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We present a multilevel system architecture for intelligent environments equipped with omnivideo arrays. In order to gain
unobtrusive human awareness, real-time 3D human tracking as well as robust video-based face detection and tracking and face
recognition algorithms are needed. We first propose a multiprimitive face detection and tracking loop to crop face videos as the
front end of our face recognition algorithm. Both skin-tone and elliptical detections are used for robust face searching, and view-
based face classification is applied to the candidates before updating the Kalman filters for face tracking. For video-based face
recognition, we propose three decision rules on the facial video segments. The majority rule and discrete HMM (DHMM) rule
accumulate single-frame face recognition results, while continuous density HMM (CDHMM) works directly with the PCA facial
features of the video segment for accumulated maximum likelihood (ML) decision. The experiments demonstrate the robustness
of the proposed face detection and tracking scheme and the three streaming face recognition schemes with 99% accuracy of the
CDHMM rule. We then experiment on the system interactions with single person and group people by the integrated layers of
activity awareness. We also discuss the speech-aided incremental learning of new faces.
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1. INTRODUCTION

Intelligent environment is a very attractive and active resea-
rch domain due to both the exciting research challenges
and the importance and breadth of possible applications.
The central task of the intelligent environment research is
to design systems that automatically capture and develop
awareness of the events and activities taking place in these
spaces through sensor networks [1-5]. The awareness may
include where a person is, what the person is doing, when
the event happens, and who the person is. Such spaces can be
indoor, outdoor, or mobile, and can be physically contiguous
or otherwise. An important requirement of them is to let
the humans do their activities naturally. In other words, we
do not require humans to adapt to the environments but
would like the environments to adapt to the humans. This
design guideline places some challenging requirements on
the computer vision algorithms, especially for face detection
and face recognition algorithms.

In this paper, we work toward the realization of such
an intelligent environment using vision and audiosensors.

To develop such a system, we propose the architecture for
the networked omnivideo array (NOVA) system as shown
in Figure1 [6]. This architecture demonstrates a detailed
and modularized processing of the general multilevel intel-
ligent system using omnidirectional camera arrays. As in
Figure 2, the omnidirectional cameras are composed of a
hyperboloidal mirror in front of a regular camera for a full
360-degree panoramic field of view [7]; thus a large area
of coverage can be provided by a relatively small number
of cameras. Perspective views can also be generated from
the omnidirectional videos for area-of-interest purposes.
With these two types of coverage, the system can obtain a
coarse-to-fine awareness of human activities. The processing
modules of the NOVA system include

(1) full 3D person real-time tracking on omnivideo array
(81,
(2) face analysis: detection and recognition [9-11],

(3) event detection for active visual context capture [1,
3],

(4) speech-aided incremental face learning interface.
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FIGURE 1: System architecture of the multilevel NOVA system.

generate a perspective that covers the event at a better

resolution, for example, perspective on a person around

the head area for face capture and person identification.

i These face analysis modules are very active research topics

(a) (b)

FIGURE 2: An omnidirectional camera, an omnidirectional video,
and a perspective unwarping on a face.

In this NOVA architecture, camera videos are first capt-
ured and processed for signal-level visual cues such as
histograms, colors, edges, and segmented objects by separate
processors. The challenges at this level include robustness to
illumination, background, and perspective variations.

At the next localization level, 3D tracking plays an impo-
rtant role in event analysis [8, 12]. It monitors the environ-
ment constantly at low resolution and derives the current
position and height of a person as well as the histories and
predictions of the person’s trajectory. With prior knowledge
of the environment, events can be detected from the tracking
information; for example, one person enters the room and
goes beside a table. The challenges at this level include the
speed, accuracy, and robustness of the tracker, as well as
the scalability of the semantic database which allows for
incremental updating when new events are detected.

Motion-related events then trigger the system to capture
human details to derive higher semantic information. Given
the immense human-related visual contexts that can be
derived, we include facial contexts of face detection and face
recognition. These contexts will give the system awareness
about what the subjects are doing and who they are within
the environment. A suitable camera can be chosen to

since extensive visual learning is involved. We note that
the perspectives generated electronically from omnicameras
have higher pivot dynamics than mechanical pan-tilt-zoom
(PTZ) cameras; yet PTZ cameras have higher resolution.
Therefore, at situations where speed is critical, omnicameras
are preferable. The challenges at this level include speed,
accuracy, and robustness of the view generation and recog-
nition modules.

Finally, the results of multiple levels of visual context
analysis need to be integrated to develop an awareness of
the human activities. The detected events of the lower levels
are spatial-temporally sorted to derive interested spots in
the space. It is noted that while the system focuses on the
interested events, other activities are still being monitored by
the lower levels. If something alters the priority, the system
shifts its focus of interest.

The primary objective of this paper is to design such an
end-to-end integrated system which takes video array inputs
and provides face-based person identification. The proposed
NOVA architecture for real-world environments is actually
quite ambitious compared to other intelligent systems. As
discussed in the survey in [6], the majority of researches
emphasize on the individual components, but very few
have covered high-level integrated activity awareness. In this
paper, our main contributions include.

(1) A multilevel semantic visual analysis architecture for
person localization, facial tracking and identification, and
integrated event capture and activity awareness from the
networked omnivideo array.

(2) The face analysis algorithms utilize the temporal con-
tinuity of faces in the videos in order to enhance the robust-
ness to real-world situations and allow for natural human
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F1GUre 3: The integrated “closed-loop” face detection and tracking on an omnivideo.

activities; multiple image feature detection and closed-
loop tracking enable our face detection and tracking to
work in extreme lighting changes; accumulation of matching
scores along the video boosts our face recognition accuracy.

(3) Integrated system experiments demonstrate the
semantic activity awareness of single and multiple people
events as well as multimodal face learning in real-world
environments.

For person localization in the NOVA system, we have
extensively studied real-time 3D tracking on omnivideo
arrays in [8]; so it will not be discussed again in this paper.
In the following sections, we will present our video-based
face detection, face tracking, and face recognition algorithms
in detail. Finally, integrated event detection and speech-
aided incremental face learning will be demonstrated as the
examples of the integrated system capability.

