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View interpolation is an essential step in content preparation for multiview 3D displays, free-viewpoint video, and multiview
image/video compression. It is performed by establishing a correspondence among views, followed by interpolation using the
corresponding intensities. However, occlusions pose a significant challenge, especially if few input images are available. In this
paper, we identify challenges related to disparity estimation and view interpolation in presence of occlusions. We then propose
an occlusion-aware intermediate view interpolation algorithm that uses four input images to handle the disappearing areas. The
algorithm consists of three steps. First, all pixels in view to be computed are classified in terms of their visibility in the input
images. Then, disparity for each pixel is estimated from different image pairs depending on the computed visibility map. Finally,
luminance/color of each pixel is adaptively interpolated from an image pair selected by its visibility label. Extensive experimental
results show striking improvements in interpolated image quality over occlusion-unaware interpolation from two images and very
significant gains over occlusion-aware spline-based reconstruction from four images, both on synthetic and real images. Although
improvements are obvious only in the vicinity of object boundaries, this should be useful in high-quality 3D applications, such
as digital 3D cinema and ultra-high resolution multiview autostereoscopic displays, where distortions at depth discontinuities are
highly objectionable, especially if they vary with viewpoint change.

Copyright © 2008 S. Ince and J. Konrad. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. INTRODUCTION

The generation of a novel (virtual) view of a scene captured
by real cameras is often referred to as image-based rendering.
The problem is illustrated for the case of two cameras in
Figure 1. The goal is to reconstruct image J, that would
have been captured by camera C; had it been used, based
on images I; and Ig captured by cameras C; and Cg,
respectively. Generation of such views is an essential step in
content preparation for multiview 3D displays [1-3], free-
viewpoint video [4, 5], and multiview compression [6-8].
A very similar problem exists in frame-rate conversion of
video, except that novel images are created from different-
time snapshots rather than different views.

In order to render novel view, first a correspondence
among known views needs to be established followed by
an estimation of new intensity from the known intensities
in correspondence. Depending on how the correspondence
mapping is defined, two approaches are possible. One
approach is based on backward projection of intensities (the

term “backward projection” is borrowed from the field of
video coding where it refers to predicting luminance/color
from previous (in time) frames), where the mapping is
defined in the coordinate system of the unknown view
(J in Figure 1). Thus, this approach simplifies the final
estimation to an interpolation problem. The other approach
is based on forward projection of intensities, where the
mapping is defined in the coordinate system of one of the
known views (I or I in Figure 1), thus making the final
estimation more difficult since projected intensities do not,
in general, belong to the sampling grid of J. In fact, the
problem cannot be solved in this case by interpolation, and
the novel-view intensities must be approximated instead.
Typically accomplished by means of additional constraints,
this process is often referred to as view reconstruction. We
will review these two approaches in more detail in Section 2.

One of the significant challenges in image-based ren-
dering is dealing with occlusion areas (see Figures 1(b)—
1(c)). By the term occlusion area, we mean an area in one
input image disappearing from the other input image due
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to scene structure, for example, area A in I, is occluded in
Ir (see Figure 1). Note that a disappearing area becomes an
appearing area (also known as uncovered or newly-exposed
area), and vice versa, if the order of views is reversed, that is,
“right-to-left” instead of “left-to-right.”

Many approaches to novel view generation have been
proposed to date. Although some methods account for
occlusions, few handle occlusions accurately. Consequently,
occlusion areas are recovered inaccurately. Our motivation
in this paper is to improve the novel image quality in
occlusion areas. This is somewhat easier in approaches based
on forward projection since the correspondence mapping
is defined in the coordinate system of known images, and
thus known luminance/color can be used to reason about
the presence/absence as well as nature of occlusions. We
have recently developed successful methods in this category
[9, 10]. On the other hand, in backward-projection methods
the mapping is defined in the coordinate system of a
novel image and thus no luminance/color is available to
reason about occlusions. We address this difficulty here. We
propose a new occlusion-aware backward-projection view
interpolation. The method first identifies pixel visibility in
the intermediate image, that is, whether a particular pixel
is visible in all input images or only in those to the left or
to the right of the image to be reconstructed. These labels
are incorporated into a variational formulation to adaptively
choose different pairs of input images and reliably estimate
disparity under anisotropic regularization constraint. The
final view generation is accomplished by occlusion-adaptive
linear intensity interpolation.

The paper is organized as follows. In Section 2, we
review prior work on intermediate view interpolation and
reconstruction as well as occlusion detection. In Section 3,
we present the new occlusion-aware view interpolation, and
in Section 4, we show experimental results. In Section 5, we
discuss benefits and deficiencies of forward- and backward-
projection approaches, and in Section 6, we summarize the
paper and draw conclusions.

2. PRIOR WORK

Image-based rendering is concerned with creating an image
at a specific 3D location and specific time. Adelson and
Bergen [11] formulated a description for all possible images
by means of the so-called plenoptic function that records
light rays at every possible 3D location, in every possible
direction, at every time instant, and for all wavelengths.
In order to generate a new image, one simply needs to
sample this 7-dimensional function. However, capturing a
full plenoptic function is difficult, if not impossible, and
thus various assumptions aiming at the reduction of this
high dimensionality have been proposed. For example, if
only static scenes are considered in grayscale, the number of
dimensions reduces to five.

