σ

(a) 8 levels

B 4563,85 1972,41 16,63 5,5

C 436,91 211,6 7,74 4,22

(b) 32 levels

B 7107,76 2892,11 4,02 0,88

C 3719,5 1691,64 2,67 0,84

and gardens. Table 2 collects the results obtained in terms
of the number of sets and the mean dissimilarity (DCIE76),
respectively, for 8 and 32 levels. μ and σ refer to the average
and SD of the criteria.

Note that, whatever the quantization level, C exhibits
a smaller number of sets while preserving better the color
information (lower distance), what asserts the previous
analysis. Indeed, for 8 levels (Figure 2(a)), C produces 10
times less sets than B, whereas the mean color distance is
2 times inferior. For 32 levels (Figure 2(b)), C yields only 2
times less sets but the color distance is almost twice lower
than for B.

Thus, some conclusions emerge from the previous
experiments . First of all, the proposed topographic map
is compact: it provides a strong reduction of data while
preserving the color information. This is due to the
definition of the color sets along the dominant color vectors
of the RGB space. Nevertheless, for very textured images,
a coarse quantization cannot render all details correctly.

On the other hand, methods defined in the HSV space
provide a large number of sets, which is partly due to the
production of irrelevant sets for low saturation. Eventually,
let us make the comparison more complete in analyzing the
robustness of the topographic maps to illumination changes
and comparing execution times.

Robustness to illumination changes.

The robustness of the topographic maps is analyzed here by
considering the lines locations under different illuminants.
First, let us assume that the “Girl” image (Figure 10) has
been acquired under the illuminant d65 (average daylight)
throughout the visible spectrum. Then, different changes
of illuminant have been simulated using the software
ColorSpace (this software is freely available on the website:
http://www.couleur.org/). Eight illuminants have been used:
b, e, d50, d55, d75, d95, f10, and f11. For a comparison
criterion, in each method we consider the percentage of
line points which keeps the same location as in the initial
image acquired under the illuminant d65. These values
are reported in Figure 13. They show that the method C
provides a topographic map which is more stable than both
techniques A and B, since a larger number of points are
preserved from an illuminant to the other. Indeed, it is well
known that the HSV space is not robust to changes of the
illuminant spectrum but only to intensity changes (see, e.g.,
[15]). Topographic maps based on the dichromatic model
are confirmed quasi-invariant to some more comprehensive
illumination changes than mere intensity variations, as
described in Section 4.3.

Execution times.

Table 3 collects the execution times (in seconds) for all three
methods. These results have been obtained on the image
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Table 3: Execution times (in seconds) for different numbers of
levels Nl , and for the methods A, B, and C.

Nl A [11] B [12] C (our method)

64 5,11 15,70 19,02

32 1,88 5,32 13,59

16 0,75 3,55 6,51

8 0,25 2,57 3,18

4 0,19 1,41 2,36

f11f10d95d75d55d50eb

0.775
0.75

0.725
0.7

0.675
0.65

0.625
0.6

0.575
0.55

0.525
0.5

Proposed method
A
B

Figure 13: Evaluation of the robustness of topographic maps to
illuminant changes. The curves indicate the percentage of points of
the topographic map which remains at the same locations as in the
initial image under illuminant d65.

“Girl” (Figure 10), by averaging the times of ten executions
of the algorithms. No specific algorithmic optimization has
been carried out and the computer used has one processor
Intel(R) T2300 1.66 GHz with a 1Go RAM memory. One can
notice that method A is far less time-consuming than the two
other methods, since the topographic map is computed only
on the luminance axis. Our method C is the slowest. That is
mainly due to the additional estimation of the body colors,
by projection of the colors onto the isosphere and clustering.
However, being a mere coordinate transformation (matrix
product), the projection could be reduced to an O (1) time
on most architectures.

6. CONCLUSION

The topographic map is a compact and complete rep-
resentation of an image, which is theoretically robust to
global contrast changes. In this article, we have designed a
novel color topographic map led by the color dichromatic
model. The latter explains the shape of the color distribution
in the RGB space. This modeling is initially intended for
inhomogeneous and dull material, but the literature has
often underlined its relevance for various kinds of materials
and for several computer vision applications. It states that

colors of a Lambertian object roughly cluster around some
diffuse straight line in the RGB space.

Unlike existing representations, the proposed map does
not require any color conversion, for instance in a perceptual
space. Therefore, it overcomes the main defect of these repre-
sentations which is the definition of hue for low saturation.
The scan of the RGB space depends directly on the image
content, that is on the directions of dominant colors. First of
all, colors are ordered according to their distance to the black
and color sets are defined subsequently. Second, these color
sets are split up in color subsets depending on the number of
dominant colors located in the color set. Therefore, the level
sets are defined along the above-mentioned diffuse vectors.
Thus, the proposed topographic map is a multidirectional
extension of the gray-level sets which are defined along the
luminance axis in RGB space. The inclusion property of the
sets is secured by a combination of spatial connectivity and
color partial ordering.

The experimental results have compared the compact-
ness and quality of our topographic maps with those
obtained by two existing methods, computed in the HSV
space. They have shown that the proposed method yields
a good tradeoff, since the number of sets obtained is lower
while better preserving the structure of the image. The data
reduction towards a few robust features is likely to reduce
the complexity of the downstream algorithms, as matching
or tracking.

Moreover, this technique is robust first to some color
changes occurring when the illuminant spectrum varies
and second to contrast changes expressed by spherical scale
changes of the RGB space. Unfortunately, these improve-
ments are done at the cost of a stronger algorithmic com-
plexity.

Since the results obtained are encouraging a priori, our
future work will focus on implementing the color lines
for stereo matching and tracking, based on segments and
junctions. The expected result is an improved robustness,
by matching the most relevant features while ignoring color
illuminant changes. We will also experiment the algorithm
by privileging first the directions of the colors instead of
favoring distance to black first. Better results with textured
images should result from an astute tradeoff to profit from
the evolution of the local maxima along the color lines, as
well as from better characterizing the histogram-clusters.
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