2. ROBUST MULTIPRIMITIVE FACE DETECTION
AND TRACKING

In intelligent systems, human-computer interaction includ-
ing person identification and activity analysis has been an
active research field, within which face analysis is the central
focus [9-11, 13]. However, it is known that without an
accurate, robust, and efficient face detection as the front-end
module, successful face analysis, including face orientation
estimation and face recognition, cannot be achieved [14].
Robust and fast face searching is a crucial primer for face
detection. It seeks all the possible faces in the captured image
regardless of poses, scales, and appearances of the faces.
Once a face candidate is found, it can be verified as a face
or nonface by a face classifier [15, 16]. In the last decade,
there has been a lot of face detection research conducted

[9, 10]. Among these methods, face candidates in the image
are searched by view-based methods [15-20] and feature-
based methods [21-24]. In view-based methods, generally
component analysis [15, 17—-19], wavelet [16], and statistical
approaches [20] are used. In feature-based methods, various
types of features are used such as edge [22], motion [25, 26],
color [27], gray-level [28], shape [21, 23], and combination
of these features [24]. In addition, video-based face detection
methods also utilize temporal continuity of faces in a video
sequence to enhance accuracy [27, 29, 30]. Note that many
single-frame algorithms use multiscale window scanning to
locate the faces, especially for view-based methods [9, 16,
20]. As the window searches across the image step by step
and scale by scale, a face classifier is applied to the size-
equalized candidate at each location. This approach is time-
consuming and is not plausible for high frame-rate cases. In
this section, we propose a multiprimitive video-based closed-
loop face detection and tracking algorithm [31]. Unlike
single feature-based methods, our multiprimitive method
combines the advantages of each primitive to enhance
robustness and speed of face searching under various chal-
lenging conditions such as occlusion, illumination change,
cluttered background, and so forth. The face candidates
found by multiprimitive face searching are then verified by
a view-based face classifier. Then, video-based face tracking
interpolates the single-frame detections across frames to
mitigate fluctuations and enhance accuracy. Therefore, this
is a two-fold enhanced face detection algorithm by the
combination of multiprimitive face searching in image
domain and temporal interpolation across the video.

The process of the proposed closed-loop face detection
and tracking algorithm is illustrated in Figure 3. For face
searching, we chose skin-color and elliptical edge features in



EURASIP Journal on Image and Video Processing

this algorithm to quickly find possible face locations. Using
these two primitives, time-consuming window scanning can
be avoided and face candidates can be quickly located.
Skin color allows for rapid face candidate searching, yet it
can be affected by other skin-tone objects and is sensitive
to the lighting spectrum and intensity changes. Elliptical
edge detection is more robust in these cases, yet it needs
more computation and is vulnerable to highly cluttered
backgrounds. These two primitives tend to complement
each other [24]. The subject video is first subsampled in
image resolution to speed up the processing. On the skin-
color track, skin-tone blobs are detected [27] if their area
is above a threshold. The parameters of the face cropping
window are then evaluated from the geometric moments
of the blob [1, 12]. On the edge track, face is detected by
matching an ellipse to the face contour. We note that direct
ellipse fitting from edge detections by randomized Hough
transform [32] or least-squares [33] is not feasible here since
the aspect ratio and pose of the detected ellipse are not
constrained and improper ellipse detections for faces have to
be discarded; thus they waste much computation resources
on these improper detections and are inefficient for real-
time purpose. Other approaches match a set of predefined
ellipses to the edge pixels [22, 24, 30]. Our method is a
combination of their advantages. First, the horizontal edge
pixels are linked to a horizontal line segment if their distance
is below a threshold and the image intensity gradient is nearly
vertical. These line segments represent possible locations of
the top of head. Then, a head-resembling ellipse template is
attached along the horizontal edge links at the top pixel of
the ellipse. The aspect ratios, rolls, and sizes of the ellipse
templates are chosen to be within usual head pose ranges.
Then, the matching of ellipse templates to image edges is
done by finding the maximum ratio

_ (1 + I,)
R= (1+1,) ()
for all the ellipse-edge attachments, where
1
L= — N> wiepr (2)

Ni 5

is a weighted average of px over a ring zone just inside the
ellipse with higher weights wy at the top portion of the zone
so that the ellipse tends to fit the top of the head, N; is the
number of edge pixels within the ellipse interior ring zone,
and

1
le= N pi (3)

€ k=1

is the averaged px over a ring zone just outside the ellipse, N,
is the number of edge pixels within the ellipse exterior ring
zone. In (2) and (3), the value

pr = |mi-gr| (4)

is the absolute inner product of the normal vector on the
ellipse ny with the image intensity gradient vector gi at the

FiGure 4: Illumination compensation of the face video. The left is
the originally extracted face image, the middle is the intensity plane
fitted to the intensity grade of the original face image, and the right
is the compensated and equalized face image.

edge pixel k. This inner product forces the image intensity
gradients at the edge pixels to be parallel to the normal
vectors on the ellipse template, thus reducing the false
detections of using gradient magnitude alone as in [22]. This
method also includes a measure which speeds up the ellipse
search. It only searches along the edges at the top of human
heads instead of every edge pixel in the image as in [24]. This
scheme enables the full-frame ellipse search to run in real
time.

After the skin blobs and face contour ellipses are
detected, their parameters are fused to produce the face
candidate cropping window. The square cropping window
is parameterized by the upper-left corner coordinates and
the size. For each skin-tone blob window, we find a nearby
ellipse window of similar size and average the upper-left
corner coordinates and window sizes of the two windows for
the face candidate cropping window. The weighting between
the skin-tone blob and the ellipse is adjusted to yield the
best detection accuracy experimentally. If there is no ellipse
detected, only the skin-tone blobs are used, and vice versa for
the ellipses.

The detected face windows then crop the face candi-
dates from the perspective image and scale them to 64 X
64 size. These face candidates are then compensated for
uneven illumination [34]. As shown in Figure 4, illumination
compensation is done by fitting a plane z = ax+by +c to the
image intensity by least squares, where z is the pixel intensity
value and (x, y) is the corresponding image coordinate:

2] X1 N 1
V) X2 )2 1 a _
=|. 7 |lp|=P=@Ta)'AT-Z. (5
. . . C
Zn Xn Yn 1|——
—_— - P
zZ A

Then, we verify these compensated images by distance from
feature space (DFES) [9, 15] to reject nonface candidates. We
first construct the facial feature subspace by principal com-
ponent analysis (PCA) on a large set of training face images
of different persons, poses, illuminations, and backgrounds.
The facial feature subspace is spanned by the eigenvectors
of the correlation matrix of the training face image vectors
which are stretched row by row from the compensated train-
ing face images as in Figure 4. Illumination compensation
is needed since PCA method is sensitive to illumination
variations. Then, given a face image vector, the DFFS value is
computed as the Euclidean distance between the face image
vector and its projection vector in the facial feature subspace.
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FIGURE 5: Some driving face videos from the face detection and tracking showing different identities, different head and facial motion
dynamics, and uneven varying illuminations. These frames are continuously taken every 10 frames from the face videos.