Although prior work can be classified based on the
number of dimensions of a plenoptic function used [12], in
the context of work proposed, here we prefer to classify prior
methods based on their need for structure information and
the number of input images.

(1) Methods that rely on oversampling. Among the most
prominent methods that rely on scene oversampling are
lightfield rendering [13] and lumigraph [14]. Both methods
create a 4D representation of the scene using many input
images. The novel views are created by slicing (sampling)
this 4D representation. Since the scene is oversampled, the
rendering process simply blends the input images, ignoring
scene structure. The presence of occlusions is not a problem
because, thanks to oversampling, occlusions between nearest
cameras are negligible, and all texture in the scene is visible
from several cameras.

(2) Methods that use undersampled data sets with known
structure. Given the scene structure, it is possible to reduce
the required number of images [15-18]. If the depth map or
3D model of a scene is available, it is possible to project pixels
of the known images to a new viewpoint and reconstruct
a new image. Obviously, it is not guaranteed that all pixels
in the new image will be visible in the input images.
However, since the scene structure is known, locations of
occlusions are known, which is not the case considered in this
paper.

(3) Methods that use severely undersampled data sets with
unknown structure. These methods have no access to scene
structure and use few input images, typically 2—4. The scene
structure is computed implicitly (from disparity) either using
correspondence matching or projective geometry. These
methods can be categorized based on what approach they
use to estimate the disparity: methods based on projective
geometry or rectification [19-21], methods based on optical
flow [5, 9, 22, 23], methods based on block correspondence:
variable-size blocks [24], fixed-size blocks [25], sliding
blocks [26], methods based on feature correspondence [27],
and methods using dynamic programming [28]. Because
of limited input data and unknown scene structure, the
reconstruction problem is ill-posed and requires some
from of the regularization, usually by means of additional
constraints. The work presented in this paper is closest to this
class of methods.

2.1. Forward- and backward-projection methods

When computing an intermediate view, the central role is
played by a transformation between the coordinate systems
of known images and the novel image. This transformation
depends on camera geometry and scene structure, and
is usually unknown. It can be estimated by solving the
correspondence problem with two possible definitions of the
transformation: from known to novel image coordinates,
also called forward projection, or from novel to known image
coordinates, called backward projection.

Let I; and I be images of the same scene captured on 2D
lattice A by two cameras. We assume the distance between the
cameras is normalized to 1. Suppose we need to reconstruct
intermediate view J, also defined on A, but at distance 0 <
a < 1 from I;. Clearly, for « = 0, ] = I, whereas for
a = 1, ] = Ig (see Figure 2). Due to this simple stereo setup,
the transformation mentioned above simplifies to a disparity
field between I and Ix.
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FiGure 1: [llustration of intermediate view reconstruction from two cameras: (a) camera setup (C; is a virtual camera, while C;, and Cy are
real cameras), (b) occlusion effect in captured images, and (c) occlusion effect in one row of pixels from the images. Area A from I} is being
occluded in I by the object, while area B is being uncovered (area B would undergo occlusion had the direction of arrows been reversed).

FIGURE 2: Disparity vectors defined (pivoted) in: (a) left (known), (b) right (known), and (c) intermediate (unknown) images.

2.1.1.  Forward projection

Disparity vectors (transformation) are defined in the coor-
dinate system of known images. Let d;, be a disparity field
defined on lattice A of I, (see Figure2(a)), and let dg
be defined on lattice A of Iz (see Figure 2(b)). Under the
constant-brightness assumption [29], the following holds

I (x) = IR(X + dL(X)),

I(x) = I (x +dr(x)), Vx€EA.

(1)

Assuming that brightness constancy holds along the whole
disparity vector, also the following is true:

J(x+ ad(x) = I(x),

x € A.
J(x+ (1 - a)dr(x)) = Ip(x),

2

Clearly, the reconstruction of intermediate-view intensities
J(x + adr(x)) and J(x + (1 — a)dr(x)) can be as simple
as substitution with I (x) and Ir(x), respectively. However,
in general, x + ady(x)¢A and x + (1 — a)dr(x) €A,
that is, the projected points are off lattice A. In fact,
due to the space-variant nature of disparities, the above
locations are usually irregularly spaced, whereas the goal is
to reconstruct J(x) regularly spaced (x € A). One option
is to force the locations x + ad;(x) and x + (1 — a)dr(x)
to belong to A. For orthonormal lattices typically used,

this means forcing ad;(x) and (1 — a)dgr(x) to be full-
pixel vectors, that is, rounding coordinates to the nearest
integer [21, 25]. Advanced approaches, such as those using
splines to perform irregular-to-regular conversion, have also
been proposed [9]. While simple rounding suffers from
objectionable reconstruction errors, advanced spline-based
methods produce high-quality reconstructions but require
significant computational effort.

2.1.2.  Backward projection

Disparity vectors are defined in the coordinate system of
the intermediate image J, and bidirectionally point toward
the known images [24, 30, 31]. As shown in Figure 2(c),
d; is defined on A in J thus forcing disparity vectors to
pass through pixel positions of the intermediate view (i.e.,
vectors are pivoted in the intermediate view). The constant-
brightness assumption now becomes

IL(x—adj(x)) = g(x+ (1 —a)d;(x)), VxeA (3)

Compared to (1), each pixel in J is guaranteed to be assigned
a disparity vector and, therefore, two intensities (from I; and
Ir) associated with it. Although usually x — ad;(x) ¢ A and
x+ (1 — a)dj(x) € A, intensities at these points can be easily
calculated from Ij, and I using spatial interpolation.

