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We propose a self-adaptive image transmission scheme driven by energy efficiency considerations in order to be suitable for wire-
less sensor networks. It is based on wavelet image transform and semireliable transmission to achieve energy conservation. Wavelet
image transform provides data decomposition in multiple levels of resolution, so the image can be divided into packets with differ-
ent priorities. Semireliable transmission enables priority-based packet discarding by intermediate nodes according to their battery’s
state-of-charge. Such an image transmission approach provides a graceful tradeoff between the reconstructed images quality and
the sensor nodes’ lifetime. An analytical study in terms of dissipated energy is performed to compare the self-adaptive image trans-
mission scheme to a fully reliable scheme. Since image processing is computationally intensive and operates on a large data set, the
cost of the wavelet image transform is considered in the energy consumption analysis. Results show up to 80% reduction in the
energy consumption achieved by our proposal compared to a nonenergy-aware one, with the guarantee for the image quality to
be lower-bounded.

Copyright © 2007 Vincent Lecuire et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Thanks to recent advances in microelectronics and wireless
communications, it is predicted that wireless sensor net-
works (WSN) will become ubiquitous in our daily life and
they have already been a hot research area for the past couple
of years. A wide range of emerging WSN applications, like
object detection, surveillance, recognition, localization, and
tracking, require vision capabilities. Nowadays, such appli-
cations are possible since low-power sensors equipped with
a vision component, like “Cyclops” [1] and “ALOHAim” [2],
already exist. Although the hardware prerequisites are met,
application-aware and energy-efficient algorithms for both
the processing and communication of image have to be de-
veloped to make vision sensor applications feasible. Most of
the work in the literature is devoted to image processing (data
extraction, compression, and analysis) [3–7] while the image
transmission over WSN [8] is still in an earlier stage of re-
search.

In this paper, we propose a self-adaptive image trans-
mission scheme driven by energy efficiency considerations
in order to provide a graceful tradeoff between the energy

consumption to transmit the image data and the quality of
the played-out image at the receiver side. The self-adaptive
image transmission scheme is based on discrete wavelet
transform (DWT) and semireliable transmission to achieve
energy conservation. DWT allows for image decomposition
into separable subbands for multiresolution representation
purposes. As a result, image data can be divided into prior-
ity levels. In this way, fully reliable data transmission is only
required for the lowest resolution level. The remaining data
can be handled with a semireliable transmission policy in or-
der to save energy. Nodes located between the image source
and the sink can decide to drop some packets in accordance
with the packet priority and the batteries’ state-of-charge.

We have developed an energy consumption model in or-
der to compare the self-adaptive image transmission scheme
with a fully reliable scheme. Since image processing is com-
putationally intensive and operates on a large data set, the
cost of the wavelet image transform is considered in the en-
ergy consumption analysis. Numerical results show up to
80% reduction in the energy consumption achieved by our
proposal compared to a nonenergy-aware scheme, with a
guarantee for the image quality to be lower-bounded.
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Figure 1: 2D DWT applied once (a) and twice (b).

The remainder of this paper is organized as follows. In
Section 2, we describe the technical principles of the self-
adaptive image transmission scheme. An analytical study of
energy consumption is presented in Section 3. Two strategies
for packet prioritization are discussed in Section 4 and nu-
merical results are given in Section 5. Finally, Section 6 con-
cludes and provides some future directions.

2. IMAGE TRANSMISSION PRINCIPLES

The proposed image transmission scheme is based onwavelet
image transform and semireliable transmission to achieve
the energy conservation. This section describes these tech-
nical principles.

2.1. 2D discrete wavelet transform

Discrete wavelet transform [9] is a process which decom-
poses a signal, that is, a series of digital samples, by pass-
ing it through two filters, a lowpass filter L and a highpass
filter H . The lowpass subband represents a down-sampled
low-resolution version of the original signal. The highpass
subband represents residual information of the original sig-
nal, needed for the perfect reconstruction of the original set
from the low-resolution version.

