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The selection of the optimal features subset and the classification have become an important issue in the field of iris recognition. We
propose a feature selection scheme based on the multiobjectives genetic algorithm (MOGA) to improve the recognition accuracy
and asymmetrical support vector machine for the classification of iris patterns. We also suggest a segmentation scheme based
on the collarette area localization. The deterministic feature sequence is extracted from the iris images using the 1D log-Gabor
wavelet technique, and the extracted feature sequence is used to train the support vector machine (SVM). The MOGA is applied
to optimize the features sequence and to increase the overall performance based on the matching accuracy of the SVM. The
parameters of SVM are optimized to improve the overall generalization performance, and the traditional SVM is modified to
an asymmetrical SVM to treat the false accept and false reject cases differently and to handle the unbalanced data of a specific
class with respect to the other classes. Our experimental results indicate that the performance of SVM as a classifier is better than
the performance of the classifiers based on the feedforward neural network, the k-nearest neighbor, and the Hamming and the
Mahalanobis distances. The proposed technique is computationally effective with recognition rates of 99.81% and 96.43% on
CASIA and ICE datasets, respectively.
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1. INTRODUCTION

There has been a rapid increase in the need of accurate
and reliable personal identification infrastructure in recent
years, and biometrics has become an important technology
for the security. Iris recognition has been considered as one
of the most reliable biometrics technologies in recent years
[1, 2]. The human iris is the most important biometric
feature candidate, which can be used for differentiating the
individuals. For systems based on high quality imaging, a
human iris has an extraordinary amount of unique details
as illustrated in Figure 1. Features extracted from the human
iris can be used to identify individuals, even among geneti-
cally identical twins [3]. Iris-based recognition system can be
noninvasive to the users since the iris is an internal organ
as well as externally visible, which is of great importance
for the real-time applications [4]. Based on the technology
developed by Daugman [3, 5-7], iris scans have been used in
several international airports for the rapid processing of pas-
sengers through the immigration which have preregistered
their iris images. Iris technology has also been widely used in

several countries for various security purposes and by
the United Nations High Commission for Refugees. The
National Institute of Standards and Technology (NIST) has
conducted a new technology development project for iris
recognition, namely, the iris challenge evaluation (ICE) [8].

1.1. Main contributions

We present a new iris segmentation approach based on the
collarette area localization along with the eyelids, the eye-
lashes, and the noise detection techniques. multiobjectives
genetic algorithms (MOGA) is used to select the optimal
features and also to increase the recognition accuracy [9].
The concept of asymmetrical SVM is used as iris pattern
classifiers, and in order to improve the classification accuracy,
the parameters of SVM are tuned carefully [10, 11]. We
perform a series of experiments to evaluate the performance
of the proposed approach. In order to exhibit the efficiency of
our proposed approach, we carry out extensive quantitative
comparisons with the other existing methods.
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FiGUre 1: Samples of iris images from CASIA [12] and ICE [8]
datasets.

The rest of this paper is organized as follows. In Section 2,
we provide a brief description of our proposed approach.
In Section 3, we describe the related work and some rele-
vant background. Descriptions of iris image preprocessing,
feature extraction, and encoding are given in Sections 4
and 5, respectively. Section 6 presents the feature selection
strategy, and Section 7 describes the classification process of
iris patterns. Experimental results, comparisons with other
methods, and discussions are reported in Section 8. Section 9
concludes the paper.

2. PROPOSED APPROACH: THE MAIN STEPS

Figure 2 illustrates the main steps of our proposed approach.
First, the imagepreprocessing step performs the localization
of the pupil, detects the iris boundary, and isolates the
collarette region, which is regarded as one of the most
important areas of the iris complex pattern. The collarette
region is less sensitive to the pupil dilation and usually
unaffected by the eyelids and the eyelashes [13]. We also
detect the eyelids and the eyelashes, which are the main
sources of the possible occlusion. In order to achieve the
invariance to the translation and the scale, the isolated
annular collarette area is transformed to a rectangular block
of fixed dimension, and then the normalized image is
enhanced. The discriminating features are extracted from
the transformed image, and the extracted features are used
to train the SVM. The optimal features subsetis selected
using MOGA to increase the matching accuracy based on
the recognition performance of the SVM. The parameters
of the SVM are tuned to improve the overall generaliza-
tion performance. The traditional SVM is modified to an
asymmetrical SVM, and it is applied for the iris pattern
classification to treat the cases of false accept or false reject
differently. The classification accuracy of the proposed SVM
is also compared with the feedforward neural network by
using the backpropagation (FFBP), the feedforward neural
network by using the Levenberg-Marquardt rule (FFLM),
the k-nearest neighbor (k-NN), and the Hamming and the
Mahalanobis distances.

3. BACKGROUND
3.1. Related work

The usage of iris patterns for the personal identification
began in the late 19th century; however, the major investi-
gations on iris recognition were started in the last decade.
In [15], the iris signals were projected into a bank of basis
vectors derived by the independent component analysis,
and the resulting projection coefficients were quantized as
features. A prototype was proposed in [16] to develop a
1D representation of the gray-level profiles of the iris. In
[17], biometrics based on the concealment of the random
kernels and the iris images to synthesize a minimum
average correlation energy filter for iris authentication were
formulated. In [5-7], the multiscale Gabor filters were used
to demodulate the texture phase structure information of
the iris. In [13], an iris segmentation method was proposed
based on the crossed chord theorem and the collarette area.
In [18], iris recognition technology was applied in mobile
phones. In [19], correlation filters were utilized to measure
the consistency of the iris images from the same eye. An
interesting solution to defeat the fake iris attack based on
the Purkinje image was depicted in [20]. An iris image was
decomposed in [21] into four levels by using the 2D Haar
wavelet transform, the fourth-level high-frequency informa-
tion was quantized to form an 87-bit code, and a modified
competitive learning neural network (LVQ) was adopted
for classification. In [22], a modification to the Hough
transform was made to improve the iris segmentation, and
an eyelid detection technique was used, where each eyelid
was modeled as two straight lines. A matching method was
implemented in [23], and its performance was evaluated on
a large dataset.

In [24], a personal identification method based on
the iris texture analysis was described. An algorithm was
proposed for iris recognition by characterizing the key local
variations in [25]. A phase-based iris recognition algorithm
was proposed in [26], where the phase components were
used in 2D discrete Fourier transform of iris image with a
simple matching strategy. In [27], a system was proposed
that is capable of a detailed analysis of the eye region images
in terms of the position of the iris, degree of the eyelid
opening, and the shape, the complexity, and the texture
of the eyelids. A directional filter bank was used in [28]
to decompose an iris image into eight directional subband
outputs, the normalized directional energy was extracted as
features, and iris matching was performed by computing
the Euclidean distance between the input and the template
feature vectors. In [29], the basis of genetic algorithms was
applied to develop a technique to improve the performance
of an iris recognition system. In [30], the global texture
information of iris images was used for ethnic classification.
The iris representation method of [16] was further developed
in [31] to use the different similarity measures for matching.
The iris recognition algorithm described in [32] exploited
the integrodifferential operators to detect the inner and outer
boundaries of iris, Gabor filters to extract the unique binary
vectors constituting the iris code, and a statistical matcher
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FiGURE 2: Flow diagram of the proposed iris recognition scheme.

that analyzes the average Hamming distance between two
codes. In [33], the performance of iris-based identification
system was analyzed at the matching score level. A biometric
system, which achieves the offline verification of certified and
cryptographically secured documents called “EyeCerts” was
reported in [34] for the identification of the people.