In order to compute ] at distance «, a disparity field
pivoted at « is needed. Although this necessitates disparity
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estimation for each «, it also simplifies the final computation
of J. The reason is that view rendering becomes a byproduct
of disparity estimation; once d; that satisfies (3) is found,
either left or right luminance/color can be used for the
intermediate-view texture. An even better reconstruction is
accomplished when weighted averaging (linear interpola-
tion) of both intensities is applied [24, 32]

J(x) = (1 - a)l(x — ad;(x))

+0£IR(X+(1 —(X)d](X)), (4)

Vx € A.

Clearly, all intermediate-view pixels are assigned an intensity,
and postprocessing is not needed.

2.2. Occlusion-aware image-based rendering

In the case of oversampled data sets, if occlusions can
be reliably identified, then selection of visible features is
not difficult (many views are available). In fact, explicit
detection of occlusions is not even necessary; robust photo-
consistent measures embedded into the rendering algorithm
are sufficient [33].

In the case of undersampled data sets, the situation
is different, especially when scene structure (depth) is
unknown. In fact, occlusions have dual impact in this
case. First, correspondence (disparity) is not defined in
occlusion areas, and thus some a priori assumptions must be
made about correspondences (e.g., smoothness). Secondly,
during the estimation of disparities unreliable estimates
in occlusion areas impact the outcome at neighboring
positions, thus spreading the occlusion-related errors. Know-
ing where occlusions take place can help correcting both
problems.

In forward-projection methods, pixels from I (see
Figure 2(a)) or Ir (see Figure 2(b)) that are occluded in the
other image can be assigned a disparity based on depth
constancy assumption [34], that does not work well at
object boundaries, or by means of edge-preserving disparity
inpainting [9], that has been shown to be more accurate.
The latter approach is possible since disparities are defined in
the coordinate system of known images (I, or Ir), and thus
their underlying gradients can be used to guide anisotropic
disparity diffusion that improves the quality of estimated
disparities (discontinuities) [35, 36].

In backward-projection methods, disparity is defined
in the coordinate system of the unknown image J, and
no underlying gradients are available to permit anisotropic
diffusion. Therefore, the estimated disparities are usually
excessively smooth. Although robust error metrics can
be used in regularization [37], this is often insufficient.
Moreover, it is unclear how to identify occlusions using a
single disparity field. These are the main issues we address
in this paper.

As for occlusion detection, it usually exploits one of
several constraints. An ordering constraint preserves pixel
order on corresponding rows of left and right images [38]
but cannot handle thin foreground objects or narrow holes.
A uniqueness constraint assures one-to-one mapping of
pixels on corresponding rows [39]. In one implementation,

it relies on the geometry of disparity fields; a significant
difference between forward (e.g., left-to-right) and back-
ward (e.g., right-to-left) disparity vectors is indicative of
occlusions [40]. This constraint can also be thought of
as a geometric constraint as it relies on the analysis of
disparity field geometry. Some other geometric constraints
assume that disparity varies smoothly everywhere except
object boundaries (continuity constraint) [39], or that
occlusion areas exhibit excessive disparity gradient [41].
Yet another geometric constraint seeks uncovered pixels in
Iz by inspecting an irregular grid of forward disparity-
compensated pixels of image I;. This constraint has been
shown to be very effective and noise resilient in occlusion
detection [42]. A related, although weaker, visibility con-
straint [43] also assures consistency of uncovered pixels in
one image with disparity of the other image, but it permits
many-to-one matches in visible areas. Finally, a photometric
constraint (or constant-brightness constraint [29]) ensures
intensity match in visible areas. It is the simplest indicator
of occlusions but prone to errors in presence of image
noise and illumination changes. Methods based on multiple
views compare intensity consistency along a path formed by
displacement vectors in 3 or more frames [44-46]. Graph
cuts have also been used in multiview occlusion detection
[47].

3. OCCLUSION-AWARE BACKWARD-PROJECTION
VIEW INTERPOLATION

In backward-projection methods, disparities estimated
around occlusion areas are erroneous since no underly-
ing image gradients are available. Lack of image gradient
prevents the use of edge-preserving (anisotropic) diffusion.
Below, we argue that by using a coarse estimate of the
intermediate image the fidelity of disparity field can be
significantly improved around occlusion areas. With this
capacity to compute more accurate disparities, we then
propose a new approach to occlusion-aware backward-
projection view interpolation.

3.1. Edge-preserving disparity regularization using
a coarse intermediate image

Edge-preserving (anisotropic) regularization preserves dis-
parity edges better than isotropic diffusion [35, 48, 49]
but requires an image gradient to guide the diffusion
process. Since in backward-projection methods the disparity
is defined on the sampling grid of the unknown image J,
no such gradient is available. However, it turns out that
simple backward-projection view interpolation described in
Section 2.1.2 produces intermediate views with reliable edge
information despite distorted texture in occlusion areas.
Although this may seem counterintuitive, the reason is that
visible edges are easily matched and thus are prominent in
the interpolated view. Figure 3 shows an experimental result
proving this point. Images shown in Figures 3(a) and 3(c) are
the input left and right images, and the one in Figure 3(b)
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is the true intermediate image. Disparity, estimated using
simple isotropic regularization:

arg minH (I (x — ad(x)) — Ir(x+ (1 — 0)d(x)))*
d(x) xely
+AIVull? + 1VvlI?)dx,

(5)
where Q) is the domain of J, d(x) = [ u(x) v(x) ]T, and
V is the gradient operator, is shown in Figure 3(d). Clearly,
it is excessively smooth. Figure 3(e) shows an intermediate
image computed by using this disparity in (4). Although
there are significant texture errors (as clear from Figure 3(f)),
edge maps, obtained using the Canny edge detector, are very
similar for the true and reconstructed intermediate images
(see Figures 3(g) and 3(h)).

