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We present a trajectory mapping algorithm for a distributed camera setting that is based on statistical homography estimation
accounting for the distortion introduced by camera lenses. Unlike traditional approaches based on the direct linear transformation
(DLT) algorithm and singular value decomposition (SVD), the planar homography estimation is derived from renormalization.
In addition to this, the algorithm explicitly introduces a correction parameter to account for the nonlinear radial lens distortion,
thus improving the accuracy of the transformation. We demonstrate the proposed algorithm by generating mosaics of the observed
scenes and by registering the spatial locations of moving objects (trajectories) from multiple cameras on the mosaics. Moreover, we
objectively compare the transformed trajectories with those obtained by SVD and least mean square (LMS) methods on standard
datasets and demonstrate the advantages of the renormalization and the lens distortion correction.
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1. INTRODUCTION

Monitoring large areas such as airports and underground
stations requires a set of distributed cameras to capture
common patterns of activities and detect unusual events
or anomalous behaviors [1]. Albeit object detection is
traditionally carried out in each camera separately, there
is an opportunity to coordinate and integrate information
on activities across all cameras in order to improve the
performance of the overall system. Multicamera settings
with overlapping views provide elements of redundancy
that help minimize ambiguities due to occlusions and
increase the accuracy of the estimated objects’ positions
[2]. Moreover, after object extraction, data originating from
individual cameras can be registered into a common frame of
observation to facilitate scene analysis. The use of multiple
cameras raises several issues such as image registration,
camera calibration, object correspondence, and the fusion of
visual information.

Once objects of interest have been extracted [1, 3], the
spatial mapping (image registration) between images taken
at different viewpoints is usually performed following three
main steps [4]: (a) feature detection, which manually or

automatically selects salient primitives such as contours,
line intersections, or corners (control points); (b) feature
matching, which establishes the correspondence between the
detected features in the different images; (c) transform model
estimation, which aligns the images. Although the image
registration problem has been addressed in the literature
[2, 4–6], misalignments in trajectory mappings are still a
critical issue in multiview scene analysis [7].

In this paper, we present an algorithm for registering
views and trajectories from multiple uncalibrated cameras
with overlapping field-of-views, when the relative positions
of the cameras are unknown. In particular, we overcome
two major causes of trajectory misalignments due to the
inaccuracies in the registration process and the distortions
introduced by the camera lenses in the image acquisition
process itself.

In most works involving trajectory mapping [2, 4–7],
the authors adopt the linear pinhole camera model which
assumes the principle of collinearity [8]. However, this model
is only an approximation of the real camera projection. The
centers of curvature of lens surfaces are not always perfectly
collinear and this may result in the need for an extension of
the model to include correction of the distortion introduced
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Figure 1: Block diagram of the proposed multicamera trajectory mapping approach.

by camera lenses [9]. Although lens distortion does not affect
the quality of the image, it has, however, an impact on the
image geometry. Hence a correction will be required. We
present a framework that embeds lens distortion correction
into a homography estimation algorithm that attains the
theoretical accuracy bound in homography estimation by
minimizing residual misalignments. The functional diagram
of the proposed framework is shown in Figure 1.

The rest of the paper is organized as follows. In Section 2,
we cover the related work. Section 3 describes the algorithms
used to extract and track objects, and map them across views.
Experiments are presented in Section 4. Finally, Section 5
presents the conclusions and future work.

2. RELATEDWORK

Black and Ellis [5] identify corresponding blobs generated by
the same object in different viewpoints and extract the 3D
measurements of the object location using epipolar geometry
to define correspondences. However, this method requires
calibrated cameras. Additionally, since epipolar geometry
may correspond a point to a line, this may lead to ambiguous
matches [10]. Khan and Shah [11] use homography between
views and a training phase during which one person enters
and exits the field-of-views of the cameras. A limit of this
approach is, for example, when a person enters or exists from
the bottom of the image. Their ground location cannot sim-
ply be computed by taking the bottom point of the detected
blob. Since the ground location of the objects is extracted at
the camera hand-off, false correspondences will be generated
because the assumption on homography ground plane is not
valid anymore. A normalization technique is proposed by
Kanatani et al. [12] to enhance the numerical stability of
the homography since most linear methods are particularly
sensitive to the accuracy of the correspondence as well as to
the condition numbers of the matrices.