An iris recognition method was used in [35] based on
the 2D wavelet transform for the feature extraction and
direct discriminant linear analysis for feature reduction with
SVM techniques as iris pattern classifiers. In [36], an iris
recognition method was proposed based on the histogram of
local binary patterns to represent the iris texture and a graph
matching algorithm for structural classification. An elastic
iris blob matching algorithm was proposed to overcome
the limitations of local feature based classifiers (LFC) in
[37], and in order to recognize the various iris images
properly, a novel cascading scheme was used to combine
the LFC and an iris blob matcher. In [38], the authors
described the determination of eye blink states by tracking
the iris and the eyelids. An intensity-based iris recognition
system was presented in [39], where the system exploited
the local intensity changes of the visible iris textures. In
[40], the iris characteristics were analyzed by using the
analytic image constructed by the original image and its
Hilbert transform. The binary emergent frequency functions
were sampled to form a feature vector, and the Hamming
distance was deployed for matching [41, 42]. In [43], the
Hough transform was applied for the iris localization, a
Laplacian pyramid was used to represent the distinctive
spatial characteristics of the human iris, and a modified
normalized correlation was applied for the matching process.
In [44], various techniques have been suggested to solve the
occlusion problem that happens due to the eyelids and the
eyelashes.

In [45], we developed an iris recognition method based
on the SVM, where we used the information of the whole
iris region for recognition, and a traditional SVM was
used as iris pattern classifiers. However, in this paper, we
propose a segmentation approach based on the collarette
area localization, and the unique iris information between
the collarette boundary and pupil boundary is used instead
of using the complete information of the iris region for the
recognition purpose. The traditional SVM used in [45] is
modified in this paper to an asymmetrical SVM [11], and
in order to reduce the computational cost, the parameters
of SVM are tuned carefully [46]. We also propose a multi-
objectives genetic algorithm (MOGA) to minimize the size

of features subset and the recognition error of the matching
process. We provide a comparative analysis of some major
existing works on iris recognition with our proposed scheme
in Table 1.

From the above discussion, we may divide the existing iris
recognition approaches roughly into four major categories
based on feature extraction scheme, namely, the phase-based
methods [5-7, 26], the zero-crossing representation methods
[16, 31], the texture analysis-based methods [21, 24, 28, 32,
43, 47-49], and the intensity variation analysis [15, 25, 50]
methods. Our proposed iris recognition scheme falls in the
fourth category.

Wavelets are used to decompose the data in the iris
region into components that appear at different resolutions.
A number of wavelet filters, also called a bank of wavelets,
are applied to the 2D iris region, one for each resolution with
each wavelet a scaled version of some basis function. The
output is then encoded in order to provide a compact and
discriminating representation of the iris pattern. A Gabor
filter is constructed by modulating a sine/cosine wave with
a Gaussian. This allows providing the optimum conjoint
localization both in space and frequency, since a sine wave
is perfectly localized in frequency, but not localized in space.
The decomposition of a signal is accomplished by using a
quadrature pair of Gabor filters, with a real part specified
by a cosine modulated by a Gaussian, and an imaginary part
specified by a sine modulated by a Gaussian [14]. The real
and imaginary filters are also known as the even symmetric
and odd symmetric components, respectively. The center
frequency is specified by the frequency of the sine/cosine
wave, and the bandwidth of the filter is specified by the width
of the Gaussian. Daugman [6] used a 2D version of Gabor
filters in order to encode the iris pattern data. A 2D Gabor
filter over the image domain (x, y) is represented as

Glx, y) = e_ﬂ[(x_xo)z/a2+(}’_)’0)2/ﬁ2]6_277[”0(75_9‘0)1’1/0(}/7)'0)], (1)

where (xo, yo) specifies the position in the image, (a,f3)
denotes the effective width and length, and (u,vy) indi-
cates the modulation, which has spatial frequency wy =
(ud +v§)1/2. The odd symmetric and even symmetric 2D
Gabor filters are shown in Figure 3.

Daugman [5] used polar coordinates for the normaliza-
tion, and in polar form the filters are given by

H(r,0) = ¢ (000 g=(r=ro)?/a =i(0-60)"/f" (2)



EURASIP Journal on Image and Video Processing

TaBLE 1: Comparison of existing iris recognition approaches.

Iris recognition approaches

Nature of feature

Matching process

Quality evaluation

Daugman (5]

Wildes et al. [43]

Boles and Boashash [16]

Ma et al. [49]

Ma et al. [48]

Ma et al. [24]

Ma et al. [25]

Lim et al. [21]

Sanchez-Reillo and Sanchez-Avila [32]

Liu et al. [22]

Liu et al. [23]

Proposed approach

Binary features vector using
2D Gabor filters

Laplacian pyramid to
represent the spatial
characteristics of iris image

1D signature

1D real-valued feature
vector with the length of
384

1D real-valued feature
vector with the length of
160

A feature vector of length
1536 using a bank of spatial
filters

1D integer-valued feature

vector with the length of
660

1D binary vector of length
87

1D signature,

2D Gabor wavelets

2D Gabor wavelets

Binary feature vector of
length 470 and 504 on
CASIA and ICE datasets,
respectively, using 1D
log-Gabor filters

Hamming distance

Normalized correlation

Two dissimilarity
functions: the learning and
the classification

Nearest feature line

Weighted Euclidean
distance

Nearest center classifier for
classification

XOR operation

LVQ neural network

Euclidean and Hamming
distances

Hamming distance

Hamming distance

Asymmetrical SVM

Perfect recognition rate and
provides a faster iris/pupil
detection process
Matching process is time
consuming. It may be
suitable for identification
phase not for recognition
Relatively low recognition
rate, high EER, faster
matching process, simple
1D feature vector

Relatively slow feature
extraction process

Lower recognition rate and
higher EER

Higher recognition rate
and lower EER, extra cost
for feature reduction

Very good recognition rate
and lower EER

Poor recognition rate and
higher EER, relatively
complicated classifier
Medium classification rate,
simple 1D features

Higher recognition rate on
complicated dataset,
medium EER

Modified Hough transform
is used for localization,
relatively lower recognition
rate

Faster feature extraction
process, Relatively higher
recognition rate with lower
EER, extra cost for feature
reduction using MOGA but
suitable for dataset like ICE

where (a,f) is the same as in (1) and (ry,0) specify the
center frequency of the filter. The demodulation and phase
quantization process can be represented as

)22 o= (60~ 2 /p2

hir 1) = Sgn{Rg,Im}LLI(P,@)67"”(9”7‘3)67(“” ,
(3)

where A, 1,} can be regarded as a complex-valued bit, whose
real and imaginary components are dependent on the sign
of the 2D integral, and I(p, @) is the raw iris image in a
dimensionless polar coordinate system.