Since image is typically a two-dimensional signal, a 2D
equivalent of the DWT is performed [10]. This is achieved
by first applying the L and H filters to the lines of samples,
row by row, then refiltering the output to the columns by
the same filters. As a result, the image is divided into 4 sub-
bands, LL, LH , HL, and HH , as depicted in Figure 1(a). The
LL subband contains the lowpass information and the oth-
ers contain highpass information of horizontal, vertical and
diagonal orientation. The LL subband provides a half-sized
version of the input image which can be transformed again
to have more levels of resolution. Figure 1(b) shows an image
decomposed into three resolution levels.

Generally, an image is partitioned into L resolution lev-
els by applying the 2D DWT (L − 1) times. In this way, data
packet prioritization can be performed. Packets carrying the
image header and the lowest image resolution (represented
by the LL(L−1) subband) are the most important, assigned

to priority level 0. They have to be reliably received by the
sink in order to be able to rebuild a version of the captured
image. The data of the other resolutions can be sent with dif-
ferent priorities. In this article, we will discuss in particular
two priority policies. The first one assigns priorities accord-
ing to each level of resolution. In the second one, different
priorities are assigned to different coefficient magnitudes ob-
tained in the detail subbands. These policies will be explained
in Section 4.

We adopted the Le Gall 5-tap/3-tap wavelet coefficients
[11], which was designed explicitly for integer-to-integer
transforms in [12]. This wavelet is amenable to energy effi-
cient implementation because it consists of binary shifter and
integer adder units rather than multiplier and divisor units.
The coefficients of the lowpass filter and of the highpass filter
are rational, given by fL(z) = −(1/8) · (z2 + z−2) + (1/4) ·
(z + z−1) + 3/4 and fH(z) = −(1/2) · (z + z−1) + 1. Then, the
output samples are rounded to the nearest integer so that the
global amount of data remains the same.

Afterwards, data could be compressed to reduce the
global amount of data to send. An entropy coding could be
used, such as the Huffman coding which is well known for
lossless compression. Entropy coding replaces symbols repre-
sentation from equal-length to variable-length codes accord-
ing to their probabilities of occurrence, the most common
symbols being linked to the shortest codes. Note that lossy
compression techniques could be also used. They achieve a
high compression ratio while they are typically more com-
plex and require more computations than the lossless ones.
However, traditional compression algorithms are not appli-
cable for current sensor nodes, since they have limited re-
sources, as is discussed in [13]. Basic reasons from this are
the algorithm size, processors speed, and memory access.
More investigations about efficient compression algorithms
in WSN are out of the scope of this paper.

2.2. Semireliable image transmission

Once raw data of the captured image is encoded (applying
2D DWT) and packetized into different priorities, the pack-
ets are ready to be sent. The source sensor transmits the pack-
ets starting by those with the highest priority, then contin-
ues with those of the next lower priority, and so on. Our ap-
proach is semireliable in the sense that it is not necessary to
transmit all the priority levels to the sink, except the basic one
0. This choice is motivated by the scarce energy in the context
of sensor networks. Subsequent priorities are only forwarded
if node’s battery level is above a given threshold.

In fact, the hop-by-hop transmission is handled as reli-
able, that is, the data packets are always acknowledged and
retransmitted if lost, whereas the end-to-end transmission is
handled as semireliable, that is, an intermediate node decides
to forward or discard a packet, according to the battery’s
state-of-charge and the packet’s priority. This is carried out
using a threshold-based drop schemewhere each of the p pri-
orities is associated to an energy level α0,α1, . . . ,α� , . . . ,αp−1,
subject to for all � ∈ N, α� ∈ [0, 1[, and α� < α�+1 (see
Figure 2). There remains the question: which values for these
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Figure 2: Packet forwarding policy based on priorities.

parameters? In practice, this will depend on user application
requirements, and it has to be answered prior to the imple-
mentation of the protocol.

Of course, the choice of the α� distribution will influence
the results. For instance, if α� coefficients near 0 are applied, a
node adopts a drop scheme which will increase the probabil-
ity of forwarding packets. Such a policy will promote image
quality instead of energy savings. On the contrary, α� coeffi-
cients near 1 will promote energy savings instead of a higher
resolution of the final image. This choice will depend on the
application in which the WSN is involved.