Therefore, we propose to use a coarse intermediate image
Je» computed using isotropically-diffused disparities (5), to
guide edge-preserving regularization as follows:

arg minJJ (Ip(x — ad(x)) — Ip(x+ (1 - oc)d(x)))2
d(x) xeQ)y

+ A(Fx(u, ) + Fx(v,].) ) dx.
(6)

Above, Fx(-) assures anisotropic regularization [50] and is
defined as follows:

g(JF®)]) 0

_ T
Fy(u,]c) = V'u(x) { 0 g(l]cy(x)})] Vu(x),

(7)

where g(-) is a monotonically decreasing function, and J¥, JZ
are horizontal and vertical derivatives of J. at x. If [J¥(x)| =
IJZ (x)|, then isotropic smoothing takes place ((6) simplifies
to (5), except for different A). However if, for example,
JXx) > | J2(x)| then stronger smoothing takes place
vertically, and the vertical edge is preserved.

The disparity field shown in Figure 3(i) was computed
using formulation (6). It is clear that the object shape
is very well preserved. The intermediate view obtained
using this disparity field in backward projection (4) and
its interpolation error are shown in Figures 3(j) and 3(k),
respectively. As is clear from error images, distortions along
the horizontal boundaries of the square are suppressed
compared to Figure 3(f) because the excessive smoothness
of disparity field is eliminated. Although these are nonoc-
cluding boundaries, they were assigned incorrect disparities
due to isotropic regularization (5). Edge-preserving regular-
ization (6) corrected the problem, and these areas are now
assigned accurate disparities. Consequently, the intermediate
image is properly reconstructed there. Significant errors,
however, persist in occlusion areas (vertical boundaries,
see Figure 3(k)). This is due to occlusion unawareness
of the algorithm; a point is visible only in one of the
images, but reconstruction based on backward projection
(4) averages intensities from both images. Therefore, next
we propose to use additional images to solve for occlusion
areas.

3.2. Backward-projection view interpolation using
multiple images

In order to improve reconstruction in occlusion areas, we
first need to estimate their locations, and then figure out
what intensities belong there. Without loss of generality, let
us consider four input images as shown in Figure 4. Although
this is a simple scenario, it does convey the main idea we
intend to pursue. While the top row shows images containing
a black square against background containing areas A and B,
the bottom row shows their horizontal cross-sections (rows
of pixels). The goal is to reconstruct the intermediate image
J using input images I, I, I3, and I;. Note that areas A and
B are being occluded/exposed between the four images.

In occlusion-unaware interpolation (4), I, and I3 would
be the input images, and a disparity field defined on J would
be estimated. For most points in J, it is possible to estimate
accurate disparities because the corresponding points are
visible in both I, and I3. However, areas A and B are occluded
in either I, or I3, and it is not possible to estimate disparities
there. Note that areas A and B are visible in additional images
to the left of I, and to the right of I5. Thus, it should be
possible to estimate disparities in area A using I; and I, and
disparities in area B using I5 and I;. Therefore, a formulation
is needed to estimate disparities of J by choosing between
three image pairs: (11, L,), (I3, 14), or (I, I3).

In order to implement switching between image pairs,
one first needs to identify areas A and B. We propose to
use a method that we had developed earlier [42]. Given a
disparity field between two images, this method identifies
areas that will be exposed between images, and such areas
are equivalent to occluded areas when target and reference
images are interchanged. The method is based on the
fact that pixels in the target image, that did not exist in
the reference image (i.e., newly-exposed pixels), have no
relationship to the reference image and, as such, cannot
be pointed to by disparity vectors. Thus, when pixels of
reference image are forward disparity compensated onto
target image, these areas are empty and can be easily detected.

Since we need to identify areas that disappear to the left
and to the right of J, we must estimate two disparity fields:
d;; defined in I; and pointing to I, and d43 defined in 14 and
pointing to I3. We use formulation (6) with I, (I4) used for
edge-preserving regularization when computing d;, (d43).

Our occlusion detection method [42] yields the area B by
using (1+a)d;,. The coefficient (1+«) is needed to normalize
the disparity field so that it is correctly mapped onto J (see
Figure 4). The estimated area B is exposed between I; and
J, and, therefore, visible in I5 and I,. Similarly, using (2 —
a)dy; yields area A, which is visible in I; and I,. Let L(x) be
a visibility label at location x in J that we wish to estimate.
Clearly, by using d;, and ds4, we can label all points in J as
visible in I; and I, only (L(x) = —1), visible in I3 and I only
(L(x) = 1), or visible in I, and Is (L(x) = 0). (The actual
label values have no importance; other values, such as 1, 2,
and 3, could have been chosen.)