Gabor filters-based methods have been widely used as
feature extractor in computer vision, especially for texture

analysis. However, one weakness of the Gabor filter in
which the even symmetric filter will have a DC component
whenever the bandwidth is larger than one octave. To
overcome this disadvantage, a type of Gabor filter known
as log-Gabor filter, which is Gaussian on a logarithmic
scale, can be used to produce zero DC components for
any bandwidth [14]. The log-Gabor function more closely
reflects the frequency response for the task of analyzing
natural images and is consistent with measurement of the
mammalian visual system. The log-Gabor filters are obtained
by multiplying the radial and the angular components
together, where each even and odd symmetric pair of log-
Gabor filters comprises a complex log-Gabor filter at one
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FIGURE 3: A quadrature pair of 2D Gabor filters. (a) Real component or even symmetric filter characterized by a cosine modulated by a
Gaussian; (b) imaginary component or odd symmetric filter characterized by a sine modulated by a Gaussian [14].

scale. The frequency response of a log-Gabor filters is given
as

sl 147 "

2(log(a/f;))*

where f; is the center frequency, and ¢ provides the
bandwidth of the filter.

G(f) = exp(

3.2. Rubber sheet model for unwrapping

Taking the effect of several deformations and inconsistencies
such as the variation of the size of the iris images captured
from different persons and even for irises from the same
eye, the variation of iris and pupil centers due to the camera
position, the camera-to-eye distance, the rotation of the
camera, the head tilt, and the rotation of the eye within
the eye socket into account, the annular collarette region is
required to be transformed into a fixed dimension for further
processing. Daugman’s rubber sheet model [6] is used in
this paper to unwrap the iris ring into a rectangular block
with the texture and with a fixed size. This process maps the
detected collarette area from Cartesian coordinates, (x, ), to
the normalized polar representation according to

I(X("’e)»)’(f:e)) - I(T’, 6)3 (5)
with
x(r,0) = (1 —1)x,(0) +rx,(0),

6
y(r,0) = (L —=r)y, +ry.(0), (©)

where I(x, y) is the collarette area, (x,y) are the original
Cartesian coordinates, (x, y,) denote the center coordinates
of the pupil, and (r,0) are the corresponding normalized
polar coordinates. The rubber sheet model considers the
pupil dilation and the size inconsistencies to construct a
normalized representation of the annular collarette area with
the constant dimensions. In this way, the collarette area is
modeled as a flexible rubber sheet anchored at the collarette
boundary with the pupil center as the reference point.

3.3. Multiobjective optimization using
genetic algorithms

Genetic algorithm (GA) is a class of optimization procedures
inspired by the mechanisms of evolution in nature [51,
52]. GAs operate on a population of structures, each of
which represents a candidate solution to the optimization
problem, encoded as a string of symbols “(chromosome)”,
and GA starts its search from the randomly generated initial
population. In GA, the individuals are typically represented
by m-bit binary vectors, and the resulting search space
corresponds to an m-dimensional Boolean space. The quality
of each candidate solution is evaluated by a fitness function.
The fitness-dependent probabilistic selection of individuals
from the current population to produce the new individuals
is used by GA [52]. The two of the most commonly
used parameters of GA that represent individuals as binary
strings are mutation and crossover. Mutation operates on
a single string and changes a bit randomly, and crossover
operates on two parent strings to produce two offsprings.
GAs repeat the process of fitness-dependent selection and
the application of genetic operators to generate successive
generations of individuals several times until an optimal
solution is obtained. Feature subset selection algorithms can
be classified into two categories, namely, the filter and the
wrapper approaches, based on whether the feature selection
is performed independently of the learning algorithm or
not to construct the verifier. In the filter approach, the
feature selection is accomplished independently of learning
algorithms. Otherwise, the approach is called a wrapper
approach. The filter approach is computationally more
efficient, but its major drawback is that an optimal selection
of features may not be independent of the inductive and
representational biases of the learning algorithm that is used
to build the classifier. On the other hand, the wrapper
method involves the computational overhead of evaluating
a candidate feature subset by executing a selected learning
algorithm on the database using each feature subset under
consideration. The performance of the GAs depends on
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various factors such as the choice of genetic representation
and operators, the fitness function, fitness-dependent selec-
tion procedure, and the several user-determined parameters
like population size, probability of mutation and crossover,
and so on.

The feature subset selection presents a multicriterion
optimization function, for example, number of features and
accuracy of the classification in the context of practical
applications such as iris recognition. Genetic algorithms
suggest a particularly attractive approach to solve this
kind of problems since they are generally quite effective
in rapid global search of large, nonlinear, and poorly
understood spaces [52]. The multiobjectives optimization
problem consists of a number of objectives and is correlated
with a number of inequality and equality constraints.
The solution to a multiobjective optimization problem is
expressed mathematically in terms of nondominated points,
that is, a solution is dominant over another only if it has
superior performance in all criteria. A solution is treated
to be the Pareto optimal if it cannot be dominated by any
other solution available in the search space [51]. The conflict
between the objectives is regarded as a common problem
with the multiobjective. Therefore, the most favorable Pareto
optimum is the solution that offers the least objective
contflict, since in general none of the feasible solutions allows
simultaneous optimal solutions for all objectives [51, 53].
In order to find such solutions, classical methods are used
to scalarize the objective vector into one objective, and
the simplest of all classical techniques is the weighted sum
method [52]. In this method, the objectives are aggregated
into a single and parameterized objective through a linear
combination of the objectives. However, the scaling of each
objective function is used to setup an appropriate weight
vector. It is likely that different objectives take different orders
of magnitude. When the objectives are weighted to form a
composite objective function, it is required to scale them
appropriately so that each has more or less the same order
or magnitude. Therefore, the solution found through this
strategy largely depends on the underlying weight vector.
In order to overcome such complexities, the Pareto-based
evolutionary optimization has been used as an alternative
to the classical techniques such as weighted sum method,
where the Pareto dominance has been used to determine
the reproduction probability of each individual. Basically, it
consists of assigning rank 1 to the nondominated individuals
and removing them from contention, then finding a new
set of nondominated individuals, ranked 2, and so forth
[52]. In this paper, our problem consists of optimizing two
objectives: minimization of the number of features, and the
error rate of the classifier. Therefore, we are concerned with
the multiobjectives genetic algorithms (MOGA).

4. IRIS IMAGE PREPROCESSING

First, we outline our approach, and then we describe further
details in the following subsections. The iris is surrounded
by the various nonrelevant regions such as the pupil, the
sclera, the eyelids, and also noise caused by the eyelashes, the
eyebrows, the reflections, and the surrounding skin [15]. We

need to remove this noise from the iris image to improve the
iris recognition accuracy. To do this, we initially localize the
pupil and iris region in the eye image. Then, the collarette
area is isolated using the parameters obtained from the
localized pupil. We also apply the eyelashes, the eyelids, and
the noise reduction methods to the localized collarette area.
Finally, the deformation of the pupil variation is reduced by
unwrapping the collarette area to form a rectangular block of
fixed dimension [54].