In this article, our semireliable transmission scheme is
qualified as open-loop, because the decision performed by
a node is done independently of the available energy in the
other nodes. Open-loop transmission presents great adapta-
tion to all type of routing scheme and its modeling and im-
plementation are, certainly, very simple.

We assume that the law of distribution of coefficients α�
is given for each node. When a packet arrives at a node, two
pieces of information are needed for the operation to pro-
ceed correctly: the priority level assigned to the packet and
the total amount of priority levels. This information is pro-
vided in the source node and written in the packet header.
In the matter, packet header must contain necessarily the fol-
lowing fields: the image identification number, the data offset
in the whole image, the total amount of priority levels (p),
and the packet priority level (�). An intermediate node will
use the third and fourth fields of the packet header to decide
whether to discard or forward the received packet. The first
and the second fields of the packet header are used by the des-
tination node to store the data in sequence before decoding
and playing out the image. The destination node substitutes
zero for missing data due to lost packets. As said before, a
data packet which is sent to a 1-hop neighbor is immediately
acknowledged for transmission error control purposes, even
if the receiver decides to discard it. The image transmission
scheme is very easy to implement.

2.3. Sink proximity consideration

Until now, we have focused on some energy consumption
aspects, leading to the proposal of semireliable transmission
scheme. Theoretically, a decrease of the energy consumption
could be obtained against the final image resolution. How-
ever, when the same energy thresholds are configurated in
all nodes of the network, a packet could be discarded by a
node that is near the sink, with the same probability that
one who is not, even if it has been transmitted through sev-
eral nodes. Consequently, an efficient packet discarding pol-
icy should consider preceding nodes’ invested energy. In the
matter, the α� coefficients could evolve based on their sink
proximity or, in the same way, in their distance to the source.
To this, it is sufficient to use a function of coefficients weight-
ing characterized by f (1) = 1 and limi→∞ f (i) = 0, where
i is the number of accomplished hops from the source. By
multiplying the coefficients α� by the value of f (i) in each
intermediate node, the probability of discarding a � resolu-
tion packet will decrease while we approach the sink. To im-
plement this proposal, a hop-counter field could be added to
the packet header. This hop-counter will be used as input pa-
rameter for the function f (i). Now, what function f (i) can
we use to make evolve the α� coefficients while we approach
the sink? Answers could be multiple.

Let us analyze a generic function f (i) defined as

fa,b(i) = e−((i−1)/b)
a
, (1)

where a and b (with a, b > 0) represent the concavity and
stretching factors, respectively. Figure 3 illustrates the effect
of each parameter over the function fa,b(i) with a path of 30
intermediate nodes. Both variables a and b define the evolu-
tion of the original discarding policy defined by the α� coef-
ficients. This function is useful due to the adjustments of a
and b. The more a increases, the more nodes in the path be-
ginning will respect the original discarding policy (when the
packets have crossed a “short distance”); nevertheless, when
a greater distance is crossed, the α� coefficients will decrease
drastically (it will be more nodes forwarding almost all pack-
ets). For the factor b case, the more it decreases, the more
contracted will be the function fa,b(i) (see in Figure 3 the
change of f4,15(i) to f4,10(i)), and the faster the α� coefficients
will decrease. On the other hand, with greater values of b,
fa,b(i) will be more stretched (see in Figure 3 the change of
f4,15(i) to f4,20(i)), and α� will diminish more smoothly. If
both factors a and b grow up, fa,b(i) function will tend to-
wards the value 1, which means that the same policy will be
applied by each node during the whole path.

3. MODELING ENERGY CONSUMPTION

In order to evaluate the benefits of our proposal, we devel-
oped a simplified energy consumption model for this self-
adaptive image transmission scheme. This model is based on
three elementary components: the radio transceiver model,
the 2D DWT processing model, and the image transmission
model. In order to make the formulas more readable, we
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Figure 4: Network path representation.

made, without loss of generality, the following assumptions.

(i) All sensors have the same characteristics.
(ii) The battery state-of-charge of a node does not change

significantly during the transmission of a complete im-
age, assuming that the consumed energy per image is
not so significant on the scale of a battery capacity and
on the network lifetime. As a result, we assume that
if the state-of-charge of a node is sufficient to forward
a packet for a given priority, then all packets for this
priority will be forwarded by this node.