With the visibility of points in J identified, we can now
reliably compute each point’s disparity from a suitable pair of
images and also prevent oversmoothing via edge-preserving
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F1GURE 3: Results of backward-projection view interpolation for synthetic sequence no.1 with horizontal disparity: (a) Ir, (b) ground-truth
T, (¢) Ix, (d) disparity estimated using isotropic diffusion (5), (e) J interpolated using (4) with disparity from (d), (f) interpolation error for
J from (e), (g) edge map of ground-truth image J, (h) edge map of interpolated image J, (i) disparity estimated using anisotropic diffusion
(6) with J. from (e), (j) ] interpolated using (4) with disparity from (i), (k) interpolation error for J from (j). See Table 1 for PSNR values of

the interpolation error.

regularization. We first define matching errors for image
pairs (I1, 1), (I, I3), and (I3, I) as follows:

012(x) = I (x = (1 + ©)d(x)) - L(x - ad(x)),
623(x) = L(x — ad(x)) - I(x+ (1 — 0)d(x)), (8)
034(x) = L(x+ (1 - 0)d(x)) - L(x+ (2 - a)d(x)).

The coefficients (1 — «), (1 + @), (2 — «) adjust disparity
vectors depending on the distance to J. For locations x € Q)
outside of A and B, all three errors yield small magnitudes.
However, in occlusion areas only one of them will have
a small magnitude. For example, for x in area A, 0)2(x)
will have a small magnitude, whereas for x in area B the
magnitude of 054(x) will be small.

In order to estimate disparities either bidirectionally
(visible pixels) or unidirectionally (occlusion areas), we
propose the following variational formulation that controls

intensity matching using labels L under edge-preserving
regularization:

minE, = erg, ep(%) + Aes(x)dx 9)

with
ep(x) = P12(x) + Py3(x) + P3u(x),
es(x) = Fx(u,Jo) + (v, )0,
Pia(x) = 8(L(x) +1) (612(x))°,
Py (x) = 8(L(x)) (623(x)), (11)
P3a(x) = §(L(x) — 1) (634(x))’,

(10)

where Fy is defined in (7), J; is a coarse intermediate image
reconstructed using disparity estimation with isotropic
regularization, as proposed in Section 3.1, and &(x) is
the Kronecker delta function. Clearly, ep adaptively selects
different pairs of input images depending on L. For example,
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FiGure 4: Illustration of how to use four images in backward-
projection intermediate view interpolation. Areas A and B can be
estimated in J using (I}, 1) and (I3, 1), respectively, while points
outside of A or B can be estimated using (I, I3).

if L(x) = -1, then Pi,(x) is used. Since Kronecker delta
d(x) is not differentiable, we use an approximation, such as
8(x) = limg - e ™ (k= 10" gives good approximation).
The derivation of Euler-Lagrange equations for the above
variational formulation is included in the appendix.

Once the disparity field has been estimated, it is possible
to reconstruct / by using any intensity value along the
disparity vector, but averaging leads to better results (noise
suppression). We propose to reconstruct the intermediate
view J as follows:

J(x) = 8(L(x) +1)&15 + 8 (L(x)) 23

12

+8(Lx) - 1)& Vx ey, (12)

where . are intensity averages along disparity vector d(x)
defined as follows:

£, = %[11 (x— (1+@)d(x) + L(x - ad(x))],
£ = 3D (x ~ ad() ~ T (x+ (1 - )d(0)], (13)

&y = %[13 (x+(1-a)d(x)) — Li(x+ (2 - a)d(x))].

Note that at every x, only one of the values in (13) contributes
to J(x) (12) because of the §(-) terms.

4. EXPERIMENTAL RESULTS

We solve partial differential equations derived in the
appendix using explicit discretization with a small time step
dt = 1.5x 107 and 11 x 10° iterations. We employ a 4-level
hierarchical implementation in order to avoid local minima,
and bicubic interpolation to estimate subpixel intensities. In
all experimental results shown in the paper, we use 1 =
2000. Compared to the disparity estimation step (9), the
final view interpolation (12) is very simple and requires little
computation.

In order to gauge gains due to the use of 4 images, we have
compared the proposed algorithm with view interpolation
based on 2-image backward projection with isotropic as
well as edge-preserving regularization of disparities (see
Section 3.1). We have also compared our algorithm with
equivalent forward-projection reconstruction using the same
4 images [9]. The method uses occlusion-aware edge-
preserving estimation of 3 disparity fields (from (I, 1),
(I, I5), and (I3,14)), followed by occlusion detection, and
spline-based image reconstruction. A listing of tested algo-
rithms along with corresponding objective metrics (PSNR of
interpolation error, i.e., difference between the ground-truth
and computed intermediate images) can be found in Table 1.

In the first test, we generated two additional images for
the synthetic test sequence shown in Figure 3. The four input
images are shown in Figures 5(a)-5(d), and the ground-truth
disparity, intermediate image, and label map are shown in
Figures 5(e)-5(g). A label field L estimated using the method
proposed in [42] is shown in Figure 5(h). In all label fields
in this paper, black is used to denote L(x) = -1, that
is, a point is visible in, and interpolation is performed on
(I1, I). Similarly, gray is used to denote L(x) = 0 and thus
interpolation from (I, I3), while white is used to denote
L(x) = 1 and interpolation from (I3,I;). Although there
are false positives at the top and bottom boundaries of the
square, since these areas are visible in all images, they can
be predicted from any pair and do not contribute to the
interpolation error.