4.1. lIris/pupil localization

The iris is an annular portion of the eye situated between
the pupil (inner boundary) and the sclera (outer boundary).
Both the inner boundary and the outer boundary of a
typical iris can be taken as approximate circles. However, the
two circles are usually not concentric [24, 25]. We use the
following approach to isolate the iris and pupil boundaries
from the digital eye image.

(1) The iris image is projected in the vertical and hori-
zontal directions to estimate approximately the center
coordinates of the pupil. Generally, the pupil is darker
than its surroundings; therefore, the coordinates
corresponding to the minima of the two projection
profiles are considered as the center coordinate values
of the pupil (X;, Y)).

(2) In order to compute a more accurate estimate of
the center coordinate of the pupil, we use a simple
intensity thresholding technique to binarize the iris
region centered at (X,,Y,). The centroid of the
resulting binary region is considered as a more
accurate estimate of the pupil coordinates. We can
also roughly compute the radius, r,, of the pupil from
this binarized region.

(3) Canny edge detection technique is applied to a
circular region centered at (X,,Y,) and with r, +
25. Then, we deploy the circular Hough transform to
detect the pupil/iris boundary.

(4) In order to detect the iris/sclera boundary, we repeat
step 3 with the neighborhood region replaced by an
annulus band of a width R outside the pupil/iris
boundary. The edge detector is adjusted to the
vertical direction to minimize the influence of the
eyelids.

(5) The specular highlight that typically appears in the
pupillary region is one source of edge pixels. These
can be generally eliminated by removing the Canny
edges at the pixels that have a high intensity value.
(For the ICE data-set, it is 245). Figure 5 shows the
localized pupils taken from the input iris images.

4.2. Collarette boundary localization

Iris complex pattern provides many distinguishing charac-
teristics such as arching ligaments, furrows, ridges, crypts,
rings, freckles, coronas, stripes, and collarette area [24]. The
collarette area is one of the most important parts of iris
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FiGure 5: Collarette area localization (a), (b), and (c) from CASIA
iris dataset and (d), (e), and (f) from ICE dataset.

complex patterns, see Figure 4, since it is usually less sensitive
to the pupil dilation and less affected by the eyelid and the
eyelashes. From the empirical study, it is found that collarette
region is generally concentric with the pupil, and the radius
of this area is restricted in a certain range [13]. The collarette
area is detected using the previously obtained center value
of the pupil as shown in Figure 5. Based on the extensive
experimentation, we prefer to increase the radius of the pupil
up to a certain number of pixels (see Section 8.1 for the
experimental validation).

4.3. Eyelids, eyelashes, and noise detection

(i) Eyelids are isolated by first fitting a line to the
upper and lower eyelids using the linear Hough
transform. A second horizontal line is then drawn,
which intersects with the first line at the iris edge that
is closest to the pupil [14].

(ii) Separable eyelashes are detected using 1D Gabor
filters, since a low output value is produced by the
convolution of a separable eyelash with the Gaussian
smoothing function. Thus, if a resultant point is
smaller than a threshold, it is noted that this point
belongs to an eyelash.

(iii) Multiple eyelashes are detected using the variance of
intensity, and if the values in a small window are
lower than a threshold, the centre of the window
is considered as a point in an eyelash as shown in
Figure 6.

(IT)

FiGure 6: (I) CASIA iris images (a), (b), and (c) with the detected
collarette area and the corresponding images (d), (e), and (f) after
detection of noise, eyelids, and eyelashes. (II) ICE iris images (a),
(b), and (c) with the detected collarette area and the corresponding
images (d), (e), and (f) after detection of noise, eyelids, and
eyelashes.

4.4. Normalization and enhancement

We use the rubber sheet model [6] for the normalization
of the isolated collarette area. The center value of the pupil
is considered as the reference point, and the radial vectors
are passed through the collarette region. We select a number
of data points along each radial line that is defined as
the radial resolution, and the number of radial lines going
around the collarette region is considered as the angular
resolution. A constant number of points are chosen along
each radial line in order to take a constant number of
radial data points, irrespective of how narrow or wide the
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FiGURE 7: (I) shows the normalization procedure on ICE dataset; (II) (a), (b) show the normalized images of the isolated collarette regions

and (c), (d) indicate the enhanced images on the ICE dataset.

radius is at a particular angle. We build the normalized
pattern by backtracking to find the Cartesian coordinates
of data points from the radial and angular positions in the
normalized pattern [3, 5, 6]. The normalization approach
produces a 2D array with horizontal dimensions of angular
resolution, and vertical dimensions of radial resolution form
the circular-shaped collarette area (See Figure 7I). In order to
prevent non-iris region data from corrupting the normalized
representation, the data points, which occur along the pupil
border or the iris border are discarded. Figure 71I(a),(b)
shows the normalized images after the isolation of the
collarette area. Since the normalized iris image has relatively
low contrast and may have nonuniform intensity values
due to the position of the light sources, a local intensity-
based histogram equalization technique, which helps to
increase the subsequent recognition accuracy, is applied to
enhance the normalized iris image quality. Figure 71I(c),(d)
also shows the effect of enhancement on the normalized iris
images.

5. FEATURE EXTRACTION AND ENCODING

5.1. Gabor wavelets

In order to extract the discriminating features form the
normalized collarette region, the normalized pattern is
convolved with 1D log-Gabor wavelets [14]. First, the 2D

normalized pattern is isolated into a number of 1D signals,
and then these 1D signals are convolved with 1D Gabor
wavelets. The phasequantization approach proposed in [5]
is applied to four levels on the outcome of filtering with
each filter producing two bits of data for each phasor. The
desirable feature of the phase code is selected to be a grey
code, where only a single bit changes while rotating form
one phase quadrant to another, unlike a binary code. The
encoding process produces a bitwise template containing a
number of bits of information, and a corresponding noise
mask, which corresponds to the corrupt areas within the
collarette pattern and marks bits in the template as corrupt.

Since the phase information will be meaningless at
regions, where the amplitude is zero, we mark these regions
in the noise mask. The total number of bits in the template
will be the double of the product of the angular resolution,
the radial resolution, and the number of filters used. The
feature extraction process is shown in Figure 8.