The process of matching control points across views to
estimate homography can be affected by lens distortions,

in particular at the image periphery [13]. Works on online
distortion estimation often use straight lines in the scenes
to provide constraints on the distortion parameters [14–
16]. This implies the a priori availability of such lines and
their detection. Such methods work under the assumption
that a straight edge, bent by lens distortion, will deviate
from a fitted segment. An optimization is performed on the
distortion parameters to minimize the deviation of edges
from straight lines. Unlike this approach, Stein [17] requires
neither the 3D location of points nor the camera calibration
but uses point correspondences in multiple views to recover
epipoles and epipolar lines considering lens distortion. A cost
function defined as the root mean square of the distances
is computed from the feature points to the epipolar lines.
Zhang [18] describes the epipolar geometry between two
images with lens distortion by matching a point to its
correspondent on the other image. The corresponding point
is considered as lying on a curve rather than a straight line
as it is the case in a distortion-free camera. Swaminathan
et al. [19] derive a metric to measure distortions in multi-
viewpoint images, but this method requires scene priors such
as spheres, cylinders, or planes to be defined.

3. MULTIVIEWOBJECT TRACKING

3.1. Object detection and tracking

Prior to trajectory transformation, trajectories have to be
estimated with a robust method to extract foreground
objects from video, followed by a multiple object tracker. The
best trajectory transformation process will remain bounded
by the quality of the object segmentation process. A faulty
segmentation in one camera generates a truncated blob that
will undermine the point-to-point correspondence with the
corresponding blob in another camera.

Object extraction can be achieved with an object detector
or change detector that segments regions corresponding to
moving objects. We use background subtraction [20] to
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extract foreground objects. The background of a stationary
camera is modeled with a pixel-wise mixture of three Gaus-
sian (MOG) distributions and each Gaussian is weighted in
relationship with the frequency with which it explains the
observed background. Gaussians with the highest weight that
together explain over 50% of past data are considered as
background.

Object tracking is performed by applying a graph match-
ing algorithm on the detected objects [21]. Objects are
treated as nodes of a bi-partitioned digraph (i.e., a directional
graph), whereas edges are determined by all possible object
combinations (track hypotheses) in adjacent frames and
weighted using multiple object features, namely, position,
direction, and size. The graph is formed by iteratively
creating new edges from the detected targets. The optimal
set of tracks is generated by computing the maximum weight
path cover of the graph. Since graph matching links nodes
based on the highest weights, a gating window is used
to avoid connecting two trajectory points far from each
other.

3.2. Homography estimation

The homography matrix, H , that relates the corresponding
views is estimated based on a set of control points and it is
computed as

x′ = Hx, (1)

where x = (x, y, 1) is a point in one view and x′ =
(x′, y′, 1) is the corresponding point in the second view. The
homography maps points lying on a plane in one view onto
points on the same plane imaged on another view. Using
homogeneous coordinates, (1) can be expressed as

x′ = h11x + h12y + h13

h31x + h32y + h33
,

y′ = h21x + h22y + h23

h31x + h32y + h33
,

(2)

where the unknowns, hi j , are entries of matrix

H =

⎛
⎜⎝
h11 h12 h13

h21 h22 h23

h31 h32 h33

⎞
⎟⎠ . (3)

Rewriting (1) under a vector cross-product form

x′ ×Hx = 0, (4)

and H as

h = (h11,h12,h13,h21,h22,h23,h31,h32,h33
)
, (5)

enables a simple linear solution for H to be derived [8]. n
corresponding points will generate the following matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1 −x′1

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1 −y′1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2 −x′2

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2 −y′2

...
...

