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The paper suggests a contour-based algorithm for tracking moving objects in video. The inputs are segmented moving objects.
Each segmented frame is transformed into region adjacency graphs (RAGs). The object’s contour is divided into subcurves.
Contour’s junctions are derived. These junctions are the unique “signature” of the tracked object. Junctions from two consecutive
frames are matched. The junctions’ motion is estimated using RAG edges in consecutive frames. Each pair of matched junctions
may be connected by several paths (edges) that become candidates that represent a tracked contour. These paths are obtained by
the k-shortest paths algorithm between two nodes. The RAG is transformed into a weighted directed graph. The final tracked
contour construction is derived by a match between edges (subcurves) and candidate paths sets. The RAG constructs the tracked
contour that enables an accurate and unique moving object representation. The algorithm tracks multiple objects, partially covered
(occluded) objects, compounded object of merge/split such as players in a soccer game and tracking in a crowded area for
surveillance applications. We assume that features of topologic signature of the tracked object stay invariant in two consecutive
frames. The algorithm’s complexity depends on RAG’s edges and not on the image’s size.
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1. INTRODUCTION

Object tracking is an important task for a variety of computer
vision applications such as monitoring [1], perceptual user
interfaces [2], video compression [3], vehicular navigation,
robotic control, motion recognition, video surveillance,
and many more. These applications require reliable object
tracking techniques that satisfy real-time constraints. For
example, object tracking is a key component for efficient
algorithms in video processing and compression for content-
based indexing [4, 5]. In MPEG-4, the visual information
is organized on the basis of the video object (VO) concept,
which represents a time-varying visual entity with arbitrary
shape. Tracking these video objects along the scene enables
individual manipulation of its shape and combines it with
other similar entities to produce a scene.

A robust tracking system should meet the following
challenges: tracking of multiple objects that are partially
covered (occluded) by other objects, tracking a compounded
object of merge and split as players in a soccer game, tracking
of slow disappearance of an object from a scene and then

its reappearance after several frames, tracking in a crowded
area for surveillance applications. Many of the tracking
techniques utilize the model shape [6] of the tracked object
to overcome the errors produced by the use of an estimated
motion vector. Unfortunately, an object may translate and
rotate in three-dimensional space while its projection on
the image plane undergoes projective transformations that
cause substantial deformations in its two-dimensional shape.
Furthermore, an object may change its real (original) shape
in physical space, for example, in the case of a human object
changing its body position. In this situation, it is necessary
to decide whether the model that describes the object has
to be updated, or whether the change in its shape will be
considered as a transitory event. In other cases, the first frame
of the sequence may consist of two different objects that are
very close to each other, and the object extraction process
considers them as a single object. Then, the “single” object
may split, after a few frames, into two objects. Depending on
the adopted based technique, the object’s shape model will
have to be reinitialized according to the new tracked objects
in successive frames.
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Producing an automatic robust tracking system is a
significant challenge. There have been a lot of efforts that
produce solutions to handle the tracking problem. The
existing techniques in the literature can be roughly classified
into the following groups of trackers: region-based, contour-
based, and model-based.

1.1. Region-based trackers

An adaptive algorithm, which updates the histogram of
the tracked object in order to account for changes in
color, illumination, pose, and scale, was presented in [7].
The tracked object is represented as “blobs” in the back-
projection [8]. This technique has a low complexity, and
thus suits real-time systems. Other techniques, which utilize
structural features such as texture, color and luminance, are
proposed in [9–11]. For example, [9] suggested a moving
object tracking algorithm that is based on a combination of
adaptive texture and color segmentation. They use Gibbs-
Markov random field to model the texture, and a two-
dimensional Gaussian distribution to model the color. The
tracked target is obtained by a probabilistic framework of
the texture and color cues at region level and by adapting
both the texture and color segmentation over time. Similar
techniques were used earlier in [10, 11]. However, when fast
motion of the object and significant change in behavior are
allowed, color- or texture-based techniques are not sufficient
to detect a long-term tracking. Region-based algorithms to
deal with the above were suggested in [12, 13]. The method in
[12] is based on a modified version of Kalman’s filter. A four-
step tracking technique using motion projection, marker
extraction, clustering and region merging was suggested
in [13]. The motion projection represented by a linear
motion model is calculated on the reliable parts of the
projected object. These parts are called marker points and
their extractions are based on the assumption about the
relationship between the projected and real objects. Then,
starting from these markers, a modified watershed transfor-
mation followed by a region-merging algorithm produces
the complete segmentation of the next frame. The advantage
of the techniques in [12, 13] is in their abilities to deal with
significant changes in the object’s regions.

1.2. Contour-based trackers

These algorithms detect and track only the contour of the
object. For example, the snake algorithm [6] does it by using
a converged snake in the reference frame as the initial snake
in the successive frame. However, the algorithm blurs the
image to disperse gradient information. Therefore, it has a
limited search area and it is unable to track changes in the
contour that lie outside the range of the blurred gradient
operator. As a consequence, this method is effective only
when the motions and changes in the object’s shape between
consecutive frames are small. To overcome this limitation,
some use dynamic programming that increases the search
area of the snake. Temporal information to bias the snake
toward the shape of the segmentation in the previous frame
is used in [14]. This method improves the shape memory

of the snake but does not adequately track large-scale object
movements or significant changes in its shape. Conversely,
[15] suggested a tracker, which handles significant changes
in the shape. It partitions the object’s contour into several
curves and estimate the motions of each curve independently
of the others. Then, the predicted location of the complete
contour is obtained by using dynamic programming. A
particle filter-based subspace projection method, which
neither causes blur nor demands an expensive dynamic
programming, is presented in [16].

1.3. Model-based trackers

A generic solution to object tracking is still a challenging
problem. Therefore, model-based techniques, which demand
a priori information regarding the object’s shape and type,
were developed for suitable applications. For example, [17]
suggested a model, which is based on edge detector, to extract
moving edges that are grouped together by a predefined
model shape. A similar concept was used in [18], which
groups the edges by using the Hough transform. In addition,
the use of deformable templates has been very common
in model-based techniques. A deformable template enables
to track large movements and changes, and also provides
global shape memory for the tracked object. For example,
a known model of a key is defined in [19]. This approach
allows both affine transformations of the entire key and local
deformations in the form of variations in the notches of
the key. A similar approach of deformable templates was
used in [20] for tracking a human hand by global and local
deformation templates, which were defined for movement
changes and for finger motions, respectively. Recently, a
dynamic-model-based technique [21], which decreases the
constraint limitation by having a predefined model, was
suggested. It uses a hierarchy of separate deformation
stages: global affine deformations, local (segmented) affine
deformations, and snake-based continuous deformations.
This approach provides a shape memory update of the
object’s model and thus, enables the snake algorithm to be
used for final contour refinement after each frame.