The face candidate is rejected to be a valid face image if this
distance is larger than a preset DFES bound.

After nonface rejection, the upper-left corner coordinates
and the size of the justified face cropping window are
associated with the existing tracks by nearest neighborhood
then used to update a constant velocity Kalman filter [35] for
face tracking as

x(k+D7 1 ) [xk7 |2t
[ﬁ(kﬂ)]‘[o IH£(k>]+ r |
x(k)
y(k) = [T 0] LA( (k)]+w(k),

where the state x and measurement y are 3 x 1, and I
is a 3 X 3 identity matrix. T is the sampling interval or
frame duration that is updated on the fly. The covariance
of measurement noise w(k) and the covariance of random
maneuver v(k) are empirically chosen for a smooth but agile
tracking. The states are used to interpolate detection gaps
and predict the face location in the next frame. For each
track, an elliptical search mask is derived from the prediction
and fed back to the ellipse detection for the next frame as
shown in Figure 3. This search mask speeds up the ellipse
detection by minimizing the ellipse search area. It also helps
to reduce false positives.

A face track is initialized when a single-frame face is
detected for several consecutive frames. Once the face is
found and under tracking, the ellipse search window can
be narrowed down from full-frame search. The track is
terminated when the predicted face location is classified as
nonface for some consecutive frames. Track initialization
helps to filter sporadic false positive detections, and track
termination helps to interpolate discontinuous true positive
detections. Usually we set the termination period longer to
keep the track continuity.

(6)

3. STREAMING FACE RECOGNITION SCHEMES

In the intelligent room applications, single-frame-based face
recognition algorithms are hardly robust enough under
unconstrained situations such as free human motion, head

pose, facial expression, uneven and changing illumination,
different backgrounds, sensor noise, and many other human
and physical factors as illustrated in Figure5 [11, 15,
18]. For single-frame methods, some efforts have been
devoted to loose the environmental constraints [11, 36], yet
they only cope with limited situations and may consume
much computation power. On the other hand, since it
is very easy to obtain real-time face videos with face
detection and tracking on video cameras, fully utilizing the
spatial/temporal image information in the video-by-video-
based face recognition methods would enhance performance
by integrating visual information over frames. Some existing
methods are based on mutual subspace method [37] and
incremental decision tree [38, 39]. The mutual subspace
method finds the subspace principal axes of the face images
in each video sequence and compares the principal axes
to those of the known classes by inner products. Another
method models the distribution of face sequences in the
facial feature space and classifies distributions of identities
by Kullback-Leibler divergence [40, 41]. Among these few
methods, facial distributions of the identities are modeled
and the unknown density is matched to the identified ones
in order to recognize the face.

In this paper, we propose another approach [42] of com-
bining principle component analysis (PCA) subspace feature
analysis [15] and hidden Markov models (HMMs) time
sequence modeling [43, 44] because it is straightforward to
regard a video as a time series like a speech stream. Observing
Figure 5, we can see that the identity information of each
person’s face video is blended with different face turning
dynamics as well as different fluctuations of illumination
and face cropping alignments. In terms of the subspace
features, the facial feature distribution of a certain pose
would be scattered by perturbations including illumination
changes, misalignments, and noises, yet the distribution
would be shifted along some trajectory as the face turns [45].
These dynamics and scattering can be captured by an HMM
with Gaussian mixture observation models, and the HMM
states would represent mainly different face poses with some
perturbations. Thus, by monitoring how the recognition
performance changes with the model settings, we wish to
investigate how the identity information is related to these
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FiGURE 6: The streaming face recognition (SFR) architecture of the
NOVA system.

factors so we can best work out the identification. In order
to recognize people, we propose the video-based decision
rules to classify the single-frame recognition results or visual
features of the face frames in a video segment either by the
majority voting rule or by maximum likelihood (ML) rules
for the HMMs of each registered person. The performance
of the proposed schemes is then evaluated on our intelligent
room system as a testbed.

Suppose we have a face image stream Str = { f}, f5, f5,...}
available from the NOVA system. Similar to speech recogni-
tion [43, 44], the face image stream is then partitioned into
overlapping or nonoverlapping segment sequences of fixed
length LS = {fKH’l’fKH’Z’ . 1fK;‘+L}) S; c Str, K; = (i— 1)K,
i=1,2,3,...,where 0 < K < Lis a fixed advance length. The
segments are overlapping if K < L. Also suppose we have M
individuals in the set I = {1,2,..., M} who are the subjects
of the face image sequences. The streaming face recognition
(SFR) schemes we propose here are shown in Figure 6.

3.1. Single-frame subspace feature analysis

The single-frame subspace feature analysis we have applied
is an alteration to the standard eigenface PCA method
[11, 15]. The major differences are as follows. (a) The
eigenvector basis is generated by the correlation matrix of
training faces instead of the covariance matrix, and (b) the
projection vector of a test face image on the eigenvector
basis is normalized as in [37]. In this manner, the single-
frame face recognition would be less subject to illumination
changes, because by (a) the norm of a projection vector in
the eigenvector subspace is proportional to the intensity of
the face image [46] and by (b) the intensity change of face
images due to illumination change can thus be normalized
as will be detailed below.

Suppose we have D training face vectors t1, t2,..., tp of M
individuals. For standard eigenface PCA [15], first the mean

face p = (l/D)ZE: 1tk 1s constructed. Next, the covariance
matrix ¥ is computed as (l/D)ZlDzl&élT, where 6§, = t; —
y. Then, the orthonormal eigenvectors of ¥, that is, the
eigenfaces, span the facial feature subspace centered at p.
Thus, given a new face image f, its projection in the eigenface
subspace is the vector of the inner products of (f — u) with
the eigenfaces. Now suppose only the illumination intensity
is changed and the poses of the person and the camera are
not changed, then the intensity of the pixels of f would be
proportional to the illumination intensity [46]. Since the
nonzero y does not reflect such illumination change, it would
be difficult to compensate for the illumination change with
standard eigenface method.

On the other hand, for the correlation-based PCA, since
the mean face p is not computed and is set to zero, the
eigenvectors of the training set T are zero-centered and can
be evaluated by singular value decomposition (SVD) as

T= [tl t tD] = UEVT, (7)
where U = [u; up -+ u,] are the eigenvectors of the
correlation matrix TTT of the training faces, n is the
dimension of #’s, and the singular values in X are in
descending order. Thus, the zero-centered feature subspace
can be spanned by the first D orthonormal eigenvectors
up,uy,...,up. For dimensionality reduction, first d < D
eigenvectors are utilized for the feature subspace J.