...
...

...
...

...
...

xn yn 1 0 0 0 −xnx′n −ynx′n −x′n
0 0 0 xn yn 1 −xny′n −yny′n −y′n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where (xi, yi, 1) and (x′i , y
′
i , 1) are the coordinates of the

corresponding points that generate each 2 × 9 matrix Ai

forming A. The linear form yields

Ah = 0. (7)

Most works [2, 5, 11] compute h using linear methods.
The key idea in these methods is that given a pair of
corresponding pixels, (7) is linear in the unknown h, whereas
the entries of Ai are quadratic in the known coordinates of
the points. This means that given enough equations, it is
possible to implement linear algebra methods to compute
the coefficients of H . Direct linear transformation (DLT) [8]
is a widely used linear method that minimizes the algebraic
residuals ‖Ah‖, subject to ‖h‖ = 1. The solution is the
unit eigenvector corresponding to the smallest eigenvalue of
ATA. The superscript indicates the transpose matrix. This
eigenvector can be obtained directly by the singular value
decomposition (SVD) of A. If the vector ε = Ah is the
residual vector, then its components are derived from the
individual correspondences that generate each row of A.
Each correspondence xi↔x′i contributes a partial error vector
εi (algebraic error vector), toward the full error vector ε,
whose norm is the algebraic distance. Although DLT, based
on SVD, has the advantage of easy implementations, it is
quite sensitive to noise. In addition to this, one cause of error
in the matrix computation lies in the value being minimized
as it does not account for the noise in the geometry of the
corresponding points [22]. To overcome this problem, we
use a renormalization technique which attains the theoretical
accuracy bound in homography estimation [12, 23].

In this approach, the uncertainty of data points (xα, yα)
and (x′α, y′α) is described by their respective covariance
matrices Σα and Σ′α. It follows that the vectors x and x′ of
(4) have the following singular covariance matrices

V
[
xα
] = 1

f 2

⎛
⎝Σα 0

0T 0

⎞
⎠ ,

V
[
x′α
] = 1

f 2

⎛
⎝Σ

′
α 0

0T 0

⎞
⎠ ,

(8)

where f is a scale factor. If the covariance matrices are
known up to that scale, then V[xα] = ε2Vo[xα] and
V[x′α] = ε2Vo[x′α], where ε is the noise level. The
normalized covariance matrices Vo[xα] and Vo[x′α] indicate
the relative dependence of noise occurrence on positions
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(a) (b)

(c)

Figure 2: (a)-(b) Two views with corresponding control points (dark landmarks) on the overlapping area; (c) image mosaic generated after
homography transformation.

and orientations. By modeling the uncertainties in geometric
inference [23], the theoretical accuracy bound is attained
in its first order by minimizing the squared Mahalanobis
distance M as:

M =
∑(

x′α ×Hx,Wα
(
x′α ×Hxα

))
, (9)

where Wα denotes the matrix

Wα =
(
x′α×HVo

[
xα
]
HT× x′α +

(
Hxα

)×Vo
[
xα
]× (Hxα

))−
2 .

(10)

Details on the algorithm are presented in [12].

3.3. Mapping

We generate the mosaics from overlapping views to create
a larger cameras’ field-of-view that represents the common
coordinate frame where we map the objects’ trajectories.
A mosaic allows an uninterrupted observation of objects
that enter and exit individual camera’s field-of-views. We
proceed in a pairwise mode by first aligning the two images
then by applying image stitching to generate the composite
image [24]. The alignment is obtained by warping one
image onto the other, considered as reference view, using the
estimated homography transformation. Although aligned, a
simple juxtaposition of the two images would create visible
photometric artifacts such as inconsistencies in pixel colors
in the resulting mosaic. We apply image stitching by pixel
selection and center-weighting [24]. We blend pixel colors
in the overlapping area by interpolating the pixel intensities
in that region. Since we pursue a seamless merging, the
colors of the pixels in the overlapping areas are weighted
through averaging. For this purpose, we calculate the centers
of the images and use them as coefficients to weight pixels
intensities in the overlap. Let I1 and I2 represent the pixel