Results for the 4-image occlusion-aware forward and
backward projection are shown in the first row and the
second row of Figure 6, respectively. While the disparity
field from Figure 6(a) (one of 3 disparity fields estimated
in forward projection) was estimated using one of the
original images to guide edge-preserving regularization and
implicit occlusion detection to prevent intensity mismatches,
the disparity shown in Figure 6(d) was estimated using
a coarse image J. and occlusion labels from Figure 5(h).
In comparison with disparity from Figure 3(i), computed
from two images using edge-preserving regularization, the
improvement in occlusion areas is clear in both 4-image
results. Although it is difficult to judge the estimated
intermediate images J, the interpolation errors in Figures
6(c) and 6(f) are clearly smaller than those in Figures 3(f)
and 3(k). This is confirmed by numerical results shown
in Table 1, with the 4-image occlusion-aware backward
projection outperforming 4-image forward projection by
over 1 dB. Interestingly, the proposed edge-preserving regu-
larization using a coarse intermediate images offers over 2 dB
improvement over isotropic regularization, both using two
images.

In order to verify this performance, we have prepared
another synthetic sequence with more complex occlusions
(see Figure 7); two objects displace by 4 and 20 pixels,
respectively, between each two views, therefore occluding
both the background and each other. The original input
images I;—I; are shown in Figure 7 along with the ground
truth: disparity, intermediate image, and label map. Also, a
visibility label map estimated using the method proposed in
[42] is shown in Figure 7(h). Figure 8 shows the estimated
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(a)
(e)

()

(c)
(g)

(h)

FiGure 5: Extended synthetic sequence no.l: (a)—(d) I,—I; ground-truth, (e) disparity, (f) intermediate image, and (g) label map, (h)
estimated label map (black, gray, and white colors indicate (I,, 1), (I, I5), and (I3, Iy) image pairs to be used, resp.).

(a)
(d)

disparity, interpolated intermediate image, and interpolation
error for the 4 methods described in Table 1. From error
images and PSNR values, it is clear that the method proposed
here outperforms 2-image backward-projection methods
and also the 4-image forward-projection method.

Visually, the two 4-image methods stand out, the esti-
mated disparity fields are most accurate, and the computed

(c)
)
F1GURE 6: Comparison of view interpolation methods for synthetic sequence from Figure 5 (disparity, interpolated view, and interpolation

error are shown). (a)—(c) 4-image occlusion-aware forward projection, (d)—(f) 4-image occlusion-aware backward projection. See Table 1
for algorithm description and PSNR values.

intermediate images carry little error. Numerically, however,
the proposed method has a clear edge over the 4-image
forward projection (1.6dB gain). The somewhat inferior
performance of the forward-projection method stems from
the fact that if a single intensity is projected to an incorrect
location due to erroneous disparity estimate, it will affect
neighboring pixels during irregular-to-regular conversion
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(e)

(d)

(g) (h)

FIGURE 7: Synthetic sequence no. 2 with horizontal disparity. (a)—(d) I;-I; ground-truth, (e) disparity, (f) intermediate image, (g) label map,

and (h) estimated label map.

TaBLE 1: Description of four-view interpolation methods tested and PSNR values [dB]of the corresponding interpolation error for synthetic
test sequences from Figures 5 and 7, and natural sequence from Figure 10.

Method Description Figure 5 Figure 7 Figure 10
Backward projection (BP) using 2 images (I, I3)

2-image isotropic BP Isotropic disparity regularization (5) 30.77 26.58 33.72
Linear interpolation (4)
Backward projection using 2 images (I, I5)

2-image edge-preserving BP Edge-preserving disparity regularization (6) 32.84 27.16 34.74
Linear interpolation (4)
Forward projection (FP) using 4 images (I, 1, 5, I4)

4-image occlusion-aware FP Occlusion-aware edge-preserving disparity regularization 33.05 27.41 35.89
(10]
Spline-based reconstruction [9]
Backward projection using 4 images (I1, I, I, I4)

4-image occlusion-aware BP 34.15 29.03 36.35

Occlusion-aware edge-preserving disparity regularization

(9) Occlusion-aware linear interpolation (12)

using splines. The reason is that spline-based reconstruc-
tion is performed globally; every pixel contributes to the
reconstruction of all other pixels. This is not the case
for backward projection, where neighboring interpolations
are solved independently (except for disparity estimation).
Although there are some artifacts around edges in the
proposed approach, they are isolated as opposed to spline-
based reconstruction.

This test sequence, however, has revealed one weakness of
the proposed method. As it can be noticed in Figure 8(j), the
disparity to the right of the objects is distorted. This is due to
the weak gradient between the object and the background.
Since edge preserving regularization fails in this case, the

disparity of the object leaks into the background. This
is a common problem in edge-preserving regularization.
Nevertheless, the proposed method improves the results for
this synthetic sequence by 2.5dB in comparison with 2-
image backward projection with isotropic disparities.