6. FEATURE SUBSET SELECTION USING MOGA

It is necessary to select the most representative feature
sequence from a features set with relative high dimension
[51]. In this paper, we propose MOGA to select the optimal
set of features, which provide the discriminating information
to classify the iris patterns. In this subsection, we present
the choice of a representation for encoding the candidate
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FIGURE 8: Feature extraction and encoding process (a) feature extraction, (b) phase quantization, and (c) generated iris pattern.
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solutions to be manipulated by the GAs, and each individual
in the population represents a candidate solution to the
feature subset selection problem. If m be the total number
of features available to choose to represent from the patterns
to be classified (m = 600 in our case for both data-
sets), the individual is represented by a binary vector of
dimension, m. If a bit is a 1, it means that the corresponding
feature is selected, otherwise the feature is not selected (See
Figure 9). This is the simplest and most straightforward
representation scheme [51]. In this work, we use the roulette
wheel selection [51], which is one of the most common
and easy to implement selection mechanism. Usually, there
is a fitness value associated with each chromosome, for
example, in a minimization problem, a lower fitness value
means that the chromosome or solution is more optimized
to the problem while, a higher value of fitness indicates a less
optimized chromosome. Our problem consists of optimizing

two objectives:

(i) minimization of the number of features,

(ii) minimization of the recognition error rate of the
classifier (SVM in our case).

Therefore, we deal with the multiobjectives optimization
problem. In order to generate the Pareto optimal set,
we apply the weighting method proposed in [55], which
aggregates the objectives into a single and parameterized
objective. Such an aggregation is performed through a linear
combination of the objectives

Obj(y) = Obj,(y) X w1 + Obj,(y) X wa, (7)

where w; denotes the weights and it is normalized to
> w; = 1 without losing the generality. Obj, (y) is the error
rate produced by the classifier for a given feature subset
(represented by the chromosome, y) and Obj, (y) denotes the
number of features selected in the chromosome, y. Therefore,
the fitness of a chromosome is represented by a single
and parameterized objective function ODbj(y). The feature
subset selection using the MOGA involves the running of a
genetic algorithm for several generations. In this paper, we
prefer to use the wrapper approach based on the nature of
the problem space. Regarding a wrapper approach, in each
generation, evaluation of a chromosome (a feature subset)
requires training the corresponding SVM and computing its
accuracy. This evaluation has to be performed for each of
the chromosomes in the population. Only the features in the
parameter subset encoded by an individual are used to train
the SVM classifier. The performance of the SVM classifier is
estimated using a validation dataset and is used to guide the
genetic algorithm as shown in Figure 10.

7. MULTICLASS ASYMMETRICAL SUPPORT VECTOR
MACHINES AS IRIS PATTERN CLASSIFIERS

A support vector machine (SVM) is a well-accepted approach
for pattern classification due to its attractive features and
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promising performance [10]. Support vector classifiers
devise a computationally efficient way of learning good
separating hyperplane in a high-dimensional feature space.
In this work, we apply SVM to classify the iris pattern due
to its outstanding generalization performance and promising
performance as a multiclass classifier. In an SVM, a few
important data points called support vectors (SV) are selected
on which a decision boundary is exclusively dependent. One
problem persists with the traditional approach of SVM is
that it does not separate the cases of false accept and false
reject [56]. Therefore, we prefer to apply the asymmetrical
SVM in order to treat the cases of false accept and false reject
separately and to control the unbalanced data of a specific
class with respect to the other classes. We summarize these
steps below.

(1) Let us consider N sets of labeled input/output pairs
xp,ysi = 1,...,N} € X x {+1,—1}, where X is the
set of input data in RP and y; represents the labels. The
SVM approach aims to obtain the largest possible margin of
separation. The decision hyperplane can be expressed as

x-w+b=0. (8)
(2) If all the training data satisfy the constraints, then

xi'w+b=+1 fory;=+1, Vi=1,...,N,

9
for y;= -1, Vi=1,...,N, ©)

X;-wtb< -1

and the distance between the two hyperplanes is expressed as

2

= il (10)

where, the distance d is considered as the safety margin of the
classifier.

(3) Now, by combining (9) into a single constraint, we
get

yi(xiw+b) =1 Vi=1,...,N. (11)

In the training phase, the main goal is to find the SV
that maximizes the margin of separation, d. Alternatively, a
similar objective can be achieved if we minimize lwl|?. Thus,
the goal is to minimize lwl? subject to the constraintin (11).
We can solve it by introducing Lagrange multipliers o; = 0
and a Lagrangian

N
L(w, b, a) %HWHZ ~Salxwb) —1),  (12)
i=1

where L(w, b, &) is simultaneously minimized with respect to
w and b, and maximized with respect to «;.

(4) Finally, the decision boundary can be derived as
follows:

N
fx)=wx+b= Zyioc,-(x-xi) +b=0. (13)

i=1

(5) If the data points are not separable by a linear
separating hyperplane, a set of slack or relaxation variables

{& = &,..., &} is introduced with & > 0 such that (11)
becomes

yi(xirw+b) >1-§&, Vi=1,..,N. (14)
The slack variables measure the deviation of the data points

from the marginal hyperplane. The new objective function
to be minimized becomes

%Ilwll2 + CZ&‘, subject to y;(xi-w+b) = 1-§,
(15)

where C is the user-defined penalty parameter that penalizes
any violation of the safety margin for all the training data.

(6) In order to obtain a nonlinear decision boundary, we
replace the inner product (x-x;) of (13) with a nonlinear
kernel K (x-x;) and get

N
f(x) = ZyiociK(x-xi) +b. (16)

i=1

(7) In order to change the traditional SVM into an
asymmetrical SVM, a constant g, which is called an asym-
metrical parameter, is used. It is used to adjust the decision
hyperplane. Thus (8) becomes

xw+b+g=0. (17)

(8) Therefore, the decision function of (16) changes to

N
f(X) = ZyiociK(X)Xi) + b+gr (18)

i=1

when g > 0, it indicates that the classification hyperplane is
closer to positive samples. By changing the value of g, the
value of false accept can be reduced. We also compensate
the statistically under-presented data of a class with respect
to other classes by controlling the value of the penalty
parameter, C.

The three basic kernels used in this paper are

Polynomial kernel: K(x,x;) = (1 + x-xi/0%)P, p>0,

Radial Basis Function (RBF) kernel: K(x,x;) =
exp{—Ilx — x;[*/26%}, and

Sigmoidal Kernel: K(x,x;) = 1/(1 + e X Xir/0%)

7.1. SVM parameters tuning

It is important to improve the generalization performance
by adjusting the penalty parameter for error term, C and
by adjusting the kernel parameters. A careful selection of a
training subset and of a validation set with a small number of
classes is required to avoid training the SVM with all classes
and to evaluate its performance on the validation set due to
its high-computational cost when the number of classes is
higher. In this paper, the optimum parameters are selected
to tune the SVM. A modified approach proposed in [46] is
applied here to reduce the cost of the selection procedure
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as well as to adjust the parameters of the SVM. We briefly
discuss the steps below.

After assigning the class label to the training data of
the selected classes obtained by the parameter selection
algorithm, we divide 70% of the training data of each class
depending on the dataset used for training, and the rest
of the training data is used for validation. The Fisher least
square linear classifier is used with a low computation cost
for each class [57]. The performance of this linear classifier
is evaluated on the validation set, and the confusion matrix,
CM, is defined as follows:

myp mppy - My
My My -+ My

cM=| . . .- (19)
My My - Myy

Here, each row i corresponds to the class w;, and each column
j represents the number of classes classified to w;. The
number of misclassified iris patterns is estimated for each
class as follows:

n
err; = Z mij, (20)
j=Li#i

and then we sort the misclassified patterns, err;, i =
1,2,...,n calculated from (20) in decreasing order, and
the subscripts i1,1,...,i are assigned to the top I choices
assuming that I <« N. Now, we determine the number
of classes whose patterns can be classified to the class set
{wi,, wi,,...,w; } based on the following confusion matrix:

1
V= J{w; | my; #0}. (21)
k=1

From the class set V, we select the training and the cross
validation set to tune C and the kernel parameters for
the SVM. After a careful selection of C and the kernel
parameters, the whole training set with all classes is trained.