(iii) The network path between the image source and the
sink is established by n intermediate nodes numbered
from 1 to n in this order (Figure 4). This path is sup-
posed to be steady during the transmission of an im-
age. The 1-hop transmission is assumed to be lossless.

(iv) The image is decomposed into p levels of resolutions.

We wished to evaluate the average amount of dissipated
energy to transmit an image throughout the network path
from the source to the sink. We determined the number of
hops performed by the packets, in relation to their priority
levels and the amount of available energy into the different
intermediate nodes.

Let R(�,n) be the probability that packets with priority �
are transmitted to the sink, so (n + 1) hops are performed. It
means that all the intermediate nodes have enough energy to
forward level � packets:

R(�,n) =
n∏

k=1

[
1− f (k) · α�

]
(2)

with 0 ≤ � ≤ p− 1. Let B(�, i) be the probability that packets
with priority � are dropped before reaching the sink because

of the ith node. This corresponds to the probability that node
i is the first on the path that does not have enough energy to
forward them:

B(�, i) = α� · f (i) ·
i−1∏

k=1

[
1− f (k) · α�

]
(3)

with 1 ≤ i ≤ n and 1 ≤ � ≤ p−1. Note that f (i) increases the
probability of forwarding packets when the node is closer to
the sink. Equations (2) and (3) are used to define the energy
image transmission model for the open-loop scheme.

3.1. Image transmission energymodel

Image data is generally transmitted in more than one packet.
So, we introducem� as the number of packets required to en-
tirely transmit all packets of priority level �, and t� as their av-
erage size. Let E(k) be the required energy to transmit and ac-
knowledge a k-byte packet between two adjacent nodes (the
energy cost per hop). Packets of priority 0 are necessarily
transmitted to the sink, then the consumed energy is given
by

ET0

(
m0, t0

) = (n + 1) ·m0 · E
(
t0
)
. (4)

For other priority levels, associated packets cross at least the
first hop. Subsequent hops depend on the amount of energy
in the following nodes. The number of hops crossed by pack-
ets of priority level � is i if they are dropped at node i; oth-
erwise, it is (n + 1). From (2) and (3), the mean consumed
energy by the packets of priority level � can be given by

ET�

(
m� , t�

)

=
n∑

i=1
B(�, i) · i ·m� · E

(
t�
)

︸ ︷︷ ︸
case where the node i is blocking

+R(�,n) · (n+1) ·m� · E
(
t�
)

︸ ︷︷ ︸
case where all hops are performed

.

(5)
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From (4) and (5), the total energy ET required to transmit
the entire image is

ET = (n + 1) ·m0 · E
(
t0
)

+
p−1∑

�=1

[
m� · E

(
t�
) ·
(
R(�,n) · (n + 1) +

n∑

i=1
B(�, i) · i

)]
.

(6)

3.2. Radio transceiver energymodel

The transmission of a message between two neighboring
nodes requires a set of procedures, each of which consumes a
certain amount of energy. Considering that all nodes have
the same characteristics, a simple radio transceiver model
considers ESW, the consumed energy for mode switching,
ETX(k,Pout), for a k-byte message transmission with a power
Pout, and ERX(k), for the message reception, as depicted in
Figure 5.

With this model, the energy consumed to transmit a k-
byte from node i to node j is given by

Ei, j(k) = 2 · ESW + ETX
(
k,Pout

)
+ ERX(k). (7)

Considering that the energy is defined inmillijoules (mJ),
then the energy component can be expressed as the product
of voltage, current drawn, and time. So the formula (7) be-
comes

Ei, j(k) = k · CTX
(
Pout

) ·VB · TTX

+ 2 · CSW ·VB · TSW + k · CRX ·VB · TRX,
(8)

where CTX(Pout), CSW, and CRX are the current drawn (in
mA) by the radio, respectively, in transmission, switching
modes, and receiving,TTX,TSW, andTRW are the correspond-
ing operation time (in seconds), and VB is the typical voltage
provided by batteries. As we said in Section 3.1, E(k) is the
energy consumed to send a k-byte packet and return the cor-
responding ACK. If LACK is the length of the ACK packet,
then