For the new face image f, its feature vector in J is

T

x=[x x - x|, (8)

where the projections x; = (f,w;) = flu;, i = 1,2,...,d.
For recognition, we use the normalized feature vector

X
IxI

X = )
We denote the procedure (8)-(9) as X = Projn(f). Since the
pixel intensity of f is proportional to illumination intensity
from zero upward, the norm [|x]| is also proportional to the
illumination intensity. Thus, the proportion of illumination
changes in the feature vector X can be compensated by
this correlation normalization. The original face image can
then be approximately reconstructed as f =~ Zlexiui =
IxIl > xiu;.

At this stage, single-frame face recognition result can be
drawn by the nearest-neighborhood decision rule as

TSE =ID<arg mkinH)A(fka), (10)

where t; = Projn(tx), k = 1,2,...,d, and ID(k) returns r if t; is
a training face image of individual r, » € I. The procedure of
(8)—(10) can be denoted as rsg = SF(f).

3.2. The majority decision rule

The input to the majority decision rule (MA]) is a sequence
of single-frame recognition results:

R; = {rsp1,7se25. . e} = SE(Si), (11)
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wherersg; € I, j = 1,2,..., L. Then, the MAJ rule decides the
streaming face recognition result of S; as the rgp that occurs
most frequently in R; as

MA] = argmaxpum, (12)
mel

where py, XJL.:lInd{rspj = m}/L, and Ind{A} is an
indicator function which returns 1 if event A is true,
otherwise 0 is returned. We denote this majority voting
process of (11) and (12) as rya; = MAJ(S).

3.3. Discrete HMM (DHMM) ML decision rule

For DHMM ML decision rule (DMD), DHMM [44] is used
to model the temporal recognition sequence R; instead of
using a simple maximum occurrence as in majority rule.
Suppose the training face sequences S;, i =1,2,3,..., belong
to an individual m, m € I, and R; = SF(S;) as in (11)
are sequences of the single-frame recognition results which
are discrete values of I. Thus, it is straightforward to train
a DHMM A,, = (m,A,B),, of N states and M observation
symbols per state for the individual m. mun = [7n4],
q = 1,2,...,N, is the N initial state distributions of the
Markov chain, Anxny = [apqls pq = 1,2,...,N, is the
state transition probabilities from p to g, and Byxy =
[by(rse)], @ = 1,2,...,N, rsg € I = {1,2,...,M}, is the
discrete observation densities of each state g. Baum-Welch
re-estimation is applied on multiple observation sequences
R, i=1,2,3,...,[42,43] for each individual m, m € I. Then,
given a test sequence Riest = SF(Sest), the DMD rule classifies
the sequence by ML as

pmp = arg maXP(Rtest | )Lm)a (13)
mel

where

P(R | A) = Z g, bt]l (TSFl)aq]qzqu (rSFZ) T am—lmbm(rSFL)
q15--9L

(14)

is computed using forward procedure [43]. We denote the
DMD rule of (8)-(9) and (13)-(14) as rpyp = DMD(Seest)-

3.4. Continuous density HMIM (CDHMM) ML
decision rule

For CDHMM ML decision rule (CMD), instead of (11), the
training sequences for the CDHMM [42, 44] are sequences
of normalized feature vectors by (8)-(9) as

X\i = {ﬁl,ﬁz,...,ﬁL}i = Projn(Si), (15)

fori = 1,2,3,..., as shown in Figure 6. Again we assume
that )@’s belong to an individual m in I. Thus, we train a
CDHMM A, = (m,A,C,u,U),, of N states and G Gaussian
mixtures per state for each individual m, m € I. mxn
and Ayxy are the same as in DHMM case, while Cyxg
represents the Gaussian mixture coefficients for each state.
In contrast to DHMM, Gaussian mixture approximates the

multidimensional continuous observation density of X for
each state g, 1 < g < N, as [42, 47]

G
be(x) = ZngN (%, pqg> Ugg) (16)
g=1

where XgG:lcqg = 1 are the nonnegative mixture coefficients,
N(-) is Gaussian density function, and pg, and U, are
mean vector and covariance matrix, respectively. On the
D components of X, k = 1,2,...,L, we pick the first d
components, d < D, for the d-dimensional Gaussian mixture
densities by(Xx), because the first d principal components
are more prominent and save computation. Expectation
maximization (EM) re-estimation procedure [42, 47] is used
to train the CDHMM on multiple training sequences. Then,
given a test feature vector sequence Xtest, CMD rule classifies
it by ML as

romp = arg maxP (Xeest | Am), (17)
mel
where
P()? | /\) = Z ”qlbql (ﬁl)aqlqzqu (’A(Z) s 'aququL (ﬁL)
qi>-qL
(18)

is computed using forward procedure. The CMD rule is a
delayed decision in that the single-frame classification (10)
is skipped and full feature details are retained until the
final decision (17). The decision procedure of (15)—(18) is
denoted as rcyp = CMD(Seest)-

4. EXPERIMENTAL EVALUATIONS

In this section, we present the experimental evaluations of
the face detection and streaming face recognition algorithms.
The two types of algorithms are evaluated separately with
natural setups. First, the face detection algorithm is evaluated
in Section 4.1. Then, in Section 4.2, the detected face videos
of different subjects are collected to train, test, and compare
the proposed streaming face recognition algorithms.

4.1. Face detection and tracking

Evaluation of the face detection and tracking is accomplished
using an extensive array of experimental data. We collected
many video clips of different setups and in different environ-
ments, including indoor, outdoor, and mobile, as shown in
Figure 7. In order to evaluate the accuracy of face detection
and tracking specifically, we ask the human subjects to be
at static locations with respect to the omnicamera. Figure 8
shows an indoor example where ten people sitting around
a meeting table are all detected from the panorama of an
omnivideo. Figure 9 shows the single-person indoor face
detection results. Row 1 shows the source images, row 2
shows the overlapped edge gradient strength, the skin-tone
area, the detected ellipse, and the square face cropping border
before Kalman tracking, and row 3 shows the cropped face
images after Kalman tracking. Column 1-column 4 indicate
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FIGURE 7: Sample images of the test video sequences for face detection and tracking on indoor, outdoor, and mobile environments. Columns
from left to right show the omnidirectional videos, the unwarped panoramas, and the perspective videos of the subjects.

that the skin-tone and ellipse detections cooperate to detect
faces on some difficult situations such as a turned-away face,
highly cluttered background, and an invasion of nonface
skin-tone objects to the face blob. Column 5 shows an
extreme situation where the lights are turned off suddenly,
and the face detection and tracking can still keep the face with
ellipse detection.