8. RESULTS

We conduct the experimentation on two iris datasets,
namely, the ICE (iris challenge evaluation) dataset created
by the University of Notre Dame, USA [8], and the CASIA
(Chinese Academy of Science—Institute of Automation)
dataset [12]. The ICE dataset is divided into two categories:
the “gallery” images, which are considered as good quality
images, and the “probe” images, which represent iris images
of varying quality. The iris images are intensity images with
a resolution of 640 x 480. The average diameter of an iris
is 228 pixels [8]. The ICE database consists of left and right
iris images for experimentation. We consider only the left iris
images in our experiments. There are 1528 left iris images
corresponding to the 120 subjects in our experiments. The
number of iris images for each person ranges from 2-5
in this database. We have also used the CASIA iris image
dataset, and each iris class is composed of seven samples
taken in two sessions, three in the first session and four

in the second. Sessions were taken with an interval of one
month, which is a real world application level simulation.
Images are 320 x 280 pixels gray scale taken by a digital
optical sensor designed by NLPR [8]. There are 108 classes
of irises in a total of 756 iris images. The experimentation
is conducted in two stages: performance evaluation of the
proposed approach and comparative analysis of our method
with the existing approaches in the field of iris recognition.
In the first stage of the experimentation, we emphasize on
the performance evaluation of the current approach based
on the classification and the matching accuracy. We evaluate
our proposed method by comparing its recognition accuracy
with the other classical classification methods and the match-
ing strategies. We show the performance of the proposed
genetic process for selecting the optimum features as well
as to increase the overall system accuracy. The verification
performance of the proposed approach is shown using a
receiver operator characteristics (ROCs) curve. We exhibit the
effect of false accept rate (FAR) and false reject rate (FRR)
on different security requirements by changing the values
of asymmetrical parameter for SVM. The FAR measures
the probability of accepting an imposter as an authorized
subject, and FRR is the probability of rejecting an authorized
subject incorrectly. We also measure the performance with
equal error rate (EER). During the second stage, we carry
out a series of experimentation to provide a comparative
analysis of our method with the existing methods in respect
of recognition accuracy and computational complexity. We
also show the average time consumption of the different parts
of the proposed iris recognition system.

8.1. Performance evaluation of the proposed method

We evaluate the success rates for the proposed method on
the CASIA and ICE datasets by detecting the pupil boundary
and the collarette area. The obtained success rate is 99.86%
on CASIA where the proposed algorithm failed to identify
the pupil boundary in one case only. The success rate of
the correct pupil detection on the ICE dataset is 97.70%.
From the experimental results, it is found that a reasonable
recognition accuracy is achieved when the collarette area is
isolated by increasing the previously detected radius value
of the pupil up to a certain number of pixels. A drop
of matching error from 3.60% to 3.48% is observed in
Figure 11(a) when the number of pixels is increased from 21
to 22. Therefore, we choose to increase the pupil radius up
to 23 pixels because a stable matching accuracy of 96.50%
is achieved in this case. We would like to mention here
that in order to obtain an optimal value of collarette radius,
SVM has been used to generate matching accuracy; however,
MOGA is not applied in this case. From Figure 11(b), it is
found that if we increase the pixel values up to 26, we obtain
the highest matching accuracy of 99.72% since a relatively
stable accuracy is achieved in the range of pixels 25-27, and
after this range, the matching accuracy reduces drastically.
In order to reduce the computational cost and speed
up the classification, a Fisher least square linear classifier is
used as a low-cost preclassifier so that reasonable cumulative
recognition accuracy can be achieved to include the true
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FIGURE 11: Selection of optimal number of pixels to be increased to obtain the collarette boundary for (a) ICE and (b) CASIA datasets.

class label to a small number of selected candidates. For
CASIA data set, 10 candidates are chosen, and the cumulative
recognition accuracy at rank 10 is 99.90%. In this work, the
selected cardinal number of set found from the experimen-
tation by using the algorithm for SVM parameters tuning
proposed in [46] is 24. As a result, the sizes of training
and validation sets for selecting the optimal parameter for
C and y are 118 (= 24™7%70%) and 50 (= 24*7*30%),
respectively. The parameter y is set at 0.65 and C at 20 when
the highest accuracy on validation set has been achieved with
the RBF kernel. The SVM parameters are also tuned for the
ICE iris dataset. For the ICE dataset, we apply again the
Fisher least square linear classifier, and 20 candidates are
chosen [36]. The cumulative recognition accuracy at rank
20 is 98.84%. In this paper, the selected cardinal number
of sets found from the experimentation is 32 by using the
tuning algorithm for SVM parameter selection. As a result,
the sizes of the training and validation sets for selecting the
optimal values of the C and 02, are 112 (= 32%5%0.7) and
48 (= 32*5%0.3), respectively. The parameter ¢ is set at
0.40, and the C set at 100 when the highest accuracy on the
validation set is achieved with the RBF kernel for the ICE
iris dataset. In this paper, we consider only those classes of
the ICE database that have at least 5 probe images in order
to select the optimal parameter values. Table 2 shows the
performance of different kernel functions. Since the highest
classification accuracy is obtained by RBF kernel, this kernel
is used in our system for the iris pattern classification.

In order to evaluate the matching accuracy, only the
collarette area is used for recognition purpose instead of
using the entire iris information. For each iris pattern of
the CASIA data set, three irises taken in the first session
are used to build the template and the remaining four irises
of the second session for testing. For each person in the
ICE database, one iris sample is used randomly from the
gallery images to build the template. The remaining irises

from the probe image set are used for testing. In order to
show the effectiveness of SVM as a classifier, we also provide
the extracted features as input to the FFBP, the FFLM, and
the k-NN for classification, and the accuracy of the classifiers
for various numbers of classes among the FFBP, the FFLM,
the SVM, and the k-NN (k = 3) are shown in Figures 12(a),
12(b) for the size of 600 features subset. Several experiments
are conducted, and the optimal values of the parameters for
FFBP and FFLM are set as found in Table 3.