E(k) = Ei, j(k) + Ej,i
(
LACK

)
. (9)

3.3. 2DDWT energymodel

An energy consumption model is given by Lee and Dey
[14] for 2D discrete wavelet transform based on the inte-
ger 5-tap/3-tap wavelet filter. They initially determined the

number of times that basic operations are performed in the
wavelet image transform as follows: for each sample pixel,
lowpass decomposition requires 8 shift and 8 add instruc-
tions, whereas highpass decomposition requires 2 shift and
4 adds. Concerning memory accesses, each pixel is read and
written twice. Assuming that the input image size is ofM×N
pixels and the 2DDWT is iteratively appliedT times, then the
energy consumption for this process is approximately given
by

EDWT(M,N ,T)

=MN · (10εshift +12εadd + 2εrmem + 2εwmem
) ·

T∑

i=1

1
4i−1

,

(10)

where εshift, εadd, εrmem, and εwmem represent the energy con-
sumption for shift, add, read, and write basic 1-byte instruc-
tions, respectively.

4. STRATEGIES FOR PACKET PRIORITIZATION

In this section, we introduce two possible strategies to assign
priorities to data of the detail subbands. The first one is based
on resolution levels while the second one is based on wavelet-
coefficient magnitudes. Let P� be the set of packets with pri-
ority �. Whatever the priority policy applied, P0 carries the
image header on the lower image resolution. This data is es-
sential to be able to rebuild a version of the image. Other
data is classified according to the priority policy chosen. Per-
formance results of both approaches will be discussed later
in Section 5.2.

4.1. Priorities based on resolution levels

Such a priority policy is simplest. Assuming that the image
is partitioned into L resolution levels, those have a decreas-
ing importance from the resolution 0 to L. The resolution 0
corresponds to LL(L−1) subband (see Figure 1). Other reso-
lutions consist of 3 subbands, the �th resolution correspond-
ing toHLL−� , LHL−� , andHHL−� subbands. With the priority
policy based on resolution levels, the data packets carrying
the resolution � are, thus, assigned to the priority �.

4.2. Priorities based on coefficientmagnitudes

This priority policy considers the importance of data from
the wavelet-coefficient magnitudes. Indeed, large-magnitude
coefficients have higher importance than small-magnitude
coefficients. Consequently, such a priority policy, with p pri-
ority levels is carried out using a set of (p − 2) magnitude
thresholds, {τ1, τ2, . . . , τ(p−2)}. The priority level of a data
packet is assigned as follows: if the packet carries at least one
coefficient with an absolute value over amagnitude threshold
τ� , then, the packet will be assigned as of priority �. In for-
mal words, let di be the ith value transported by the packet
D. If there exists di/|di| ≥ τ� , then D ∈ P� , else, if for all
di/|di| < τ(p−2), then D ∈ P(p−1).
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Figure 6: Original test image (128× 128 pixels).

5. NUMERICAL APPLICATION AND RESULTS

In this section, we apply the energy consumption model
to evaluate and compare energy performance of image
transmission in various scenarios. For the reasons given
in Section 2, we do not consider the image compression.
A monochrome image of 128 × 128 pixels, presented in
Figure 6, is used as a test image. This one is 8 bits per pixel
originally encoded. That means a data length of 16 394 bytes,
including the image header of 10 bytes. Numerical values
adopted for the input parameters of energy models are de-
scribed below. Then, we present the results of numerical ap-
plication.

5.1. Input parameters

5.1.1. Hardware characteristics of sensor nodes

The adopted input parameters refer to the characteristics of
Mica2 motes [15]. These devices are based on a low-power
7.37MHz ATmega128L microcontroller [16], 4 Kbytes EEP-
ROM, a Chipcon CC1000 radio transceiver [17] with FSK
modulated radio and an Atmel AT45DB041 serial flashmem-
ory [16] with 512Kbytes for storing data. Typically Mica2
motes work with two AA batteries, able to provide 3 Volts.
From technical documentation [18] and some experiences
[19–21], we adopted the parameters summarized in Table 1.