For face tracking performance (cf. Figure 3), we tested
the clips with the measurement noise variance of the Kalman
filter set to 64-pixel square and the random maneuver
variance set to 512-pixel square. The standard deviation of
the detected face alignment within the 64 x 64 face video
after tracking is about 7 pixels. For track initialization and
termination, we set initialization period to 450 milliseconds
to filter sporadic false positive face detections, and set
termination period to 1700 milliseconds to interpolate
discontinuous true positive face detections. Actual frames
for track initialization and termination in Section 2 are
converted from these periods according to the current
processing frame rate. For the distance from feature space
(DFFES) bound in Section 2, currently we set a sufficiently
large value of 2500 so that the detector would not miss true
positive faces in the image.

For face detection performance evaluation, we recorded
multiple human faces in the omnivideo clips on a DV
camcorder. Then, with analog NTSC video output of the
camcorder and video capture card on the computer, we
replay the clips of almost exactly the same starting to ending
frames many times to the face detection and tracking module
as in Figure3 with different DFFS bound settings and
with/without Kalman tracking. The DFFS bound matters
with the true positive and false positive rates, and Kalman
tracking interpolates between the single-frame face detec-
tions over the video. On each playback, the resultant video
with face detection and tracking results (the face cropping
window) is recorded by screen shot as shown in Figure 10.
Finally, the detection counts and false positive counts are
manually counted frame by frame in the resultant videos.
Each frame of the test videos contains 2 or 3 faces; so the
number of faces would be 2 or 3 times the number of frames
in the videos. These counts are summarized in Table 1.

Table 1 lists the averaged detection rates and false
positives in terms of the DFFS bound on the indoor and
outdoor test sequences. The detection rate increases with the
DFFES bound for all cases because increasing DFFS bound
would allow more face-plausible images to be included
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F1GURE 8: Face detections on a panorama of an indoor meeting setup.

FIGURE 9: Some results of the proposed multiprimitive face detection and tracking. Note that in the fifth column, there is a drastic change of

illumination. See text for details.

as face images. With single-frame face detection, however,
the false positives do not always increase with the DFES
bound monotonically. For outdoor setting, the trend of false
positives basically increases with the DFES bound with some
exception, but it is not the case for the indoor setting.
This difference between the indoor and outdoor settings
would be due to more irregular backgrounds in the outdoor
scene. Hence, more ellipses and more skin-tone regions
can be detected and thus they increase the chance of false
positives. The nonmonotonic performance of indoor single-
frame false positives could also be due to noises in the video
upon simple backgrounds. For these causes, we have briefly
verified another indoor clip which has complex background
and the false positives are higher on larger DFFS bounds
as in outdoor cases. Therefore, it is desirable for further
counting of the detections and false positives on videos of
various backgrounds. Note that the perspective unwarping
videos in Figure 10 are not of high resolution and pixel noises
in the original omnivideo would cause more prominent
noises in the perspective videos. With Kalman face tracking,
Table 1 also indicates that both the detection rates and false
positives are increased. This is due to the fact that with
temporal interpolation of the Kalman filters, the durations
of the true positives are lengthened. At low DFFS bounds, the
false positives increase more significantly because the single-
frame detections are more discontinuous and the face tracks
are lost easily and go astray, causing more false positives.
This effect gets better at higher DFFS bounds and the false
positives after tracking reflect more directly the single-frame

false positives. In addition, tracking initialization helps to
reduce the false positives because it takes some frames to
start a track. Therefore, if the single-frame false positives are
sporadic, they would be filtered out by face tracking. This is
the case for the indoor case with DFFES bounds of 2500 and
4000.

We have used our real-time videos for face detection and
tracking evaluations. Note that it is also possible to test the
single-frame face searching and verification separately from
tracking with some face databases, for example, PIE database
[48]. However, the tracking effects on the speedup measure
of ellipse search window which affect the detection rate and
false positives cannot be evaluated with those databases that
are not video-based.

For computation complexity, the most computation-
intensive part of the face detection and tracking algorithm
is on multiprimitive face searching since it is a pixel-level
processing. The next is on face verification because it projects
the face image into PCA subspace by inner products between
face image vectors. Kalman filter is the fastest module since
its data involve only 2 dimensions of image location and 1
dimension of the size of the face cropping window.

Currently, we are using DFFS face classification because
the PCA subspace feature analysis is also used in streaming
face recognition. To further improve the false positive issues,
the cascade type of face classification algorithm such as
Viola-Jones could be a good choice [16]. Using boost
algorithms on PCA features, we could enhance the DFFS
face classifier with optimized cascading of weak DFFS face
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(c)

F1Gure 10: Samples of indoor and outdoor test video clips for counting the face detection rates and false positives.

TaBLE 1: Face detection and false positive rates of the indoor and outdoor test sequences on single-frame and tracking-based settings.

DFFS bound 1500 1700 2000 2100 2500 4000
Faces 2649 2652 2646 2646 2646 2649
Single-frame  Detected 94 (3.6%) 435 (16.4%) 1312 (49.6%) 1501 (56.7%) 2407 (91.0%) 2645 (99.9%)
F. Pos. 3 2 2 5 4 0
Indoor
Faces 2661 2658 2652 2649 2652 2649
Tracking Detected 437 (16.4%) 1294 (48.7%) 2050 (77.3%) 2418 (91.3%) 2652 (100%) 2649 (100%)
F. Pos. 26 78 14 6 0 0
Faces 1766 1766 1766 1772 1766 1766
Single-frame  Detected 119 (6.7%) 253 (14.3%) 601 (34.0%) 715 (40.4%) 1290 (73.1%) 1748 (99.0%)
F. Pos. 93 152 179 170 221 524
Outdoor
Faces 1766 1766 1770 1770 1760 1768
Tracking Detected 63 (3.6%) 382 (21.6%) 951 (53.7%) 1081 (61.1%) 1621 (92.1%) 1752 (99.1%)
E. Pos. 398 439 601 409 681 510
Faces 4415 4418 4412 4418 4412 4415
Single-frame  Detected 213 (4.8%) 688 (15.6%) 1913 (43.4%) 2216 (50.2%) 3697 (83.8%) 4393 (99.5%)
F. Pos. 96 154 181 175 225 524
Total
Faces 4427 4424 4422 4419 4412 4417
Tracking Detected 500 (11.3%) 1676 (37.9%) 3001 (67.9%) 3499 (79.2%) 4273 (96.8%) 4401 (99.6%)
F. Pos. 424 517 615 415 681 510

classifiers which may utilize different sets of eigenvectors.
For preliminary verification, we tried the Viola-Jones single-
frame face detector of OpenCV library for the combined
frontal face and left and right profiles using the same video
clips as in Table 1. The indoor detection rate was (1761
faces)/(2661 faces) = 66.18% and the outdoor detection rate
was (1149 faces)/(1770 faces) = 64.92%. Faces were not
detected well while transiting between frontals and profiles
mainly because of different image quality. There was no false
positive in both cases. Although the single-frame detection
rate is lower as compared to DFFS bound of 2500 in Table 1,

it shows that the false positive rate can be much improved
with boost type of cascaded face classifiers. Besides, the
Schneiderman-Kanade face classifier could be another view-
based approach that needs more complex and exhaustive
statistical pattern classification [20].