Later the principal component analysis (PCA) [57] is
used to reduce the dimension of the extracted feature vectors
and only the 50-bit feature sequence is used to measure the
classification performance of the SVM with the Mahalanobis
distance classifier (MDC) [57] along with the other classic
methods as shown in Figure 13. Dimension reduction is
required due to the smaller available sample sizes, which are
not suitable for the classification by using the Mahalanobis
distance. From Figures 12 and 13, it is observed that that the
performance of the SVM as an iris classifier is better than the
other classical methods though the classification accuracy is
decreased as number of classes is increased. Figure 14 shows
the comparison of the feature dimension versus recognition
accuracy among the hamming distance (HD), the FFBP, the
FFLM, the k-NN, and the SVM. In this case, only the RBF
kernel is considered due its reasonable classification accuracy
for SVM as mentioned earlier. From Figure 14, we can also
see that with the increasing dimensionality of the feature
sequence, the recognition rate also increases rapidly for all
similarity measures. However, when the dimensionality of
the feature sequence is up to 600 or higher, the recognition
rate starts to level off at encouraging rates of about 99.62%
and 96.21% on CASIA and ICE datasets, respectively.

For selecting the optimum subset of features to increase
the accuracy of the matching process, MOGA involves
running the genetic process for several generations as shown
in Figure 15. From this figure, it is observed that the
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TABLE 2
Kernel type Classification accuracy (%) in ICE dataset Classification accuracy (%) in CASIA dataset
Polynomial 91.1 95.2
RBF 94.3 97.4
Sigmoid 91.2 95.6

TaBLE 3

ICE dataset CASIA dataset
Parameters
FFBP FFLM FFBP FFLM

No. of nodes in hidden layers 170 310 150 270
Iteration epoch 120 120 180 200
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FIGURE 15: Variation of the recognition rates with generation: (a) CASIA dataset and (b) ICE dataset.

reasonable matching accuracy of 99.70% is achieved at the
generation 110 for the CASIA dataset, and an accuracy of
96.42% is achieved at the generation of 150 for the case of
ICE dataset. The evolution of the MOGA can be observed in
Figure 16. It is noticeable form this figure that the MOGA
represents a good convergence since average fitness of the
population approaches that of the minimum individual
along the generations. We conduct several experimentations,
and the arguments of the MOGA are set as follows when the
reasonable accuracy is obtained.

The recognition accuracy is compared between the
proposed method using the information of collarette area
and the previous approach of [45] where the whole iris
informationbetween pupil and sclera boundary is considered

for recognition. Figure 17 shows the efficiency of the current
approach with MOGA and without MOGA in comparison
with the previous method, and it is found that the proposed
method performs reasonably well for both of the data sets.
Therefore, we see that performance of our approach is
increased when we use the MOGA for the feature subset
selection. The proposed approach leads to a reasonable
recognition accuracy in the cases even when the eyelashes
and the eyelids occlude the iris region badly so that the
pupil is partly invisible. The adjustment of the asymmetrical
parameter ¢ can be made to satisfy the several security
issues in iris recognition applications and to handle the
unbalanced data of a specific class with respect to other
classes. The performance of a verification system is evaluated
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TABLE 4
Parameters ICE dataset CASIA dataset

Population size

Length of chromosome code
Crossover probability
Mutation probability
Number of generation

120 (the scale of iris sample)

0.61
0.005
150

600 (selected dimensionality of feature sequence)

108 (the scale of iris sample)

0.65
0.002
110

600 (selected dimensionality of feature sequence)
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method and our previous method [45] with different values of
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using ROC curve, see Figure 18, which demonstrates how
the genuine acceptance rate (GAR) changes with the variation
in FAR for our previous and proposed methods. From
the experimentation, we find that the proposed approach
reduces the EER form 0.36% to 0.13% on CASIA and from
0.72% to 0.39% on ICE datasets, which represents a good
improvement of our proposed method. Figure 19 reveals that
the proper selection of the asymmetrical parameter g leads to
a lower recognition error both in the cases of the proposed
and in the previous schemes.

8.2. Comparison with existing methods

The methods proposed in (6, 7, 8), (53, 4), (22, 23), (35,
43), and (25, 27, 28) are the well-known existing approaches
for the iris recognition. Furthermore, these methods are
based on the phase, the texture analysis, and the zero-
crossing representation of the iris. Therefore, we decide to
compare our algorithm with these methods. We provide
the recognition accuracies and time consumption of the
proposed iris recognition scheme based on the ICE and
CASIA datasets. We would like to point out here that the
experimental results reported in Tables 5 and 6 have been
implemented on the machines of different speed, and on
the different datasets. Therefore, the results provided in
Tables 5 and 6 may not be interpreted as a real comparison.
However, we would also like to mention that the proposed
scheme has been tested on the two data sets where ICE
contains complicated iris data of varying image quality
on a machine of higher speed. From Table 5, we see that
methods reported in [6, 25] have better performance than
the proposed approach on CASIA dataset, followed by the
methods in [16, 22-24]. From this table, we can also see
that the proposed scheme provides a better accuracy on ICE
dataset than the methods proposed in [16, 23]. We would like
to point out here that the experimentation of [23] is carried
out on ICE data set.

Table 5 also demonstrates a comparison of the EER
among the different existing methods, and from this table
we find that our proposed method has less EER than the
methods reported in [16, 22, 24, 43] preceded by the method
proposed in [6, 25] on the CASIA dataset. The EER found
on ICE data set is 0.39%, which is better than the EERs
reported in [16, 22, 43]. As no EER is reported in [23], we
ignore the EER from our consideration. In order to achieve
high accuracy, feature dimension should be small enough.
In our proposed method, we input 600 features to MOGA,
and obtain a subset of 470 and 504 features after reduction
with slight improvement of recognition rates on CASIA and
ICE which are smaller than the number of features used in
[6, 24, 25] where the number of feature components are
2048, 1536, and 660, respectively. In our proposed method,
we use Gabor filters to capture the local variations of the
isolated collarette region by comparing and quantizing the
similarity between Gabor filters and local regions as the
methods proposed in [6, 25]. One problem of the method
depicted in [24] seems to be the usage of spatial filters,
which may fail to capture the fine spatial changes of the
iris. We overcome this possible drawback by capturing the
local variation using Gabor filters and then we use MOGA
to select the most discriminating feature sequence. In [13],
collarette area is used with the eyelash detection technique
for the iris recognition. However, in our proposed scheme,
we successfully isolate the collarette region along with the
eyelashes, the eyelids, and the noise detection method, which
helps to increase the recognition accuracy and consequently
overcomes the problem when the pupil is occluded badly
by the eyelids and the eyelashes. We conduct the above
experimentation on a 3.00 GHz Pentium IV PC with 1 GB
RAM, and we implemented our code in Matlab 7.2. Table 6



K. Roy and P. Bhattacharya

17

TaBLE 5: Recognition rates and equal error rates.

Methods

Correct recognition rate (%)

Equal error rate (%)

Daugman [6] 100* 0.08*
Wildes et al. [43] — 1.76*
Boles and Boashash [16] 92.64* 8.13*
Ma et al. [24] 99.60 0.29
Ma et al. [25] 100 0.07
Liu et al. [22] 97.08 1.79
Liu et al. [23] 89.64 —
Roy and Bhattacharya [45] 99.56 0.36
Proposed method (ICE dataset) 96.43 0.39
Proposed method (CASIA dataset) 99.81 0.13
* These results were published in [25]; by using the bootstrap, authors approximately predict the recognition rates of these methods.