intensity in the first and the second images , respectively.
Furthermore, let a1 be the Euclidean distance between the
center of the first image to the pixel. The same computation
is carried out for a2 with respect to the second image. The
resulting pixel intensity, I , of the composed image is given by

I =
(

a1

a1 + a2

)
I1 +

(
a2

a1 + a2

)
I2. (11)

An example of homography estimation based on manually
selected control points and the resulting mosaic after image
alignment and stitching is shown in Figure 2. The dark dots
in Figures 2(a) and 2(b) indicate the selected control points.
The view illustrated in Figure 2(a) is warped onto Figure 2(b)
which is the reference view. Colors in the overlap are blended
and the mosaic is shown in Figure 2(c). However, when
using 2D planar homography to warp images we still can
observe undesirable effects for objects that do not lie on the
plane of reference. On the warped image, these objects are
bent toward the plane as a result of the strong coplanarity
assumption of the homography transformation [8]. The
image mosaic shown in Figure 2(c) illustrates this effect.
After warping Figure 2(a) onto Figure 2(b), the tree on the
top left of the image is bent in Figure 2(c).

As areas corresponding to overlapping field-of-views,
there are concurrent object observations, a decision is taken
that results in a single observation on the mosaic [25]. We
assume that the most reliable measurement of an object
spatial location is given by the observation from the closest
camera (camera switching). At a time t, given a detected
object located at spatial coordinates (xt1, yt1) in camera 1 and
(xt2, yt2) in camera 2, the closest camera is the one whose y
object coordinate is closer to the bottom of the image plane.

Figure 3 compares the trajectories of two targets from
the PETS2001 dataset (http://peipa.essex.ac.uk/ipa/pix/pets/
PETS2001/) superimposed on the mosaic (Figure 3(c))
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(a) (b)

(c)

(d)

Figure 3: Comparison of trajectory transformations for two targets, (a) P1 and (b) P2, on the image mosaic of Figure 2; (c)-(d) zoom on the
transformed trajectories: ground truth (white), proposed approach (red), SVD (yellow) and LMS (blue).

Table 1: Trajectory transfer error with and without renormaliza-
tion. μ and σ indicate the mean and the standard deviation of the
resulting transfer errors.

Without renormalization With renormalization

SVD LMS Proposed approach

Target μ σ μ σ μ σ

P1 5.97 3.11 3.86 2.49 3.05 2.12

P2 4.51 1.99 2.87 1.86 2.29 1.01

generated with 3 different methods: the proposed algorithm,
the SVD-based and the LMS-based algorithm [8]. Figures
3(c) and 3(d) show a close-up on the targets’ trans-
formed trajectories, illustrating the displacement between
the expected location (ground-truth: white line) of the target
and their actual measurements after transformation. The
quantitative evaluation of the results is based on the transfer
error e defined as

e = d
(
q̃i,Hqi

)
, (12)

where d(·) is the Euclidean distance; qi is the trajectory
point to be transformed; H the transformation and Hqi
is the estimated value resulting from the transformation
of the trajectory point qi. q̃i is the ground-truth location
of the transformed trajectory point. Table 1 shows the
improvement in the trajectory mapping accuracy when using
the renormalization technique as opposed to SVD and LMS,

which do not use renormalization. The reported values are
expressed as mean values, with their corresponding variance.