We also tested the proposed method on natural images.
We used four frames (nos. 10, 16, 22, 28) of the Flowergarden
sequence to reconstruct frame no. 19. The four original
images are shown in Figures 9(a)-9(d). Note how the tree
trunk occludes the house in the background. Disparity
estimated, using backward projection with isotropic regu-
larization based on 2 images (nos. 16 and 22), is shown
in Figure 9(e). Note how smooth this disparity field is. The
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@ ()

(k) )

FiGure 8: Comparison of view interpolation methods for synthetic sequence from Figure 7 (disparity, interpolated view, and interpolation
error are shown). (a)—(c) 2-image isotropic backward projection, (d)—(f) 2-image edge-preserving backward projection, (g)—(i) 4-image
occlusion-aware forward projection (only disparity estimated from I, to I5 is shown), (j)—(1) 4-image occlusion-aware backward projection.

See Table 1 for algorithm description and PSNR values.

interpolation of image no. 19 using this disparity field and
images no. 16 and no. 22 is shown in Figure 9(f). Note
that occlusion areas are poorly reconstructed; the texture
around the tree trunk is highly distorted, especially on
the flowerbed, house walls, and roof (see the closeup in
Figure 9(k)).

Alabel field estimated using the method proposed in [42]
is shown in Figure 9(g), while a disparity estimated using
4-image occlusion-aware edge-preserving regularization is
shown in Figure 9(h). Compared to the 2-image isotropic
result from Figure 9(e), the new disparity exhibits sharp
tree trunk boundaries. The interpolated intermediate view
is shown in Figure 9(i). Since the input sequence is actually
a video sequence, we can compare the reconstructed view
to the original frame no. 19. Closeups of the original frame
no.19 and of both reconstructions are shown in Figures
9(j)-9(1). The texture of the flowerbed is not smeared in
the new reconstruction and very similar to the original
frame. Also, the windows of the house cannot be identified
in Figure 9(k) as they are severely smeared. However, they
are sharp and clear in Figure 9(1). Similarly, tree branches

behind the house are distorted in Figure 9(k), but are more
accurately reconstructed in Figure 9(1).

Finally, we tested our algorithm on an image from the
Middlebury College’s Vision Group (Midd1 [51], Figure 10).
Figure 11 compares the results of the proposed approach to
the other three methods, while PSNR values are presented in
Table 1. Compared to the isotropic case, the 2-image edge-
preserving regularization sharpens the disparity field that, in
turn, leads to 1dB gain in PSNR. However, occlusions are
still not handled well; the closeup of occlusion area shows
severe artifacts. Since forward-projection with spline-based
interpolation accounts for occlusions, we see an increase in
PSNR value as well as proper reconstruction of texture in
occlusion areas. The proposed method adds another 0.5 dB
to the PSNR and produces intermediate image very close to
the original closeup.

5. DISCUSSION

The focus of this work was on severely undersampled 3D data
sets with unknown scene structure, and, more specifically, on
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(d)

(k)

Ficure 9: Comparison of backward-projection view interpolation for Flowergarden: original frames. (a) no. 10 (I;), (b) no. 16 (1), (c) no.
22 (I3), (d) no. 28 (I,), (e)-(f) disparity and intermediate view for 2-image isotropic backward projection, (g) estimated label map, (h)-(i)
disparity and intermediate view for 4-image occlusion-aware backward projection, (j) true frame no. 19, (k) closeup from (f), (1) closeup

from (i).

handling of occlusion areas in novel view interpolation. As
expected, view interpolation based on 4 images outperforms
view interpolation using only 2 images, since occluded areas
can be found in the additional images. Interestingly, exper-
iments have shown that view interpolation from 4 images
using occlusion-aware backward projection outperforms one
using occlusion-aware forward projection. This result is
somewhat surprising since the forward-projection approach
uses known images for edge-preserving disparity diffusion,
whereas the backward-projection approach uses a coarse
intermediate image (estimated) for the same purpose. As
seen in Figures 8(g) and 8(j), the disparity field estimated
within forward projection has sharper discontinuities at
object boundaries than the one estimated within backward

projection. One possible explanation of this inconsistency
is that disparity-compensated projections in the forward-
projection case ((1 + «)d;; and (2 — «)d43) extend beyond
their temporal support (magnifications (1 + «) and (2 —
«)), and thus any disparity errors get amplified in the
coordinate system of intermediate image /. This is not the
case in backward projection since disparities area anchored
in J, and suitable image pairs are used for correspondence.
Another likely factor is the spline-based reconstruction
used in forward projection to recover on-lattice samples
of J; it incorporates intensity smoothing in order to deal
with irregularly-sampled projections. This is not the case
in backward projection, where a simple averaging of two
corresponding intensities is used.



12 EURASIP Journal on Image and Video Processing

(a) (b) (c) (d) (e)

FIGURE 10: Midd] test sequence [51]. (a)-(d) I;—I4, and (e) true intermediate image.

) (8
0) (k) @
(n) (o)

(r)

Figure 11: Comparison of view interpolation methods for Middl sequence from Figure 10 (disparity, interpolated view, interpolation
error, and closeup of occlusion area are shown). (a)—(d) 2-image isotropic backward projection, (e)—(h) 2-image edge-preserving backward
projection, (i)—(1) 4-image occlusion-aware forward projection (only disparity estimated from I, to I is shown), (m)-(p) 4-image occlusion-
aware backward projection, (q) estimated label map, (r) closeup of the occlusion area from the true intermediate image (Figure 10(e)). See
Table 1 for algorithm description and PSNR values.
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The very simple occlusion-adaptive interpolation used in
the backward-projection approach has the additional benefit
of resilience to disparity errors. A single erroneous disparity
vector affects luminance/color of a single pixel in the novel
view J. This is unlike the case of forward projection where
the spline-based reconstruction spreads this error due to the
smoothness constraint used.