Our proposed algorithm is classified as a contour-based
technique. The algorithm gets as an input the contour
(curve) of the moving object to be tracked and two
consecutive frames It and It+1 in times t and t+1, respectively.
Initially, we apply a still-segmentation process on It and It+1.
Region adjacency graphs (RAGs), denoted by Gt and Gt+1,
are the constructed data structures from the segmentation of
It and It+1, respectively. Then, the contour of the extracted
object in Gt is segmented into subcurves while interior
junctions are marked. Each subcurve represents a different
homogeneous region in Gt. The interior junctions connect
between two different subcurves. These junctions are called
important (easy) points to track. Motion estimation of these
junctions is performed where the search area is the edges
in Gt+1. For each pair of tracked junctions in Gt, there
exists a small number of “candidate paths,” which connect
the estimated pair in Gt+1. These paths are obtained by an
algorithm that finds the k shortest path between two nodes
in weighted and directed graph. We claim that only one of
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the candidate paths accurately represents the single-tracked
subcurve between a pair of junctions. Then, the construction
of the tracked object is actually a process that matches
between a single edge (signature) in Gt and a set of candidate
paths in Gt+1.

The matching process has a low complexity due to the
limited number of candidate paths. The tracked contour
is constructed from all the matched paths between pairs
of estimated junctions. We show that the probability of
matching the right path is proportional to the number of
points that participate in the matching process.

In contrast to other contour-based techniques such as in
[6, 14, 15], our algorithm does not use the snake algorithm
[6] to obtain the predicted curve of the object. Therefore, the
suggested algorithm does not have limitations on the object’s
motion or changes in the object’s pose. Furthermore, it does
not require a priori information about its shape, type, or
motion as in [17, 19, 20].

The rest of the paper is organized as follows. Section 2
introduces the notation and outlines the main steps of
the algorithm. Section 3 describes the object’s contour
segmentation. The estimation of the junction’s motion and
the algorithm for finding the candidate paths is given in
Section 4. Section 5 presents the matching process that con-
structs the tracked contour. Implementation and complexity
analysis is given in Section 6. Experimental results are given
in Section 7.

2. NOTATION ANDOUTLINE OF THE ALGORITHM

The following notations are used; see Figure 1 for illus-
tration. The flow of the algorithm is given in Figure 2.
Let It and It+1 be the inputs of the source frame and its
consecutive frame, respectively. We denote by {Rt

i}, i =
1, . . . ,nt and {Rt+1

j }, j = 1, . . . ,nt+1 the sets of nt and nt+1

non-overlapping regions that are generated by a still image
segmentation (Section 3.1 using [22–24]) of It and It+1,
respectively. Region adjacency graphs (RAGs) Gt = (Vt,Et)
and Gt+1 = (Vt+1,Et+1) are the data structures that represent
the segmentation of It and It+1, respectively. The nodes of
the RAGs represent the regions Rt

i , i = 1, . . . ,nt. An edge
e(i, j) ∈ Et represents a shared common boundary of Rt

i and
Rt
j such that (x, y) ∈ e(i, j), for all (x, y) ∈ Rt

i∩Rt
j . The same

is true for Gt+1 = (Vt+1,Et+1).
Let Ct be the closed input curve that belongs to the

object’s contour to be tracked in It such that Ct ⊆ Et and let
Ct+1 be the tracked contour in It+1. We assume that Ct+1 ⊆
Et+1. The “important” points in Ct are called junctions (see
Section 3.2). They are denoted by Jk, k = 1, . . . ,N , which is
the set of theN junctions on the curveCt . Thus,Ct (source) is
segmented into subcurves, denoted by Pk,k+1

t , k = 1, . . . ,N ,
where the indices that enumerate the junctions are k =
1, . . . ,N − 1 and the Nth junction is connected to 1. Each
subcurve Pk,k+1

t is actually the edge that connects the pair Jk
and Jk+1. The corresponding points of Jk, k = 1, . . . ,N in
It+1 are denoted by Sk, k = 1, . . . ,N , such that each matched
point in Sk corresponds to a junction in Jk. In other words,
a set of matched points in Jk, k = 1, . . . ,N , in It+1 will be

detected by a block-matching process (Section 4.1) that is
based on SAD minimization of the matched squared errors
between Jk, k = 1, . . . ,N , and a searched area in It+1. The set
of matched points in It+1 is Sk, k = 1, . . . ,N .

The construction of Ct+1 is achieved by the application
of the matching procedure (Section 5.1) that measures the
similarity between the edges of It and It+1. We will show
(Section 5.1) that each subcurve in Ct (the edge between Jk
and Jk+1) has a single matched edge in Ct+1 (the edge that
connects Sk and Sk+1). However, several edges may connect
the matched pointsSk and Sk+1. We call this set of edges
“candidate paths” (destination), denoted by Pk,k+1

t+1 , r =
1, . . . ,Rk, where Rk is the number of candidate paths between
each Jk and Jk+1. We say that Ct+1 ⊆ Pk,k+1

t+1,r , r = 1, . . . ,Rk.

There exists rk, 1 ≤ rk ≤ Rk, such that a path Pk,k+1
t+1,rk that

satisfies Pk,k+1
t+1,rk ∈ Ct+1 is called a matched path, denoted by

mpk,k+1
t+1 . Then, Ct+1 = ∪k=1,...,N−1mpk,k+1

t+1 . In other words, the
new object’s curve Ct+1 is formed by sets of matched paths
mpk,k+1

t+1 between Sk and Sk+1, k = 1, . . . ,N .

3. CURVE SEGMENTATION

Assume we have the two input frames It and It+1 and an
object’s contour Ct . Segmentation of the object’s contour
(curve) Ct into subcurves is required since the object may
translate and rotate in three-dimensional space, while its
projection onto the image plane causes substantial deforma-
tions in its two-dimensional shape. Therefore, it is better
to estimate separately the motion of each subcurve rather
than estimating the motion of the entire object’s contour.
The segmentation of the object’s contour into subcurves
is achieved by finding a set of junctions, which connect
the subcurves between themselves and separate between
homogenous regions. In (Section 3.2), we justify why these
junctions are well-tracked points that faithfully represent the
rest of the points that belong to Ct. These junctions comprise
the signature of the tracked object that will characterize it
uniquely.