We compare the robustness of the three approaches
against noise and report mean values of the variation of the
transfer error in Table 2. The robustness test is performed
by corrupting the selected control points with varying
magnitudes of Gaussian noise N and by then estimating the
subsequent transfer error on the transformed trajectories.
The results show a smaller increase in the transfer error
for the proposed approach than for the SVD-based and
in LMS-based methods. This is due to the fact that the
renormalization accounts for the geometric noise in the
point-to-point correspondence.

In the next section, we will take into account another
source of errors, namely, the distortion introduced by the
camera lenses.

3.4. Embedding lens distortion in
the homography estimation

Radial lens distortion can be a significant factor introducing
errors typically in the range of 10–100 pixels at the edges
of the image [17]. To overcome this problem, we take
into account the radial distortion that can be introduced
by the camera lenses when estimating the point-to-point
correspondence between views.

Let an undistorted image point (xu, yu, 1) be subject
to a radial distortion and let (xd, yd, 1) be the resulting



6 EURASIP Journal on Image and Video Processing

Table 2: Influence of noise on the trajectory transfer error. N
indicates the noise amplitude (Gaussian) used to corrupt the
control points; μ and σ denote the mean and the standard deviation
of the resulting transfer errors for target P1 and target P2.

N
SVD LMS Proposed approach

μ σ μ σ μ σ

P1

1 6.85 4.24 4.16 2.59 3.65 2.19

2 7.69 5.32 5.35 2.98 4.08 2.31

4 8.94 6.37 5.96 3.81 4.57 2.75

5 9.35 5.92 6.66 4.41 5.38 2.93

7 13.38 7.03 7.49 4.57 6.01 3.18

8 14.84 7.19 9.01 5.05 6.72 4.01

10 17.27 8.25 12.11 5.45 8.12 4.37

12 19.97 9.33 13.89 5.88 9.25 4.49

15 21.91 10.39 16.41 7.09 11.36 6.28

P2

1 5.98 3.97 3.49 2.20 2.73 1.46

2 6.71 4.56 3.89 2.25 2.97 1.80

4 8.85 5.90 4.97 2.91 4.13 2.34

5 11.34 6.90 6.92 3.53 5.37 2.93

7 15.27 8.94 7.72 3.79 6.35 3.45

8 19.97 10.66 10.17 4.66 7.64 3.95

10 20.03 11.50 11.84 5.42 8.39 4.41

12 20.89 12.18 13.91 5.95 9.44 5.06

15 23.29 14.15 15.31 7.10 12.26 6.62

distorted point. The distorted and undistorted points satisfy
the following:

xu = xd + xd
(
k1r

2 + k2r
4 + k3r

6 + · · · ),

yu = yd + yd
(
k1r

2 + k2r
4 + k3r

6 + · · · ),
(13)

where r =
√

(xd)2 + (yd)2 and ki are coefficients of the radial
distortion. As including more coefficients increases the risk
of numerical instability in the distortion model [26], we
consider only the first term of the radial distortion.

We embed the division distortion model [13] in the
correspondence algorithm. The geometric constraints in the
homography matrix estimation (1) is augmented to include
the first term, k1, of the radial lens distortion

⎛
⎜⎝
xu
yu
1

⎞
⎟⎠ =

⎛
⎜⎝

xd
yd

1 + k1
(
x2
d + y2

d

)

⎞
⎟⎠ , (14)

where p = (xu, yu, 1) is the distortion-free point, x =
(xd, yd, 1) the distorted point, and k1 the distortion param-
eter. Thus,

p = x + k1z, (15)

where z = (0, 0, (x2
d + y2

d)). The homography constraint in
(1) can be expressed in terms of vector cross product for each
corresponding pair (pi,p′i ) using (15) as

(
x′d + k1z′

)×H
(
xd + k1z

) = 0, (16)

Goal: Given corresponding points in two views, estimate
the homography relating the two images.
(1) Compute the set of distorted corresponding control

points pairs ⎛
⎜⎝
xd
yd
1

⎞
⎟⎠←→

⎛
⎜⎜⎝
x′d
y′d
1

⎞
⎟⎟⎠ .