4.2. Streaming face recognition (SFR)

In this section, the three proposed streaming face recog-
nition schemes (MAJ, DMD, and CMD) are compared
by numerical experiments on the intelligent room testbed.
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FIGURE 11: An omni-image showing our intelligent room testbed.
Perspective video of a human face can be generated from a source
omnivideo.

Their accuracies are also compared to the single-frame face
recognition accuracy.

4.2.1. Experimental setup

In evaluating the streaming face recognition, we used per-
spective view driven by 3D tracker on an indoor omnivideo
array to capture the human faces, as illustrated in Figure 1.
Omnivideo covers the entire room, including people’s faces
of different distances and with different backgrounds, as
shown in Figure 11.

We have collected face video streams of 5 people. People
were sitting in the testbed room and turning their faces
randomly with various expressions. Single omnivideo clips
were recorded on a Digital-8 camcorder and later played back
to the NOVA system video input for data collection. Of every
person, 9 video clips were recorded. For training session,
5 video clips were recorded for each person at different
locations and backgrounds with different omnicameras in
the room. The clip duration varied from 1 minute and 10
seconds to 1 minute and 30 seconds. For testing session,
4 video clips were recorded at other 4 different locations
and backgrounds with different omnicameras. The clip
duration varied from 50 seconds to 1 minute and 15 seconds.
Some examples of the face images in the video streams are
shown in Figure 12, exhibiting the live situations that NOVA
streaming face recognition (SFR) needs to deal with. When
playing back the videos, the NOVA perspective view and
face video extraction logged data streams of both single-
frame recognition results, rsp’s, and single-frame feature
vectors, X’s, of the face video for both the training and testing
sessions. The number of frames logged for each person varied
from 4360 to 5890 frames in the training session and from
1880 to 3980 frames in the testing session. This same set
of data streams was used to compare the SFR schemes on
a common ground. The SFR algorithms processed the data
offline.

In the experiments, the training data streams are first
used to train the HMMs of the DMD and CMD rules for
each individual. Then, the testing data streams are used to
compare the performances of single-frame face recognition

and the MA]J, DMD, and CMD rules for each person. The
performance index to be evaluated is the averaged accuracy
of the correct recognition rates for the 5 individuals. Multiple
trials are also experimented to find the accuracy statistics of
the SFR schemes on various settings.

The purposes of the experimental design are to

(i) investigate how the recognition accuracy changes
with the model settings which are related to the
modeling of face turning dynamics and face image
fluctuations,

(ii) compare the optimum accuracies among the single-
frame and streaming face recognition schemes.

For (i), we need to find the relationship of the accuracy with
respect to the number of states N, the number of Gaussian
mixtures G, and the utilized dimension d of the feature
vector X for the DMD and CMD rules. The accuracy of
the MAJ rule only depends on the length of the segment
sequence L, which we tend to fix for the considerations
of real-time implementation. The accuracy of single-frame
face recognition does not depend on these settings and is
fixed for the given testing streams. Then, for (ii), it will be
straightforward to compare the best accuracies of the SFR
schemes.

The data streams are partitioned into nonoverlapping
segment sequences of L = 49 frames. L is chosen to be an odd
number to avoid possible tie cases in the MA]J rule. The size
of face video is 64 X 64, and thus the dimension of face image
vector n is 4096. The dimension D of PCA feature subspace
in single-frame feature analysis is chosen to be 135.

4.2.2. Results

We first compare the MAJ and DMD rules because they use
the same streams of single-frame face recognition results. As
shown in Figure 13, the experimental results of DMD rule are
plotted with the MA]J results. The DMD accuracy depends
on the number of states N of the DHMM. Four trials of the
DHMM training for each N were exercised, and the mean
and standard deviations of the DMD accuracy are plotted as
the error bars for each N. From the 7th-order polynomial
fitting of the DMD accuracies, the best accuracy is 89.7%
when N = 14, and the worst accuracy is 86.6% when N =
6. The MA]J accuracy is 81.7% regardless of N.

Then, we monitor the performance of the CMD rule,
starting from the simplest settings: N =1, G=1,d = 1.
The dependency of CMD accuracy on d is experimented and
plotted in Figure 14. The accuracies are experimented on one
trial because with N = G = 1, the training of CDHMM
parameters A = (m,A, C,u, U) converges to the same value.
The peak accuracy is 99.0% when d = 8.

With d = 8, we then find the accuracy with respect to
G, as shown in Figure 15, and N, as shown in Figure 16.
Four trials are exercised for each setting and the means
and standard variations are plotted as error bars. From the
polynomial fittings, the accuracies decay monotonically as G
or N increases.

Thus, the best accuracies of the MAJ, DMD, and CMD
rules can be compared to the accuracy of the single-frame
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(a) Perspective views for face capture

Person 1

Person 2

Person 3

Person 4

l

(b) Sample face video frames of the 5 subjects

Person 5 i

FiGure 12: Examples of the face images in the training and testing video streams. The left six are perspective views, and the right face
images are automatically extracted by face detection from the perspective video. They show different facing angles, face sizes, backgrounds,
expressions, and other variations that face recognition needs to cope with.

face recognition, which is the averaged value of the correct
recognition rates in all the frames of the testing streams for
each individual. These optimum accuracies are summarized
in Table 2.

4.2.3. Analysis of the results

In this section, we first propose an interpretation on the
experimental results. We also discuss the implementation
complexity of the proposed SFR schemes. Analogy of these
schemes to automatic speech recognition is also interesting
to study. Then, future works are to be discussed.