TasLE 6: Computational complexities.
Methods Feature extraction (ms) Matching (ms) Feature extraction + Matching (ms) Others
Daugman (6] 682.5* 4.3% 686.8* —
Wildes et al. [43] 210.0* 401.0* 611.0* Registration
Boles and Boashash [16] 170.3* 11.0* 181.3* —
Ma et al. [24] 260.2 8.7 268.9 Feature reduction
Ma et al. [25] 244.2 6.5 250.7 —
Roy and Bhattacharya [45] 80.3 167.2 247.5 —
Proposed method (ICE dataset) 20.8 150.7 171.5 Feature reduction
Proposed method (CASIA dataset) 20.3 130.4 150.7 Feature reduction

* These results were published in [25]; by using the bootstrap, authors approximately predict the computational complexities.

shows that our proposed approach significantly reduces the
time consumption than our previous method of [45] where
the experimentation was performed on CASIA data set. In
[45], the Hough transform with Canny edge detection was
employed for the segmentation. In this proposed scheme, we
employ the Hough transform in a certain range to restrict the
exhaustive search thereby reducing the time consumption. In
Table 6, where the results of first five rows are taken from
[25], we see that our current approach consumes less time
than the method in [6, 16, 24, 25, 43, 45] if we take into
account the feature extraction phase only. The reason is that
our method is based on 1D signal analysis, and the other
methods mostly deploy the 2D mathematical calculation.
However, our approach takes much time for recognition
as SVM is used for matching process. We can see from
the experimentation that the overall time consumption is
less than the other methods reported in Table 6. However,
the experimental results reported in [25] for the methods
proposed in [6, 16, 24, 43] were achieved in a machine of
128 MB RAM running at 500 MHz speed.

Our current approach requires an extra cost as incurred
in [24] for the feature reduction. The traditional feature
selection schemes (like the principal component analysis,
independent component analysis, singular valued decomposi-
tion, etc.) require sufficient number of samples per subjects
to select the salient features sequence. However, it is not
always realistic to accumulate a large number of samples due

to some security issues. The MOGA suggests a particularly
attractive approach to solve this kind of problems since
they are generally quite effective in rapid global search of
large, nonlinear, and poorly understood spaces. Therefore,
the proposed technique of feature selection using MOGA
performs reasonably well even when the sample proportion
between two classes is poorly balanced. Moreover, the
proposed MOGA scheme shows an outstanding performance
in the case when the iris dataset contains high-dimensional
features set with relatively a lower sample size. In [29], a basic
genetic algorithm was used to find a distribution of points
over the iris region, and this leads to a reasonable accuracy
of 99.70% on CASIA, which is smaller in comparison with
the matching rate of the proposed approach on CASIA
dataset. However, in this paper, we propose MOGA where
the main concerns are to minimize the recognition error
based on the SVM performance on testing set and to reduce
the number of features. In [35], a traditional SVM is used
for pattern matching, which seems to fail to separate the
FAR and the FRR with a matching accuracy of 98.24%.
The usage of asymmetrical SVM proposed in this paper
differentiates the FAR and the FRR to meet the several
security requirements depending on the various application
areas with a reasonable recognition rates of 99.81% and
96.43% on CASIA and ICE datasets, respectively. However, a
faster feature reduction approach was used in [35] based on
the direct discriminant analysis than the method proposed
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TABLE 7: Time consumption of different parts of iris recognition system.
Methods Iris segmentation (ms) Normalization (ms) Feature extraction (ms) Matching (ms) Total (ms)

214580.0
203471.0

Proposed approach (ICE dataset)
Proposed approach (CASIA dataset)

37.7 20.8
16.3 20.3

150.7
130.4

214789.2
203638.0

in this paper with MOGA. Table 7 shows the overall time
consumption of the proposed approach on the two datasets.

8.3. Discussions

Based on the above experimentation, we may depict the
following points.

(i) The proposed method can be considered as a local
variation analysis method from the viewpoint of
feature representation strategy as the phase infor-
mation characterized by our representation scheme
reflects the local shape feature of the collarette region.
In general, the methods based on local variation
analysis perform well than the other existing feature
representation scheme called texture analysis-based
method [24]. The main drawback of the latter
method is that it does not capture the local fine
changes of the iris since the texture usually represents
the frequency information of a local region.

(ii) Though the collarette area is insensitive to the pupil
dilation and less affected by the eyelids and the
eyelashes, there might be few cases where this region
is partially occluded since it is closed to pupil. Our
proposed method of detecting the collarette area
along with the eyelids, the eyelashes (both in the cases
of the separable and the multiple eyelashes), and the
noise removal techniques successfully overcome this
problem, and this also helps to increase the overall
matching accuracy.

(iii) We find from the experimental results that the selec-
tion of SVM parameters contributes in improving the
classification accuracy, especially when the number of
classes is higher.

(iv) The tuned SVM with an additional asymmetrical
parameter separates the FAR and the FRR accord-
ing to different security demands and controls the
unbalanced data with respect to other classes by
changing the penalty parameter, C. It is found
from the experimentation that the penalty for the
computation of the asymmetrical SVM parameter is
relatively small.

(v) From the experimentation, it seems that the asym-
metrical SVM can be used commercially due its
outstanding performance as multiclass classifier and
also for those cases where the sample proportion is
poorly balanced between two classes. Moreover, the
proposed SVM is well suited when the number of
samples per individual is relatively small as the case
for ICE dataset.

(vi) From the experimentation, it is also observed that
the feature selection method by using the MOGA
increases the recognition accuracy and contributes
in reducing the feature dimension. However, MOGA
incurs extra cost in order to find the optimal
features subset through several iterations. However,
the proposed feature subset selection reduces the
features set relatively as compared to the other feature
reduction strategies reported recently in the existing
iris recognition schemes.

(vii) The experimental results exhibit that the proposed
algorithm performs reasonably well if we consider the
accuracy.

(viii) Although one might think that the proposed method
using the collarette area has lesser information avail-
able as compared to the other methods using the
complete iris information, the proposed method can
be used effectively for personal identification since
the collarette area contains enough discriminating
features.

9. CONCLUSIONS

In this paper, a new iris recognition method is proposed
using an efficient iris segmentation approach based on the
collarette area localization with the incorporation of the
eyelashes and the eyelids detection techniques. The 1D log-
Gabor filters are used to extract the discriminating features,
and MOGA is applied for the feature subset selection.
In order to increase the feasibility of SVM in biometrics
applications, it is modified to an asymmetrical SVM. The
asymmetrical SVM with the collarette area localization
scheme can be applied in wide range of security-related
application fields. Experimental results exhibit an encour-
aging performance as the accuracy is concerned especially
on the ICE data set, which contains relatively nonideal iris
data. A comparative analysis among the existing schemes of
the iris recognition has been conducted. The performance
evaluation and comparisons with other methods indicate
that the proposed method is a viable and very efficient
method for iris recognition. In future, the SVM boosting
strategy can be employed to reduce the computational time
of the overall iris recognition system.
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