(2) Scale the control points by subtracting the center
and then normalizing by the sum of the image
width and height.

(3) Compute [V ,A−1] = polyeig(DT
1 D3,DT

1 D2,DT
1 D1),

where V is the matrix of eigenvectors and A−1 the
corresponding inverse eigenvalues.

(4) Discard imaginary and null eigenvalues and select the
median value k1 from the above remaining eigenvalues.

(5) Compute corresponding pairs of undistorted control
points ⎛

⎜⎜⎝
xd
yd

1 + k1r2

⎞
⎟⎟⎠←→

⎛
⎜⎜⎝

x′d
y′d

1 + k1r′
2

⎞
⎟⎟⎠ ,

where r =
√

(xd)2 + (yd)2 and r′ =
√

(x′d)2 + (y′d)2.
(6) Minimize the squared Mahalanobis distance M:

M =
∑((

x′α
)
u ×Hxu,Wα

((
x′α
)
u ×H

(
xα
)
u

))
,

updating Wα using the renormalization technique,
where Wα denotes the matrix

Wα =
(
x′α ×HVo

[
xα
]
HT × x′α+

(
Hxα

)×Vo

[
xα
]× (Hxα

))−
2 .

(7) Obtain the estimated homography H from step (6).

Algorithm 1: Undistorted homography estimation.

which is quadratic in k1 and linear in H . Expanding with the
coordinates, we obtain

(
D1 + k1D2 + k2

1D3
)
h = 0, (17)

where h is the vector in (5) and the coefficients Dr are such
that

D1 =
(

0 0 0 −x′d −y′d −1 ydx
′
d yd y

′
d yd

x′d yd 1 0 0 0 −xdx′d −xd y′d −xd

)
,

D2 =
(

0 0 0 −rx′d −r y′d −r − r′ 0 0 ydr′

rx′d r y′d r′ + r 0 0 0 0 0 −xdr′
)

,

D3 =
(

0 0 0 0 0 −r′r 0 0 0
0 0 r′r 0 0 0 0 0 0

)
.

(18)

However, (17) is a quadratic eigenvalue problem (QEP). The
solution of this equation yields 4–6 nonimaginary, nonnull
values. The best values of k1 have been determined as
corresponding to the median value of the set of solutions. In
summary, the embedded distortion correction is performed
according to Algorithm 1. Figure 4 visualizes the benefits
of the correction of radial lens distortion. A mosaic from
two views with overlapping areas is shown before and after
lens distortion correction. Because of the radial distortion,
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(a)

(b)

(c) (d)

Figure 4: Example of distortion correction in image mosaics. (a) Image mosaic without distortion correction; (b) image mosaic after lens
distortion correction; (c) zoom from (a); (d) zoom from (b). (c) and (d) refer to the areas enclosed by the red rectangles in (a) and (b). Note
the difference in the residual misalignment between (c) before and (d) after lens distortion correction.

residual misalignments are visible on Figure 4(a) (before
lens distortion correction), particularly with the white and
yellow lines located at the borders of the image. A significant
improvement is obtained after correction as illustrated by the
alignment in Figure 4(b).

Based on the above, the estimation of the homography
transformation that embeds lens distortion correction for
N cameras (N ≥ 3) proceeds on a pairwise basis. The
homography Hij will relate camera Ci to Cj ; Hjk, camera
Cj to Ck; and so on. The distortion parameter computation
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(a) (b)

(c)

Figure 5: Example of three-view correspondence. (a) Original images (distorted); (b) images after radial distortion correction; (c) generated
mosaic from the three views (after distortion correction).

is image-to-image dependent. This means the correction
obtained for camera Cj while estimating the homography
Hij is only applied to the image Cj in the correspondence
Ci↔Cj , and the radial correction parameter for camera Cj

will be computed when estimating the homography Hjk

in the correspondence Cj↔Ck. Figure 5 shows the original,
distorted images (Figure 5(a)) and the corrected images
(Figure 5(b)), as well as the corresponding mosaic after a
three-view correspondence.