To explain the experimental results, we start from an
insight into the results of the CMD rule. After the trials of
different model settings, the optimum CMD accuracy occurs
when N = G = 1. Out of this point, the accuracy decays
monotonically. It is noted that when N = G = 1, the
likelihood computation in (18) becomes

P()? | Am) = Zﬂmbm (ﬁl)a‘hqzb% (%) - -~ g, 1q.0q (Xc) I,
q15-qL
=b(x1)b(xy) - - - b(Xr) Iy,
(19)

since 77;’s and a;;’s are all 1 for N = 1. For G = 1, the Gaussian
mixture density in (16) is reduced to single multidimensional
Gaussian density function b(X) = N (X,4, U). The Baum-
Welch training of the CDHMM A is then degenerated to
the fitting of a multidimensional Gaussian density to the
training feature points in the feature subspace. For a testing
sequence X = {X1,%,...,%.}, the ML computation of (17)
and (19) is actually performing a distribution matching of

TaBLE 2: Comparison of the optimum accuracies of the single-
frame face recognition (FR), the MAJ rule, the DMD rule, and the
CMD rule.

Decision rules Optimum accuracy Note
Single-frame FR 75.9 %
MA]J 81.7 %
Streaming FR DMD 89.7 % N=14
CMD 99.0 % N=1,G=1,d=38

Common settings: D = 135, L = 49, nonoverlapping sequences

the points X;,Xa,...,X in the feature subspace by product
rule or likelihood accumulation, as illustrated in Figure 17.
As G increases, the Gaussian mixture density of (16) is
broadened and the chance to overlap with other identities
is increased. Hence, the accuracy decays in Figure 15. Also as
N > 1, the CDHMM starts to model the temporal variations
of the feature vectors X’s in the sequence X mainly due to
face poses [45]. The temporal dynamics in the sequences
are modeled more precisely as N increases. Because of the
different temporal patterns between the training and testing
sequences, the accuracy drops with N in Figure 16.

The DMD and MA]J rules are built upon single-frame
face recognition results. Note that in single-frame face
recognition (see (10)), the point X is clustered to a training
point t; by nearest neighborhood in Euclidian distance.
Therefore, these decision rules would not model the density
well since they approximate ellipsoids by globes in the feature
subspace. In addition, as illustrated in Figure 17, some points
may be deviated into other identity classes by noise or
other issues. Therefore, the accuracy of the single-frame
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FIGURE 13: Accuracy of the DMD rule with respect to the number
of DHMM states N. The error bars show mean and standard
deviations of the experimental accuracy on four trials. Solid curve is
a polynomial fitting of the mean values. Dotted line is the accuracy
of the MAJ rule.
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FIGURE 14: Accuracy of the CMD rule with respect to the number
of utilized dimensions d of the feature vectors. The full dimension
D of the PCA feature vectors is 135. Peak accuracy of 99% occurs

when d = 8. Both the numbers of CDHMM states N and of Gaussian
mixtures G are 1.

face recognition is the lowest among the four rules. On the
other hand, if the single points are collected together in a
sequence, the distribution is better approximated. Hence,
the MAJ accuracy is better than that of single-frame face
recognition. In addition to collective single points, the DMD
rule also models the temporal sequence of the points by
a Markov chain. This explains the waving phenomenon in
Figure 13. When N = 1, the DHMM is like (19) that models
the joint density in a collective way. When N increases,
the DHMM correlates with the dynamics of the testing
temporal sequences, thus causing a resonance response. We
can thus deduce that if the dynamics of the testing sequence,

Number of Gaussian mixtures

FIGURE 15: Overall correct percentage of the CMD rule with respect
to the number of Gaussian mixtures G. The number of utilized
dimensions 4 is 8 and the number of CDHMM states N is 1. Four
trials are exercised. The solid curve is a polynomial fitting of the
experimental mean values.
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FIGURE 16: Overall correct percentage of the CMD rule with respect
to the number of CDOHMM states N. The number of Gaussian
mixtures G is kept 1. Four trials are experimented and polynomial
fitting is plotted.

for example, pattern of human motion, change a lot, the
resonance pattern in Figure 13 would also change. As a
whole, the DMD rule performs better than the MAJ rule by
collecting more information from the temporal sequences.
Therefore, the accuracy performance of the decision rules is
CMD > DMD > MAJ > single-frame face recognition, as in
Table 2.

To summarize the above geometric interpretations, the
hidden states of the HMM represent mainly the temporal
dynamics of face poses, and the Gaussian mixture for
each state models the disturbances of illumination changes
and other noise factors. Since different persons may have
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X2

Person 2

X1
Feature

FiGure 17: The geometric interpretation of the ML computation
as a distribution matching in the feature subspace. The ellipses are
the Gaussian density functions of the clusters, and the dots are the
feature vectors in a sequence X. x; and x, are the components of the
feature vector.

different face turning patterns as suggested in Figure 5, using
HMM to capture this identity-related information would
be desirable in some situations such as driving and needs
further experimental verifications with specific datasets.
However, in general situations as in this experimental setup,
the pattern of face turning dynamics encoded in the HMM
may not match the test sequence. Therefore, we generalize
the matching with N = 1 by fusing all different face poses into
one state and simply modeling the omnipose distribution by
Gaussian mixture. For the Gaussian mixture, single Gaussian
G =1 gives the most crispy modeling of the distribution
of an identity without much overlapping to others, thus
rendering the highest accuracy. For DHMM, the ball shape of
distribution modeling less matches the actual distributions
and thus gives lower accuracy.

Concerning the phenomenon in Figure 14, recall that the
feature subspace is spanned by the principle components of
the training face images ordered from the most significant
one to the least significant one. From d = 1 to d = §,
the representation power grows rapidly in a polynomial
fitting flavor. After d = 8, higher dimension starts to overfit
the feature points in the identity clusters and cause more
confusion among the clusters (cf. Figure 17). In other words,
the curse of dimensionality starts to take effect, and hence
the accuracy starts to drop gradually. It can also be implied
that this turning point d = 8 as well as the optimum accuracy
depends on the number of training samples and clusters,
currently 5 people. So, further experiments with more videos
and more subjects are needed for these regards.

Also for the sequence length L, although it is to be fixed
for real-time implementation, we can still deduce that as L
goes up, the accuracy would improve because more points
better match the Gaussian density in the feature subspace. It
would be worthwhile to perform more experiments to verify
this viewpoint.

For implementation complexity, MAJ is the lowest
because it simply collects single-frame face recognition
results and does maximum finding. DMD is higher by

introducing DHMM training and likelihood computations.
CMD is the highest because COHMM further involves the
parameters of multidimensional Gaussian density. But it is
worth the extra computation because the CMD accuracy is
much higher than others.