In order to partition the object’s curve into subcurves, we
utilize the still-segmentation results of It. We require from
the still segmentation to produce homogeneous regions such
that only the boundaries of the regions overlap each other.

3.1. Image segmentation

The performance of the algorithm is directly affected by the
number of segments from the two input frames It and It+1.
We want produce a minimal number of segmented regions
while preserving the homogeneity criteria. For this purpose,
we apply the segmentation algorithm in [22–24].

This algorithm uses the watershed algorithm [25] fol-
lowed by an iterative merging process, which generates local
thresholds. The watershed algorithm gets the gradients of
a gray-scale image of the input color image. The image
is considered as a topographic relief. By flooding the
topographic surface from its lowest altitude, the algorithm
defines lakes and dams. Dams are watershed lines that
separate adjacent lakes. When the whole surface is immersed,
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Figure 1: (a) Still segmentation of It . Ct (source) is the green closed curve. The red contours are the segmented boundaries. The black arrows
point to two different junctions J1 and J2. (b) Still segmentation of It+1. Ct+1 is the tracked green closed curve and the black arrows point to
the matched points S1 and S2 that correspond to the junctions J1 and J2, respectively. The yellow curves are the paths of P1,2

t+1,r , r = 1, . . . , 3
and the blue curve is the matched path denoted by mp1,2

t+1.

It Ct It+1

Ct+1

Curve segmentation

Segmentation of It and It+1

Detection of junction in Ct

Finding candidates paths

Estimating the matched points
in It+1 to junctions in Ct

Finding candidate paths
between estimated junctions

Construction of the tracked curve

Figure 2: Flow diagram of the proposed algorithm where It and
It+1 are two consecutive input frames, and Ct is the input object’s
contour to be tracked. Ct+1 is the tracked contour in It+1.

the image is divided into lakes. Each lake represents a region.
However, due to its sensitivity to weak edges, the watershed
algorithm generates oversegmented output. Therefore, its
output is used as an initial guess for the merging process
phase, which aims at reducing the number of segments. The

merging process is done iteratively. At any iteration during
the merging process, the most similar adjacent regions are
merged. The similarity between any pair of adjacent regions
is measured by the outcome of a dissimilarity function [22–
24]. Local thresholds are derived by an automatic process,
where local information is taken into consideration. Any
threshold refers to a specific region and its surroundings.
The number of thresholds that defines the final regions is
known only when the process is terminated. The output
of the segmentation is represented by Rt

i , i = 1, . . . ,nt,
which partitions It. These partitions construct the initial
data structures that we use during the entire duration of
the algorithm. Recall that Gt = (Vt,Et) (Section 2) is an
undirected graph that represents the partition of It. The
region Rt

i is represented by a node vi ∈ Vi. An edge e(i, j)
exists only if Rt

i and Rt
j are adjacent, where adjacent regions

share a boundary. The edge e(i, j) contains all the pixels that
lie between Rt

i and Rt
j . Hence, all the pixels of the segmented

boundaries are represented by Et. The same is true for the
graph Gt+1 = (Vt+1,Et+1).

3.2. Detection of a junction

The proposed algorithm first tracks the “important” points
(junctions) Jk, k = 1, . . . ,N . We will show here that these
points are sufficient to produce reliable tracking without the
need to have the rest of the points in Ct.

We assume that pixels in homogeneous areas are difficult
to track while pixels in high-textured areas, which are
characterized by having more content, are more likely to be
well tracked. A method to identify good features to track was
introduced in [26]. This method derives a set of interesting
points by simultaneously tracking them. The points that
optimize the trackers’ accuracy are chosen as good feature.
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The algorithm mainly detects corners as well-tracked points.
Hence, corners are considered important points to track.

A corner is defined as a meeting point of two (or more)
straight edge lines [26–29]. Following this definition, each
corner contains at least two different edges and at least
two different regions, which together create two-dimensional
structures. Since real images do not contain geometric shapes
only or rigid objects, corners are related to curvature on the
contour. L-junction, T-junction, and X-junction are different
corner types, where the number of regions that meet in the
corner determines the corner type. Examples of a T-junction
profile and corners in a synthetic image are illustrated in
Figure 3.

The corners, as a source for rich information, are used as
an anchor points for tracking. Corners can be tracked with
high accuracy as it is demonstrated in [26, 30]. In [31, 32]
corner tracking is used for robot homing and low bit rate
video codec, respectively.

Since corners are well-tracked points, we are motivated
to associate the important points in Ct with corners. Hence,
the important points (which are called junctions) are defined
as follows.

Definition 1. Let Ct be the contour of a given object. Let
Rt
k, k = 1, . . . ,N , be the subset of Rt

i , i = 1, . . . ,nt, which
is represented by Gt = (Vt,Et). Assume N (N ≤ nt) regions
of the object intersect Ct. The N regions are renumbered
1, . . . ,N such that Rt

k is adjacent to Rt
k−1 and Rt

k+1 for all
k = 1, . . . ,N . A junction Jk, k = 1, . . . ,N , on Ct is defined as

Jk
Δ= (x, y), where (x, y) ∈ Ct and (x, y) ∈ e(k, k+1), e ∈ Et.

In other words, a junction is defined as a point on Ct

where two interior segments of the object meet. Junctions
are distinguished from corners by the fact that they are
not necessarily represented as a meeting point of straight
lines and do not necessarily represent a curvature in Ct (see
Figure 4). However, like corners, junctions contain at least
two different edges (lines). They represent a meeting point
of at least two different homogenous regions of the object,
while a corner may represent only homogeneous region of
the object. They are considered as good features and are used
in our application as “important” anchor points to base the
tracking on them.