From Table 1, we can compute the dissipated energy for
transmission (ETX), reception (ERX), switching modes (ESW),
and DWT (EDWT) processing per byte. The energy used to
transmit and receive (with −20 dBm) is 5.6 μJ per byte and
10.5 μJ per byte, respectively, and to switch modes is 5.3 μJ.
Now, from (10), the energy consumed to perform the 2D
discrete wavelet transform once is 9.2 μJ per byte. The en-
ergy consumption increases by 25% (11.5 μJ per byte) if im-
age wavelet transform is performed twice.

5.1.2. Transmission characteristics of sensor nodes

Mica2 motes run with TinyOS/nesC from UC Berkeley [22].
We used the basic format of multihop message from TinyOS,
that reserves 17 bytes for the header and synchronization.
The maximum size of a TinyOS data packet is 255 bytes. As
mentioned in Section 2.2, image data packets have a header
of 4 bytes (the hop-counter mentioned in Section 2.3 is in-
cluded as part of a multihop message header). Since each im-

age data packet will be encapsulated into amultihopmessage,
the maximum payload length for image data is 234 bytes.
Similarly, ACK packet is of 20 bytes (LACK).

5.2. Performance analysis

5.2.1. Resolution-based strategy

To get a reference, we evaluated the consumed energy by
transmitting reliably the whole image (16 394 bytes, includ-
ing the 10-byte image header) without applying DWT. In
the following, we call that the original scenario. The average
amount of energy dissipated to transmit the original image
is 312.28mJ per hop. Afterwards, we considered to apply the
DWT one and two times. When DWT is applied once, we ob-
tained a P0 of 4106 bytes (the 10-byte image header are sent
as part of P0) and a P1 of 12 288 bytes. Similarly, when DWT
is applied twice, we obtained 1034, 3072, and 12 288 bytes
for P0, P1 and P2, respectively. From (6), we computed the
average energy consumption to transmit the image for each
scenario. To this, we have used a uniform distribution of co-
efficients α� = �/p and an adaptation function f4,10(i).

Figure 7(a) shows the average consumed energy per hop
as a function of the number of intermediate nodes. We no-
tice that the consumed average energy is clearly lower when
wavelet transform and semireliable transmission are applied.
For instance, considering 30 intermediate nodes, the average
energy dissipated to send the image from the source to the
sink is of about 98.68mJ (1-level DWT) and 44.1mJ (2-level
DWT) corresponding to a decrease of 68.4% (1-level DWT)
and 85.88% (2-level DWT) of the consumed energy, respec-
tively, compared to the original scenario.

Obviously, semireliable transmission has repercussions
on the obtained image’s quality. In fact, greater energy sav-
ings imply greater degradation of image quality. Figure 8
shows different cases of resulting images. In Figure 8(b), we
see the reconstructed image in the best case, that is, 1-level
DWT scenario and all data packets have reached the sink.
Figures 8(c) and 8(d) show the reconstructed images in the
worst cases, that is, for 1- and 2-level DWT scenarios, respec-
tively, and only P0 received by the sink. These last images
could be acceptable, if the requirements of the application
define it.

Now, let us define the average PSNR (PSNR) as

PSNR = R(p − 1,n) · PSNR(p − 1)

+
p−2∑

�=0

([
R(�,n)− R(� + 1,n)

] · PSNR(�)),
(11)

where PSNR(�) is the calculated PSNR (peak signal-to-noise
ratio [23]) of the obtained image with data of resolution lev-
els from P0 to P� , only. The PSNR is a ratio commonly used
like metric of the quality of an image obtained after some
compression or processing. Figure 7(b) shows the variation
of the average PSNR for 1- and 2-level DWT scenarios. Con-
sidering a path of 30 intermediate nodes, we can see that the
obtained average PSNR is about 36.89 dB (1-level DWT) and
31.51 dB (2-level DWT).
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Table 1: Parameters for Mica2 motes.