4. EXPERIMENTAL RESULTS

We demonstrate the proposed approach for trajectory trans-
formation with lens distortion correction on the ETISEO

dataset (http://www-sop.inria.fr/orion/ETISEO/) and com-
pare the results with those of SVD and LMS. We analyze
examples of resulting object detection and tracking across
multiple views and of trajectory mapping on mosaics whose
distorted images have been corrected.

Four sequences of 110, 300, 100, and 170 frames (the
image size is 720× 576 pixels) with moving pedestrians have
been used. For fairness of comparison, the same distortion
correction is applied to all methods. Figure 6 shows the
results from object segmentation and tracking of targets E1,
E2, E3 and E4.

Figure 7 shows the correction of two objects’ trajectories
(target E1 and target E2). Note the difference between the
distorted (red) and corrected (blue) trajectory when the
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(a) (b)

(c) (d)

Figure 6: Sample targets from the ETISEO dataset. (a) Target E1; (b) target E2; (c) target E3; (d) target E4.

(a)

(b)

Figure 7: Example of distorted trajectory (in red) and corrected (in
blue) on the mosaic. (a) Target E1; (b) target E2.

target moves closer to the image periphery. With lens dis-
tortion correction, we rectify the trajectory points location
with distances that reach 10 pixels for E1, 45 pixels for E2,
62 pixels for E3, 88 pixels for E4. These quantities measure
the differences between the trajectory points before and after
lens distortion correction.

Figure 8 illustrates the variation of the transfer errors
over time for the ETISEO targets. The results show that the
linear SVD method presents larger errors than both LMS
and the proposed approach. The linear estimation has its
lowest errors when a target is close to the control points. As
targets move away from the control points, the drift between
the estimated and the expected location becomes more and
more significant. The main reason behind the relatively
lower performance of SVD resides in the way this technique
estimates the homography transformation matrix. Indeed,
its linear estimation consists of a pure algebraic solution to
the geometric problem of fitting noisy corresponding points
in a homography relationship. The absence of geometric
constraints to relate the corresponding points is likely to
degrade the homography in those areas.

LMS presents a better fitting due to the use of a
geometric cost function that minimizes the transfer error.
However, one disadvantage of this model is that it requires an
additional phase in the homography estimation that consists
of an initialization with the linearly estimated homography
matrix. Besides, LMS assumes that the entire data can be
interpreted by only one parameter vector of a given model
and even when the data contain only one bad datum, LMS
estimates may be completely perturbed [27]. This limitation
was also confirmed by the experiments on perturbations
generated by a Gaussian noise introduced on the control
points location (see Table 2).

5. CONCLUSIONS AND FUTUREWORK

We presented an algorithm for trajectory transformation for
wide-baseline multicamera scene analysis with embedded
lens distortion correction. The proposed approach first esti-
mates homography from multiple overlapping uncalibrated
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Figure 8: Comparison of transfer errors over time for (a) target E3 and (b) target E4. The distortion correction is applied to all 3 methods.

cameras and then blends them to generate mosaics on which
object trajectories are registered. Using the transfer errors,
we demonstrated that the proposed method improves the
accuracy of the trajectory transformation compared to state-
of-the-art methods. Moreover, we have demonstrated that
this approach is more robust to errors in the estimation of
the control points and that the perturbation in the trajectory
transformation is smaller than that of traditional approaches
using linear (SVD) or nonlinear (LMS) homography estima-
tion.

Future work includes improvements in the fusion of the
trajectory data from the cameras observations and operating
in the image gradient domain to improve the removal of
artificial edges in mosaics [28]. We also plan to address the
issue of off-plane objects by combining homography with
epipolar geometry [29].
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