4. FINDING THE CANDIDATE PATHS

In Section 3, we discussed the advantages of having junctions
in Ct as well-tracked points. The junctions enable to find a set
of matched points Sk, k = 1, . . . ,N in It+1 and the candidate
paths Pk,k+1

t+1,r , r = 1, . . . ,Rk for the construction of Ct+1.
The construction of the object’s contour Ct+1 in

It+1 relies on the fact that the set Jk, k = 1, . . . ,N ,
is defined as connected points between homogeneous
regions in Ct (see Figure 4). Any pair of consecu-
tive junctions Jk and Jk+1 is connected by a subcurve
Pk,k+1
t . This subcurve is an edge in Gt that represents

the boundary of a homogeneous region. As defined in
Section 2, Sk, k = 1, . . . ,N , is a set of matched points

Gray level 1

Gray level 2 Gray level 3

(a) (b)

Figure 3: (a) Profile of T-junction. (b) Corner map (red dots) of a
synthetic image.

J1 J2

J3

J4J5
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R1

R3

R5

R2
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Figure 4: Syntactic illustration of detected junctions in Ct . The
blue curve is the object contour Ct . Each homogeneous region in
Ct is bounded by a green curve. The red crosses on Ct represent
a set of six junctions Jk , k = 1, . . . , 6. Each connection between
two consecutive junctions Jk and Jk+1, represents a homogeneous
region. Each junction Jk , k = 1, . . . , 6 is a connection between two
(or more) segmented regions Ri and Rj , i, j = 1, . . . , 5 and i /= j. The
two top corners are the curvature regions of Ct that do not satisfy
Definition 1.

(in Gt+1) to set Jk, k = 1, . . . ,N (in Gt). Each consecutive
pair Sk and Sk+1 can be connected by several paths which are
edges in Gt+1 (see Figure 1). However, based on our image
segmentation assumption, the contour of the tracked object
Ct+1 is an integral part of the segmentation outputs such
that Ct+1 ⊆ Et+1. Since all possible paths between Sk and
Sk+1, k = 1, . . . ,N , satisfy Et+1 = ∪k=1,...,N , r=1,...,RkP

k,k+1
t+1,r we

get that Ct+1 ⊆ ∪k=1,...,N ,r=1,...,RkP
k,k+1
t+1,r . After these sets of

paths (candidate paths) between each pair in Sk are obtained,
the construction of Ct+1 is done by the application of the
matching process between a single edge Pk,k+1

t to the set
Pk,k+1
t+1,r , r = 1, . . . ,Rk. These paths mean that we actually

transform the tracking of the entire curve into a problem of
how to identify match between edges.

This section describes how to find the matched points Sk
for Jk, k = 1, . . . ,N in Et+1 (Section 4.1). Then, we describe
the algorithm that finds candidate paths Pk,k+1

t+1,r , r = 1, . . . ,Rk

between any pair of matched points Sk and Sk+1.
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4.1. Finding the corresponding junctions

The match between regions in consecutive frames is done
by the application of a block-matching process on the set
of junctions Jk, k = 1, . . . ,N . This set contains information
about the connected points between the object regions
Rt
i , i = 1, . . . ,nt, that intersect Ct. Although we assume

nothing about the object’s motion, the overall structure of
the object is generally preserved between two consecutive
frames. The interior regions of the object do not radically
change and so their connecting points. Therefore, the
information that is stored in Jk, which is contained in Et,
should also exist in the object’s boundaries in Et+1.

Unlike traditional motion estimation techniques, where
the search area is usually a predefined squared window, we
utilize the data structure of Gt+1 to adaptively determine
the search area of each point in Jk, k = 1, . . . ,N . The still
segmentation of It+1 enables to define the set of pixels in the
edges Et+1 of the RAG Gt+1 as the search area for finding the
corresponding matched point Sk. Thus, only a small portion
of the whole image participates in the search process (block
matching), which reduces the complexity (O(|Et+1|)) to be
dependent only on the graph edges.

The center of the search window is located in the
coordinates of each Jk, k = 1, . . . ,N . Our goal is to find
the motion vector that minimizes the matching error for a
given junction Jk. It is being done through a common block
matching procedure. The matching error between the block
that is centered in (xk0 , yk0 ) ∈ Jk and has a matched point Sk is

SAD(x,y)
(
xk0 , yk0

)

=
B/2∑

j=−B/2

B/2∑

i=−B/2

∣
∣(It

(
xk0 , yk0

)− It+1
(
x + i, y + j

))∣∣,
(1)

where B × B is the block size. Among all the searched points
in (x, y) ∈ Et+1, the matched point is assigned to Sk, k =
1, . . . ,N that minimizes the matching error score

Sk
Δ= arg min

(x,y)∈Et+1

SAD(x,y)
(
xk0 , yk0

)
. (2)

The SAD(x,y)(xk0 , yk0 ) is computed for each Jk, k = 1, . . . ,N .
Then, we obtain the set of matched points Sk, k = 1, . . . ,N .
Figures 8(c) and 8(d) illustrate the sets Jk, Sk, k = 1, . . . ,N ,
respectively. We anticipate that Sk ⊂ Ct+1 for k = 1, . . . ,N .
Therefore, the curve Ct+1 of the tracked object is assumed
to pass through the matched points. If only one curve
passes through the matched junctions, the algorithm is
terminated and this curve is considered as the object’s
contour Ct+1. However, this is not always the case in real and
inhomogeneous images. Several curves may pass through
each pair of the matched points (see Figure 1). Section 4.2
describes how to find these curves, based on the algorithm
that finds the k shortest paths between two nodes in a given
graph.

4.2. Finding the k shortest paths (candidate paths)

The RAG Gt+1 is transformed into a connected and undi-
rected weighted graph G′t+1 = (V ′

t+1,E′t+1) as follows.

Initially, any pixel (x, y) ∈ Et+1 is represented by a node in
G′t+1. In other words, each pixel on the boundaries of the
segmentation is a node in G′t+1. Every two nodes in G′t+1 are
connected by an edge e ∈ E′t+1 if they are adjacent. Thus,
G′t+1 is another representation of the segmentation while Gt+1

focuses on regions and their connections, and G′t+1 focuses
on the boundaries of the segmentation. Since the matched
points satisfy Sk ⊆ Et+1, they are nodes inG′t+1. Consequently,
all the paths Pk,k+1

t+1,r , r = 1, . . . ,Rk, between Sk and Sk+1, that
have to be found, are exactly the paths in G′t+1 between Sk and
Sk+1.

Assume that G′t+1 is a connected graph. Then, at least
one path exists between any pair of nodes. The number Rk

of paths between two given nodes Sk and Sk in G′t+1 can be
big. Since the length of mpk,k+1

t+1 has to be approximately the
length of the source path Pk,k+1

t , we define Lk,k+1 to be the
maximal length of the candidate paths Pk,k+1

t+1,r , r = 1, . . . ,Rk.