Variables Description Value

VB Voltage provided by the power source of the ith node 3V
CTX(−20) Current consumed for the radio of the ith node for sending 1 byte (with −20 dBm) 3.72mA
CRX Current consumed for the radio of the ith node for receiving 1 byte 7.03mA
CSW Current consumed for the radio of the ith node for switching modes (rx/tx) 7.03mA
TTX Time spent for the radio of the ith node for sending 1 byte 4.992E-004 s
TRX Time spent for the radio of the ith node for receiving 1 byte 4.992E-004 s
TSW Time spent for the radio of the ith node for switching modes (rx/tx) 250E-6 s
εshift Energy consumed for a microcontroller to execute a shift operation over 1 byte 3.3 nJ
εadd Energy consumed for a microcontroller to execute an addition over 1 byte 3.3 nJ
εrmem Energy consumed to read 1 byte from the flash memory 0.26 μJ
εwmem Energy consumed to write 1 byte in the flash memory 4.3 μJ
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Figure 7: Energy consumption and PSNR for semireliable transmission with uniform distribution in selection of discarding coefficients.

(a) 128×128 original
image

(b) Resulting image
with 1 DWT, P0 +
P1 received (PSNR =
51.91dB)

(c) Resulting image with
1 DWT, P0 received
(PSNR = 36.86dB)

(d) Resulting image with
2 DWT, P0 received
(PSNR = 31.38dB)

Figure 8: Resulting images with DWT applied.
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sion and coefficients magnitudes-based discarding strategy.

5.2.2. Magnitudes-based strategy

In analogous way to the previous section, we compare the en-
ergy consumed in the original scenario with the semireliable
transmission scenarios, applying the priority policy based on
wavelet-coefficient magnitudes, considering 3 priority levels
(i.e., using only 1 magnitude threshold). In order to obtain
values for our mathematical model, we performed packet di-
vision and prioritization over the test image.

Figure 9 shows the average energy consumption, consid-
ering a path of 30 intermediate nodes, and five different val-
ues for the magnitude threshold τ : τ = 8, τ = 16, τ = 32,
τ = 48, and τ = 64. We can see that a gain on the energy
consumption per hop is obtained with respect to the fully re-
liable case. With τ = 8, the energy consumption per hop is of
101.68mJ, corresponding to a decrease of 67.44% compared
to the fully reliable case. In Figure 10, we can see that with
τ = 8, we obtain an average PSNR of about 37.06 dB. In the
other way, when we apply τ = 64 as magnitude threshold,
the energy consumption decreases into 84% in comparison
with the fully reliable case. Nevertheless, the average PSNR
is affected, reaching approximately 36.86 dB, due to the de-
creasing of the amount of packets to transmit. Consequently,
a bigger amount of high coefficients (i.e., useful information
for the image reconstruction) is lost. In spite of this, average
PSNR continues being largely acceptable.

5.2.3. Comparison of the proposed strategies

In Figure 11(a), we show the average energy consumption of
resolution-based strategy versus the magnitudes-based case
with three different τ values (τ = 8, τ = 32, and τ =
64). We notice that most of the times magnitudes-based ap-
proach gives better PSNR than resolutions-based approach
(see Figure 11(b)). However, in some cases, we can obtain
better results by applying resolution-based approach, all of
this will depend on the chosen magnitude-threshold and on
the image content.
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Figure 10: Average PSNR for semireliable transmission and coeffi-
cients magnitude-based discarding strategy.

To explain this effect, let us take a typical 2-level DWT
decomposition of the test image. With the resolution-based
strategy applied, we obtain a P1 (subbands HL2, LH2, and
HH2) of 3072 bytes. To transmit this amount of data, aMica2
mote consumes approximately 58.99mJ per hop (according
to the formula (9)). With the test image, if we receive at the
sink P0 and P1, and P2 is lost, we obtain a PSNR of 36.74 dB.
In the same way, that is, with the same test image and DWT
levels, we obtain a P1 of 13 packets (3042 bytes of data) with
the magnitudes-based strategy, considering τ = 32. In this
scenario, we calculated an energy consumption of 57.83mJ
per hop (1.16mJ less than resolution-based case). By receiv-
ing P0 and P1 only, we obtained a PSNR of 39.92 dB, 8.66%
more than the resolution-based case.