Compared to speech recognition, the processing proce-
dure of CMD and DMD in Figure 6 is similar to speech
recognition. Speech recognition first partitions the speech
stream into segment sequences, usually overlapping. It then
computes features of the speech signal in the segment by
cepstrum and/or other features. Then, the features of the
segments are modeled by an HMM to derive the transitions
of the states, which represent phonemes. In our case, this
procedure is almost the same, yet the identity information
is mainly embedded in the individual frames. Only person-
related facial motions such as face turning and expression are
related to the transitions between the frames, and the HMM
states represent intermediate face poses and expressions.

In the future, facial expression tracing can be done by
analyzing the transitions of HMM states using Viterbi algo-
rithm [43]. However, PCA-based subspace feature analysis
might not be sufficient to represent expression definitely.
ICA-based subspace feature analysis [18] would be a pow-
erful tool for this purpose. Learning algorithms [48, 49]
can also be applied to the feature subspaces so that the
recognition capability of the NOVA system can be scaled up
by learning how to recognize new people dynamically from
the video streams.

5. INTEGRATION EXPERIMENTS

In this section, we experiment on the interactions of the
integrated NOVA system with humans. At the integration
level, we combine the results from the previous levels, that
is, the information of tracking, face detection, and face
recognition, for event detection and responding. We test the
intelligent room system on these three kinds of single-person
and group activities:

(i) a person entering or exiting the room,
(ii) identity tagging on a person during tracking,

(iii) a group of people interacting in the room.

For activity (i), when a person enters or exits the room,
access zones of the room are defined as shown in Figure 18.
Our team has developed a context visualization environment
(CoVE) interface to visualize the room composition, prede-
fined zones, and human tracks in real time [50]. Track data
are sent to a server to monitor the zones over long periods
of time and to archive the tracks for later retrieval. By this
integration, the passing counts of the zones with the track
indices are accumulated.

For activity (ii), a pan-tilt-zoom (PTZ) camera is driven
by the NOVA tracker to capture the human face upon the
person’s entrance. The person is recognized by the system
from the detected face video, and face image is tagged to the
human volume in CoVE as shown in Figure 19.

Long-term face capture of the entering people is shown
in Figure 20. This figure shows the captured human entrance
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FiGure 18: Long-term zone watching of the CoVE interface in the intelligent room. A predefined zone is indicated by red if a person passes
through it, or it remains blue. Humans are represented as color-coded rectangular cubes. Trajectories of humans have the same color as the

rectangular cubes of people, respectively.

FIGURE 19: Face video capture when a person enters into the room.

events over a period of ~50 minutes. The NOVA tracker
monitors the room continuously and archives the entering
people automatically with a time stamp. Past subjects can be
retrieved with the face videos and the entrance times to the
accuracy of seconds. It is suitable for automatic surveillance
and forensic support applications.

For group activities (iii), the faces are captured sequen-
tially by the system. An example of such a system-attentive
scenario is shown in Figure 21, where four people sitting
in the room and facing the projector screen are scanned by
the closest cameras. When a new person enters, the system
changes the scanning order; that is, it is “distracted.”

5.1. Speech modality and visual learning

In this section, we experiment on learning a new subject for
streaming face recognition in the intelligent environment.

(®)

The video is displayed in a subwindow and archived for later retrieval.

Face detection does not need further learning once it is
trained with a general face database such as CMU PIE
database [48]. However, for streaming face recognition as
in (17), if the highest likelihood max,c;P(Xiesi | Am) is
below a threshold for all currently known identities, m € I,
then the sequence of face )?test is of an unknown person. It
is the same for the majority rule in (12) and the discrete
HMM rule in (13) when the outcome indicates an unknown
identity. In these cases, an identity name must be given to
the face recognizer through some interfaces, and the identity
knowledge base I can be increased. For an intelligent room,
it is natural and unobtrusive to take the speech modality for
this incremental visual learning, as illustrated in Figure 22.
A speech command interface with certain predefined
grammars is ideal for this purpose. We used IBM ViaVoice
SDK and defined several question and answer grammars for
the system to talk to the people in the room. If only one
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F1GURre 20: Examples of automatic face capture and archive while people appear in the room. Video clips were captured during approximately
50-minute duration. In two-people cases (epochs of 15 : 43 : 02 and 15 : 54 : 22), the subjects are captured in turn in the same video clip.
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F1GURE 21: Face subject scanning of four persons in the intelligent room. Persons are facing the projector screen in front of the room. Videos
of the persons are taken by two most nearby PTZ cameras at the corners of the room.

person is in the room and is unknown, the system will greet
the person and will ask for his name. If one known person is
present and another is unknown, as in Figure 22, then the
system will greet the known person and ask for the other
person’s name. Then the identity, along with the streaming
face recognition model A,, derived from Xiest, is added to the
face recognition database. Figure 23 shows an example of the
scenario in Figure 22, where a known person is recognized
and an unknown person is detected. The ViaVoice interface
then asks for the unknown person’s name from the known
one, and the unknown person is learned by the streaming
face recognizer.

6. CONCLUDING REMARKS

The primary objective of this research is to design an end-
to-end integrated system which takes video array inputs
and provides face-based person identification. This system
architecture includes multiple analysis levels for person

localization, facial identification analysis, and integrated
event capture from the networked omnivideo array. The
face analysis algorithms utilize the temporal continuity
of faces in the videos in order to enhance robustness
to environmental variations and allow for natural human
activities. For face detection, two types of image primitives
are used in cooperation to find face candidates on various
challenging conditions. The face candidates are then verified
to reject false detections and put them into tracking to
filter and interpolate face detections across frames. The
extracted face video is then analyzed to recognize the identity
of person over the frames. Three types of video-based
face recognition schemes collect single-frame face analysis
outputs, either single-frame face recognition identities or
single-frame feature vectors, in a video segment and compare
the accumulated scores to make final decisions. Experimental
results support the streaming face recognition scenario by
showing significant improvements of recognition accuracy.
With these video-based face analysis algorithms, higher-level
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System: hello,
“person one”, who
is the person next

to you?

Person 1: he is
“person three”

System: hello,
“person three”,

welcome to AVIARY
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FIGURE 22: Speech command-based incremental visual learning for streaming face recognition.

Kohsia Huang

Unkown

FIGURE 23: An experiment of the incremental learning of face recognition identity. (a) The ViaVoice interface (the cartoon pencil) first greets
the recognized person. (b) Having detected the unknown person, ViaVioce then asks for his name from the known person.
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