Lk,k+1 is initialized to be twice the length of Pk,k+1
t . Hence,

finding Pk,k+1
t+1,r , r = 1, . . . ,Rk, which are shorter than Lk,k+1, is

equivalent to the problem that lists all the paths that connect
a given source-destination pair in a graph shorter than a
given length.

The proposed algorithm is based on [33] that finds
the k shortest paths. The k shortest path algorithm lists k
paths, which connect a given source-destination pair in a
directed graph with minimal total length. The main idea
is to construct a data structure from which the sought
after paths can be listed immediately by focusing on their
unique representation. The data structure is constructed
by handling separately the edges of the shortest-path-tree
from those which are not. By differentiating between the
edges, any path can be represented only by edges, which are
not in the shortest-paths-tree. In addition to the implicit
representation of a path, any path can be represented by
its father and an additional edge. The father of a path
differs from it only by one edge, which is the last edge
among all the edges that are not in the shortest-paths-tree.
An order-path-tree is constructed from this representation
and the sought-after paths are constructed through its use.
Before we describe the construction of the data structure we
transform G′t+1 by this technique, which is described in [34],
to become a directed graph denoted by G′′t+1 = (V ′

t+1,E′′t+1).
The direction of the sought-after paths is from Sk to Sk+1.

We denote by head(e) and tail(e) the two endpoints of
an edge e ∈ E′′t+1, which is directed from tail(e) to head(e).
The length of an edge e is denoted by l(e). An example of
a directed graph with lengths attached to its edges is shown
in Figure 5(a). The length of each edge in G′′t+1 is initialized
to 1. The length of a path p ∈ G′′t+1, which is the sum
of its edge lengths, is denoted by l(p). The length of the
shortest path from Sk to Sk+1 is denoted by dist(Sk, Sk+1).
We find the shortest path from each vertex v ∈ G′′t+1 to
Sk+1. The set of all these paths generates a single-destination
shortest path tree, denoted by T (see Figure 5(b)). From the
construction of T , the edges in G′′t+1 are divided into two
groups. The first group consists of all the edges in T while
the second contains all the edges that are not in T . Each
edge e ∈ G′′t+1 is assigned a value, denoted by δ(e), that
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Figure 5: (a) A directed graph G with different edge lengths. The nodes which are marked by “s” and “t” are the source sk and destination
sk+1, respectively. (b) The single-destination shortest path tree T . (c) The values of δ(e) of all the edges in G − T . (d) The order path tree is
constructed by the father-son representation while only sidetracks are used.

measures the difference between dist(tail(e), Sk+1) and the
shortest path from tail(e) to Sk+1 that contains e. In other
words, δ(e) measures the lost distance caused by adding e to
the shortest path. δ(e) is defined as

δ(e)
Δ= l(e) + dist

(
head(e), Sk+1

)− dist
(
tail(e), Sk+1

)
. (3)

Then, for any e ∈ T , we get that δ(e) = 0 and for any e ∈
G′′t+1 − T , δ(e) > 0. We call the edges with δ(e) > 0 (the
edges in the second group) “sidetrack” edges. Examples of all
e ∈ G′′t+1 − T and their δ(e) values are shown in Figure 5(c).

Any path p ∈ G′′t+1 is described by a sequence of edges
that contains edges in T and sidetrack edges. Listing only the
sidetracked edges was found to be a unique representation of
p since every pair of nodes, which are the endpoints of two
successive sidetrack edges in p, is uniquely connected by the
shortest path between them (from edges in T). If p does not
contain sidetracks, p is the shortest path in T . Consequently,
the length of p, which connects the nodes Sk and Sk+1, can
be computed as the sum of dist(Sk, Sk+1) and the length of its
sidetracks. From the fact that any path can be represented
only by its sidetracks, an additional interpretation can be
used. Let prepath(p) be the sidetracks of p except for the
last one. We call the path, which is defined by the set of
prepath(p), the father of p. Any path p with at least one
sidetrack can be represented by its prepath(p) and by its last
sidetrack. From the father-son relation, we can construct an
order-path-tree (see Figure 5(d)) in which all the paths in
G′′t+1 are represented. The order path tree contains only the
edges in G′′t+1 − T since the edges in T are already stored
in an appropriate data structure (which is T itself) that fits

the implicit representation. This data structure, which is
described next, is constructed from different heaps into a
final graph. All the paths Pk,k+1

t+1,r , r = 1, . . . ,Rk, in G′′t+1 will
be represented by paths from the final graph.

We denote each vertex v ∈ G′′t+1 by out(v) of the edges in
G′′t+1 − T with a tail in v. For each v ∈ G′′t+1, we construct a
heap Hout(v) from the edges in out(v). Each node in Hout(v)
has at least two sons, while the root has only one. HT(v) is a
heap of v that contains all the roots of Hout(w), where w is on
the path from v to Sk+1. HT(v) is built by merging the root of
Hout(v) into HT(nextT(v)), where nextT(v) is the next node
that follows after v on the path from v to Sk+1 in T (Figure 6).
We formed HG′′t+1

(v) by connecting each node w in HT(v) to
the rest of the heap Hout(w) except for the two nodes it points
to in HT(v). By merging all HG′′t+1

(v) for each v ∈ G′′t+1, we get
a direct acyclic graphD(G′′t+1) (see Figure 7(a)). We denote by
h(v) the root of HG′′t+1

(v) and use δ(v) instead of δ(e), where
e is the edge in G′′t+1 that corresponds to v.