In terms of the computational complexity, it is clear from
(4) that in backward projection the actual view interpolation
is a byproduct of disparity estimation, and is a simple low-
complexity operation. The main computational complexity
of backward projection rests with the estimation of initial
disparity fields d;, and d43 (to recover occlusions) as well as
disparity field d (9); occlusion detection itself [42] has low
computational complexity. Note, however, that a separate
disparity field d needs to be computed for each novel image |
with different a. On the other hand, in occlusion-aware for-
ward projection in addition to the estimation of 3 disparity
fields (di2, d23, du3), the main computational burden is in
spline-based image reconstruction that is iterative and com-
putationally complex. Herein lies a compromise, if only one
novel view is needed between I, and I3, backward projection
should be more efficient computationally, however, if many
novel views are needed between I, and I; (often the case
in multiview autostereoscopic displays), forward projection
may be more efficient.

6. SUMMARY AND CONCLUSIONS

In this paper, we overviewed different approaches to inter-
mediate view reconstruction especially in the context of their
occlusion awareness. We pointed out the fundamental differ-
ence between forward-projection and backward-projection
approaches to view interpolation. We highlighted the limi-
tations of backward-projection approaches, and specifically
the absence of an underlying image for edge-preserving
disparity regularization, and difficulties with occlusion han-
dling. Then, we argued that although backward-projection
reconstruction using two images creates distorted texture
in the intermediate view, it reconstructs edges accurately.
Exploiting this fact, we proposed to use a coarse intermediate
image in disparity estimation for edge-preserving regulariza-
tion purposes. We also proposed a new variational backward-
projection view interpolation that works selectively on image
pairs to handle occlusions. The basic idea is that when
multiple images are available, a point in the intermediate
image is visible in at least two images that can be used
for accurate interpolation. Novel views computed using
the proposed method show dramatic improvements over
backward-projection interpolation based on two images, and
a significant gain over 4-image forward-projection approach.
Admittedly, the improvements are localized and affect image
quality only in the immediate vicinity of object boundaries.
However, in high-quality 3D applications, such as digital 3D
cinema and ultra-high resolution multiview autostereoscopic
displays, any distortions at depth discontinuities are highly
objectionable, especially if they vary with viewpoint change.

APPENDIX

We need to carry out minimization (9) with respect to d.
Denote e(x) = ep(x) + Aes(x), where ep and eg are defined
in (10). Using the calculus of variations, Euler-Lagrange
equations for u and v can be found as follows:

e,(u)_%iiae 886_
~Ju  oxouwr dyow
(A1)
P Do 0 a
9v dxovc  dyov

where u*, v* and w”, v” are the horizontal and vertical deriva-
tives of horizontal and vertical components of disparity.
Expanding these equations, we obtain

oo 93 D des _
ou Oxout dyow
(A.2)
ep _00es 0 des_
ov  odxov: dyov
Partial derivatives are defined as follows:
ep _ 0Py 0Py 0P3y
ou  ou * ou * ou’
o0 9Py 9Py 9Py
o o * ov * ov’
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ox our | oy ow ox oIy
9 des 0 des _ 902g(EDvY) | 0212 1)v)
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(A.3)
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where [10] S. Ince and J. Konrad, “Occlusion-aware optical flow estima-
Y tion,” IEEE Transactions on Image Processing, vol. 17, no. 8, pp.
12(X) _ ~(1+ )T + al?, 1443-1451, 2008.
Ju [11] E. H. Adelson and J. R. Bergen, “The plenoptic function
and the elements of early vision,” in Computational Models
00,3(x) Fx Fx Y
T = —alf - (1- 05)13 > of Visual Processing, M. Landy and J. A. Movshon, Eds., MIT
u Press, Cambridge, Mass, USA, 1991.
0034(x) - oc)INx _(2- oc)INx [12] C.Zhangand T. Chen, “A survey on image-based rendering—
Ju 3 4> representation, sampling and compression,” Signal Processing:
901, (x) (A.5) Image Communication, vol. 19, no. 1, pp. 1-28, 2004.
2\X) _ 7ol 13] M. L d P. Hanrahan, “Light field rendering,” in Pro-
222 - 1+ o)) +alf, [ . Levoy and P. Hanrahan, “Light field rendering,” in Pro
ov ! ? ceedings of the 23rd Annual Conference on Computer Graphics
9623(x) N N and Interactive Techniques (SIGGRAPH ’96), pp. 31-42, New
3 =—al} - (1 -, Orleans, La, USA, August 1996.
v [14] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen,
0034(x) 1 7 _ 0 i “The lumigraph,” in Proceedings of the 23rd Annual Con-
o (1 -l —(2-a)lf, ference on Computer Graphics and Interactive Techniques

and I*, I’ are horizontal and vertical derivatives of I., while
I* and I’ are derivatives evaluated at a point off x, for
example, Tz" = [ (x — ad(x)). Using an auxiliary time
variable ¢, equations in (A.1) can be solved by discretizing
the gradient descent equations:

u , o
i —e'(u), Pyl e'(v). (A.6)
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