This improvement is obtained because in the resolution-
based case we can lose large amount of important data that
are in P2, and we send several packets with coefficients with
low significant data. On the other hand, magnitudes-based
approach prioritizes highly important data in all the resolu-
tions, before the transmission of low-importance packets. In
Figure 12, we can visually notice the differences commented
above. We can see that by applying magnitudes-based strat-
egy (Figure 12(c)) we obtain a far better image than if we ap-
ply resolution-based strategy (Figure 12(b)).

In the general case, we can conclude that the magnitudes-
based strategy is better than the resolution-based strategy.

5.3. Impact of the policy coefficients distribution

We have discussed the impact of the 2D DWT and semi-
reliable transmission application, but we have still not dis-
cussed the importance of the α� coefficients selection. The
choice of the coefficients α� defines the system users prior-
ities. In fact, α� values near zero imply a tendency towards
the image quality, whereas α� values near one contribute to
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Figure 11: Comparison of performances for by-resolutions scheme versus by-magnitudes scheme.

(a) 128×128 original
image

(b) Resulting image
with 2 DWT levels,
by-resolutions prior-
ities, P0 + P1 received
(PSNR = 36.86 dB)

(c) Resulting image
with 2 DWT levels,
by-magnitudes prior-
ities, P0 + P1 received
(PSNR = 39.92 dB)

Figure 12: Comparison of resulting images by applying different prioritization strategies and packet discarding.

the energy savings. Let us show this statement by applying
different α� in our model.

Graphics in Figure 13 consider α� values calculated as
α� = (�/p)A, where A is a factor to define by the user.
When A = 1, a uniform distribution of α� coefficients is ap-
plied, reflecting no preferences between energy savings and
image quality. When A < 1, a logarithmic-like distribu-
tion is defined in favor of the energy savings. On the other
hand, the image quality is prioritized when A > 1, defin-
ing an exponential-like distribution of the α� coefficients. In
Figure 13, three values of A (A = 1, A = 2/3, and A = 3/2)
are used to analyze the impact of different α� coefficients dis-
tribution. Figure 13(a) shows the energy consumption per
hop as a function of the network path length: results show up
to 85.61% on energy reduction with respect to the non-DWT

scenario and A = 1. Decreases of 82.05% and 87.03% are
obtained by choosing A = 3/2 and A = 2/3, respectively.
Figure 13(b) shows the relationship between average PSNR
for 1- and 2-level DWT scenarios and the network path
length. We can see that with A = 3/2 we obtain the best aver-
age image quality, to the detriment of the energy savings.

6. CONCLUSION

In this article, we presented a self-adaptive image transmis-
sion protocol for WSNs based in 2D DWT decomposition
and semireliable transmission. According to the WSN con-
straints, this proposal is clearly simple to implement, al-
lowing autonomous and self-adaptive behavior of sensor
nodes and providing a compromise between received image
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Figure 13: Semireliable scheme performance for different distributions on the discarding policy coefficients.

quality and dissipated energy over the network. Two par-
ticular strategies for packet prioritization were discussed.
The first one considered the prioritization and discarding of
packets based on resolution levels. The second one applied a
packet prioritization by coefficient magnitudes in detail sub-
bands. We presented these strategies, discussing their charac-
teristics and implementation constraints.We further exposed
their performance obtained by applying their parameters in
a probabilistic model to measure average energy consump-
tion and average PSNR, obtaining an important reduction of
the power consumption with the self-adaptive protocol, in
comparison with a traditional fully reliable transmission.

In future works, we will improve our proposal, research-
ing new and better strategies. We will integrate the semi-
reliable transmission protocol with existing routing proto-
cols and multipath algorithms, and we will propose adapta-
tions to improve results. Closed-loop strategies will be inves-
tigated, to still improve our proposal. A simulation will be
provided to give more complete and real results. Image com-
pression is an important topic that was not considered in the
results exposed in this document. Local and distributed com-
pression algorithms will be studied to be incorporated in our
proposal, analyzing their performances and their feasibility
to be incorporated in a real wireless vision sensor network.
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