D(G′′t+1) is augmented to the path graph, that is denoted
by P(G′′t+1) (see Figure 7(b)). The nodes of P(G′′t+1) belong
to D(G′′t+1) with the root r = r(Sk) as an additional node.
The nodes of P(G′′t+1) are unweighted but the edges are.
Three types of edges exist in P(G′′t+1). (1) The first type is
the edges in D(G′′t+1). Each (u, v) has a length δ(v) − δ(u).
(2) The second type is the edges from v to h(w), where
v ∈ P(G′′t+1) corresponds to an edge (u, v) ∈ G′′t+1 − T .
These edges are called cross-edges. (3) A single edge between r
and h(w) with length δ(h(Sk))represents the third type. From
the construction process, there is one-to-one correspondence
between the paths starting from r ∈ P(G′′t+1) and all the
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Figure 6: HT(v) of each node in G in Figure 5(a), where out(v) is
not empty. For any v ∈ G in Figure 5, out(v) contains only one
node, therefore, HG(v) is equal to HT(v).
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Figure 7: (a) D(G). It has a node for each node that is marked
by (∗) in Figure 6. The nodes that are marked by (∗) are the
nodes that were updated by the insertion of the root of out(v) into
HT(nextT(v)). (b) P(G).

paths from Sk to Sk+1 ∈ G′′t+1. To prove this claim, we have
to show that any path p ∈ G′′t+1 corresponds to a path p′ ∈
P(G′′t+1) that starts from r, and any path p′ from r ∈ P(G′′t+1)
corresponds to a path p ∈ G′′t+1, which is represented by its
sidetracks.

Next we outline the proof that any path p′ from r ∈
P(G′′t+1) corresponds to a path p ∈ G′′t+1. We list for any path
p′ ∈ P(G′′t+1) a sequence of sidetracks, which represents its
corresponding path p ∈ G′′t+1, as follows. For any cross-edge
in p′, the edge in G′′t+1, which corresponds to the tail of the
cross edge, is added to the sequence. The last edge added is
the edge in G′′t+1 that corresponds to the last vertex in p′.
Since each node in P(G′′t+1) corresponds to a unique edge in
G′′t+1−T , the sequence of edges, which is formed to represent
p, consists only of sidetrack edges.

Given the representation of all paths in G′′t+1, we construct
the heap H(G′′t+1) in order to list only the sought-after
paths, which are shorter than the given threshold. H(G′′t+1)
is constructed by forming a node for each path in P(G′′t+1)
rooted at R. The parent of a path is the path that is achieved
by the removal of the last sidetrack. The weights of the nodes

are the length of the paths. From the construction, each son
is shorter than its father, and the weights are heap-ordered.

Finally, we apply the length-limited depth first search
(DFS) [27] on H(G′′t+1). The length-limited DFS is the
regular DFS algorithm with the following modification. If
the weight of the current node is bigger than Lk,k+1, the
process is regressed and continues with the node that was
reached before the current node. The search results are the
set of nodes that reached weights smaller than Lk,k+1. Then,
we translate the search results to a full description of the
paths with the representation discussed above (any path is
described as a sequence of edges in T and edges in G′′t+1−T).
This translation generates all the candidate paths Pk,k+1

t+1,r , r =
1, . . . ,Rk between Sk and Sk+1, that are shorter than Lk,k+1.

5. CONSTRUCTIONOF THE TRACKED CONTOUR

We claim that there exists a strong similarity between
mpk,k+1

t+1 ⊆ Pk,k+1
t+1,r , r = 1, . . . ,Rk, and the original (source)

path Pk,k+1
t in Ct . This similarity exists due to the fact that

the segmentation of the contour Ct represents homogeneous
subcurves (edges) Pk,k+1

t , k = 1, . . . ,N (Section 3.2), by the
homogeneity criteria. Homogeneous subcurves in Ct are
likely to preserve their contents between consecutive frames.
Furthermore, the candidate path Pk,k+1

t+1,r , r = 1, . . . ,Rk,
represents different homogeneous edges (see Section 3.1).
Thus, even if the content of the edge is changed such that
Pk,k+1
t becomes different from mpk,k+1

t+1 , it is unreasonable
that Pk,k+1

t will transform its content to be similar to one in
Pk,k+1
t+1,r −mpk,k+1

t+1 , r = 1, . . . ,Rk.

We are given the candidate paths Pk,k+1
t+1,r , r = 1, . . . ,Rk,

k = 1, . . . ,N . The construction of the tracked curve Ct+1 is
transformed into a process that matches between the edges.
The tracked contour Ct+1 will be constructed by the matched
paths mpk,k+1

t+1 , k = 1, . . . ,N , which are independent of each
other. All its candidate paths Pk,k+1

t+1,r , r = 1, . . . ,Rk between
each pair of successive points Sk and Sk+1 are listed. Then, the
path which is the most similar path to Pk,k+1

t (the connection
between Jk and Jk+1) among all Pk,k+1

t+1,r , r = 1, . . . ,Rk, is

considered as the matched pathmpk,k+1
t+1 ∈ Ct+1.

5.1. Match between paths

The process that finds Pk,k+1
t+1,r , r = 1, . . . ,Rk, k = 1, . . . ,N , is

based only on the segmented boundaries. On the other hand,
the detection of the matched paths mpk,k+1

t+1 is performed
using the original input contour Ct . Since Pk,k+1

t is composed
of one homogeneous region, not all its points are needed in
the matching procedure.

Let SPk,k+1
t be a subset of β independent points in Pk,k+1

t .

A search for the best match between any pixel (x, y) ∈ SPk,k+1
t

and all the pixels in Pk,k+1
t+1,r , r = 1, . . . ,Rk, is performed.

A matched grade is computed for every (x, y) ∈ Pk,k+1
t+1,r ,

r = 1, . . . ,Rk, using (1). The matched value is assigned to
the pixel that minimizes the SAD (2) among all the searched
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Figure 8: Step-by-step illustrations of the main steps of the algorithm. (a) and (b) are the input frames. (c) and (d) illustrate the junction
detection with their matched points, respectively. (e) illustrates a single set of candidate paths, and (f) is the final tracked object.
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Figure 9: The values of S fk(p) (6) as function of β (sample size) for
the four paths in Figure 8(e). β is assumed to be 20%, 50%, 80%,
and 100%.

pixels (x, y) ∈ Pk,k+1
t+1,r , r = 1, . . . ,Rk. We call this point the best

point and denote it by bpk,k+1
t+1 (x, y). In addition, BPk,k+1

t+1 (x, y)
denotes the set of all the best point that corresponds to the
subset SPk,k+1

t . Then, for k = 1, . . . ,N , we have

BPk,k+1
t+1 = {bpk,k+1

t+1 (x, y) | (x, y) ∈ Pk,k+1
t+1,r , r = 1, . . . ,Rk

}
.
(4)

If BPk,k+1
t+1 belongs entirely to a single path p, p ∈ Pk,k+1

t+1,r ,

r = 1, . . . ,Rk, such that BPk,k+1
t+1 ⊆ p, then this path is

considered as the matched path mpk,k+1
t+1 in Ct+1. Otherwise,

we differentiate between the paths by giving a grade to each
p ∈ Pk,k+1

t+1,r , r = 1, . . . ,Rk as follows. For k = 1, . . . ,N and for

each (x, y) ∈ Pk,k+1
t+1,r , r = 1, . . . ,Rk, the characteristic function

fk(x, y) is defined as follows:

fk(x, y)
Δ=
⎧
⎨

⎩
1, (x, y) ∈ BPk,k+1

t+1 ,

0 otherwise.
(5)

Each path p ∈ Pk,k+1
t+1,r , r = 1, . . . ,Rk is assigned with a

matched grade S fk(p) by

S fk(p)
Δ=

∑

(x,y)∈p
fk(x, y). (6)

Then, we consider the path that maximizes S fk(p) as the

matched path mpk,k+1
t+1 :

mpk,k+1
t+1

Δ= arg max
p∈Pk,k+1

t+1,r , r=1,...,Rk

S fk(p). (7)

Although not all the best points satisfy BPk,k+1
t+1 = mpk,k+1

t+1 ,
most of them do. The use of a set of best points in each
subcurve Pk,k+1

t is aimed to offset and correct the errors
produced by the minimization of the SAD measurements
of a single point. However, since the searched area {(x, y) :

(x, y) ∈ Pk,k+1
t+1,r , r = 1, . . . ,Rk} is characterized by different

homogeneous edges, it reduces the probability of a mismatch
between similar closed points. In other words, using the data
structureGt+1 = (Vt+1,Et+1) as a limited search area, enforces
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Figure 10: Final tracking results for five successive frames taken from “Stefan” video sequence.

bpk,k+1
t+1 (x, y) to reside either in Ct+1 or in a relatively far and

dissimilar region. Note that the grades, which distinguish
between the path mpk,k+1

t+1 and the other paths Pk,k+1
t+1,r −

mpk,k+1
t+1 , r = 1, . . . ,Rk, are affected by the subset size β.

Decreasing the size of β reduces the computational time,
especially for longer paths. Subset paths of β = 30% from

the original subcurve Pk,k+1
t are sufficient to reliably produce

the contour Ct+1.

6. IMPLEMENTATION AND COMPLEXITY

Our method stresses the accuracy in finding the object’s
contour and not the area where it is located. An efficient
implementation is achieved while preserving the accuracy of
the final results.

6.1. Implementation

input: It, Ct, It+1

output: Ct+1

process:
(1) Still segmentation in Section 3.1 that uses [22–24]

is applied on It and It+1. Rt
i , i = 1, . . . ,nt and Rt+1

j , j =
1, . . . ,nt+1 are the segmentations of It and It+1, respectively.

(2) Gt = (Vt,Et) and Gt+1 = (Vt+1,Et+1) are constructed.
They represent the segmentation of It and It+1, respectively.

(3) For every (x, y) ∈ Ct, we check whether (x, y) satisfies
the junction definition. If it does, we add (x, y) to the set of
junctions Jk, k = 1, . . . ,N .

(4) Ct is segmented into Pk,k+1
t , k = 1, . . . ,N subcurves

that correspond to the set of junctions Jk, k = 1, . . . ,N .

(5) For every junction Jk, k = 1, . . . ,N , do the following.

(a) Its SADs (1) are calculated in the corresponding
searched area in Et+1.

(b) The point with the minimal SAD 2 is added to
Sk list.

(6) The graph G′′t+1 is constructed from Gt+1.

(7) For every Sk and Sk+1, k = 1, . . . ,N , do the following.

(a) All the candidate paths Pk,k+1
t+1,r , r = 1, . . . ,Rk

that are shorter than twice the length of Pk,k+1
t

(Section 4.2) are found.

(b) The matched path mpk,k+1
t+1 ∈ Pk,k+1

t+1,r , r =
1, . . . ,Rk, among all the paths Pk,k+1

t+1,r , r =
1, . . . ,Rk are found as follows.

(i) The subset SPk,k+1
t of β independent points

from Pk,k+1
t is constructed.

(ii) We find for each (x, y) ∈ SPk,k+1
t a point

(using (1) and (2)) that belongs to one set
in Pk,k+1

t+1,r , r = 1, . . . ,Rk, and assign it to

BPk,k+1
t+1 .

(iii) For all (x, y) ∈ Pk,k+1
t+1,r , r = 1, . . . ,Rk,

fk(x, y) is computed.

(iv) For all p ∈ Pk,k+1
t+1,r , r = 1, . . . ,Rk, S fk(p)

(using (6)) is calculated.
(v) mpk,k+1

t+1 is the path that maximizes (7)
S fk(p), r = 1, . . . ,Rk.
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Figure 11: Final tracking results for five successive frames taken from “soccer” video sequence.

6.2. Complexity analysis

We present here the complexity analysis of the implemen-
tation in Section 6.1. The numbers refer to the steps in
Section 6.1.

(1) Image segmentation is done in O(N + K·|E| log |E|)
operations, where K is the number of iterations (see
[14, 22–24]).

(2) The construction of the RAG requires one scan on the
boundaries of the segmentation. Therefore, the construction
of Gt = (Vt,Et) and Gt+1 = (Vt+1,Et+1) requires O(|Et+1| +
|Et|) operations, where |Et| is the number of pixels that is
stored in Et.

(3) Let n be the number of pixels on the object’s contour
Ct. Finding junctions on Ct is done in one scan of Ct , which
requires O(n) operations. The following steps are performed
for each (x, y) ∈ Ct: (i) its eight neighbors are extracted;
(ii) the label of (x, y) and the labels of its neighbors are
compared. O(1) operations are needed to accomplish step
(i), since (x, y) ∈ Ct, (x, y) ∈ Rk, k = 1, . . . ,N . Step (ii)
checks whether there exists at least one neighbor (x′, y′) of
(x, y) such that (x′, y′) ∈ Rk−1 or (x′, y′) ∈ Rk+1. If k = 1,
then Rk−1 is RN . If k = n, then Rk+1 is R1. If (x, y) has such
a neighbor, then it is a junction. Otherwise, it is not. This
step requires O(1) operations when segmentation labeling is
used. Since the size of Ct in the worst case is O(|Et|), then
finding these junctions requires O(|Et|) operations.

(4) The segmentation of a closed curve Ct on a given
set of junctions Jk, k = 1, . . . ,N , into Pk,k+1

t , k = 1, . . . ,N ,
subcurves is done by one scan of Ct . This requires N
operations. Thus, in the worst case, N = |Et|. The
segmentation of Ct requires O(|Et|) operations.

(5) The number of required operations in the matching
process of any junction depends on the number of candidate
points in the search area and on the number of operations
required to find the minimal SAD. Since the size of the SAD
window is predefined, the SAD operations are considered
to be constant. In the worst case, the number of candidate
points in the search area is O(|Et+1|). The number of
junctions (in the worst case) is O(|Et|). Therefore, the
matching process for all the junctions requires O(|Et·|Et+1|)
operations.

(6) The construction of G′′t+1, which is linear in the graph
size, requires O(|E′′t+1|) operations.

(7) We estimate here the cost of the two main procedures:
finding candidate paths (Section 4.1) and the matching
process (Section 5.1). In Section 4.1, the algorithm that finds
the k shortest path between a pair of matched points is used.
It requires O(|E′′t+1| + |V ′

t+1| + k) operations, where k is the
number of paths (see the analysis in [35]). The number of
pair of junctions in the worst case is O(|Et+1|/2). Therefore,
the overall complexity of Section 4.1 is O(|Et+1||E′′t+1| +
|V ′

t+1| + k). The match process inc Section 5.1 between
β points on Ct and all the candidate paths is done in
O(|Et·|Et+1|) operations since β is equal (at most) to |Et|
and the size of all the candidate paths in the worst case is
O(|Et+1|).

The total number of operations after we sum each step in
the above operations is
(
O
(∣∣Et

∣
∣) +

∣
∣Et
∣
∣·∣∣Et+1

∣
∣ +

∣
∣Et+1

∣
∣(
∣
∣E′′t+1

∣
∣ +

∣
∣V ′

t+1

∣
∣ + k

))
.

(8)

Since consecutive frames have similar content, we assume
that O(|Et|) ≈ O(|Et+1|). From the construction of G′t+1,
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Figure 12: Final tracking results for five successive frames taken from another part of the “soccer” video sequence in Figure 11. On the top
most left image, the legs are tracked as one object and in the top middle image the legs are separated and tracked correctly.

(a) (b) (c)

(d) (e) (f)

Figure 13: Final tracking results for five successive frames taken from the “Coast Guard” video sequence. It demonstrates the capability of
the algorithm to track merge and split objects.

we get that O(|V ′
t+1|) ≈ O(|Et+1|). In addition, for the

worst case |E′t+1| = 8|V ′
t+1|, each pixel has maximum

of eight neighbors. Thus, O(|E′t+1|) ≈ O(|V ′
t+1|). From

the construction of G′′t+1, we have O(|E′′t+1|) ≈ O(|V ′|).
Therefore, O(|E′′t+1|) ≈ O(|Et+1|). Consequently, the overall
complexity of the tracking algorithm is O(|Et|2).

7. EXPERIMENTAL RESULTS

A variety of video sequences with different motion types
were examined. In Section 7.1, we present a step-by-step
illustration of a single example. The final results of tracked
contours are presented in Section 7.2.
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7.1. Step-by-step illustration of the algorithm

Figure 8 is a step-by-step evolution of the tracking algorithm
and how the final tracked contour is constructed. Figures
8(a) (It) and 8(b) (It+1) are frames 1 and 3, respectively,
from the “Tennis” sequence. The input contour of the
object to be tracked is surrounded by a green curve in
Figure 8(a). The segmented curve of the first frame is shown
in Figure 8(c) (It+1). Each pair of consecutive junctions Jk
and Jk+1, k = 1, . . . ,N , is marked by white crosses. The
junction that is marked with a yellow arrow in Figure 8(c)
represents the intersection of two different homogeneous
regions (the red pants and the blue shirt of the player), which
is obtained from its still image segmentation process. The
two other arrows (blue and green), marked in Figure 8(d)
(It+1), represent the corresponding matched points (blue
and green) from Figure 8(c) (It), respectively. As shown,
all the detected junctions in Figure 8(c) are located on the
boundaries between different homogeneous areas, and thus,
are classified as “important” and well-tracked points that will
be used in the next steps of the algorithm.

A particular example of a curve construction of a pair
of matched points S1 and S2 is given in Figure 8(e). For
this pair (marked by two white crosses in Figure 8(e)), a
set consisting of four different candidate paths P1,2

t+1,r , r =
1, . . . , 4 (marked by four different colors) is found. The pink
path, in this example, represents the matched path mp1,2

t+1.
This path is located after the application of the matching
procedure between the set P1,2

t+1,r , r = 1, . . . , 4 and P1,2
t

(shown by the final constructed contour in Figure 8(f)). The
matched grades S f1(p) of P1,2

t+1,r , r = 1, . . . , 4, are given in
Figure 9 as a function of four different β values (20%, 50%,
80%, and 100%). As shown in Figure 9, the maximal S f1(p)
was obtained for the pink path, for all β values. Different
values of β affect only the ratio between the right path (pink)
and the other paths.

7.2. Final results

The examples in Figures 10, 11, 12, and 13 demonstrate
the final results of tracked contours in four different video
sequences. All the experiments were performed without
tuning of any parameters. The input object to be tracked in
all the examples is marked by a green contour. Red contour
represents the algorithm’s final output in the current frame.

8. CONCLUSIONS

In this paper, we propose a novel contour-based algorithm
for tracking a moving object. Based on the RAG data
structure, accurate results are achieved while preserving a
low complexity. In the initialization step, two consecutive
input frames are segmented with respect to a semantic
homogeneous criterion. Their corresponding RAGs are
constructed to represent the partitions of the frames. The
object’s contour is segmented into subcurves according to the
detected junctions that reside on the contour. The subcurves
of the object’s contour are the basis for the construction of
the new tracked contour. A corresponding point for each

junction in It+1 is searched only in the RAG edges of the
consecutive frame. Then, each pair of matched points is con-
nected by a set of candidate paths. Among all the candidate
paths, the path that is most similar to its corresponding
subcurve is considered to be a part of the tracked contour.
Hence, only one of the RAG’s edges represents the tracked
contour. Consequently, the new object’s contour is accurately
constructed by the matched paths, and the overall complexity
of the algorithm is proportional to the edges of the RAG.
Note that representation of RAG edges usually consists of
10% of the entire image.
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