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We present a data-driven, project-based algorithm which enhances image resolution by extrapolating high-band wavelet coeffi-
cients. High-resolution images are reconstructed by alternating the projections onto two constraint sets: the observation constraint
defined by the given low-resolution image and the prior constraint derived from the training data at the high resolution (HR).
Two types of prior constraints are considered: spatially homogeneous constraint suitable for texture images and patch-based
inhomogeneous one for generic images. A probabilistic fusion strategy is developed for combining reconstructed HR patches
when overlapping (redundancy) is present. It is argued that objective fidelity measure is important to evaluate the performance
of resolution enhancement techniques and the role of antialiasing filter should be properly addressed. Experimental results are
reported to show that our projection-based approach can achieve both good subjective and objective performance especially for
the class of texture images.
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The difficulty with the subjective option lies in that it

Depending on the presence of antialiasing filer, there are two
ways of formulating the resolution enhancement problem for
still images—that is, how to obtain a high-resolution (HR)
image from its low-resolution (LR) version? When no an-
tialiasing filter is used (see Figure 1(a)), we might use clas-
sical linear interpolation [1], edge-sensitive filter [2], direc-
tional interpolation [3], POCS-based interpolation [4], or
edge-directed interpolation schemes [5, 6]. When antialias-
ing filter is involved (see Figure 1(b)), resolution enhance-
ment is twisted with contrast enhancement by deblurring
which is an ill-posed problem itself [7].

When antialiasing filter takes the form of lowpass filter
in wavelet transforms (WT) [8], there are a flurry of works
[9-17] which transform the problem of resolution enhance-
ment in the spatial domain to the problem of high-band ex-
trapolation in the wavelet space. The apparent advantages
of wavelet-based approaches include numerical stability and
potential leverage into image coding applications (e.g., [18]).
However, one tricky issue lies in the performance evaluation
of resolution enhancement techniques—should we use sub-
jective quality of high-resolution (HR) images or objective
fidelity such as mean-square errors (MSE)?

opens the door to allow various contrast enhancement tech-
niques as a postprocessing step after resolution enhance-
ment. Both linear (e.g., [19]) and nonlinear (e.g., [20]) tech-
niques have been proposed in the literature for sharpening
reconstructed HR images. We note that contrast and resolu-
tion are two separate issues related to visual quality of still
images. Tangling them together will only make the prob-
lem formulation less clean because it makes a fair compar-
ison more difficult—that is, whether quality improvement
comes from resolution enhancement or contrast enhance-
ment? Therefore, we argue that subjective quality should not
be used alone in the assessment of resolution enhancement
schemes. Moreover, objective fidelity such as MSE can mea-
sure the closeness of computational approaches to the more
cost-demanding optics-based solutions, which is supplemen-
tary to subjective quality indexes.

However, MSE-based performance comparison could be
misleading if the role of antialiasing filter is not properly ac-
counted. For example, in the presence of antialiasing filter,
bilinear or bicubic interpolation would not be appropriate
benchmark unless the knowledge of antialiasing filter is ex-
ploited by the reconstruction algorithm. To see this more
clearly, we can envision a “lazy” scheme which simply pads
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FIGURE 1: Two ways of formulating the resolution enhancement problem in 1D (2D generalization is straightforward): (a) without antialias-
ing filter; (b) with antialiasing filter H, (lowpass filter in wavelet transforms).
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FIGURE 2: (a) Diagram of lazy scheme (padding zeros to high band); (b) comparison of PSNR gains (dB) over bicubic between [10] and lazy
scheme for three USC test images. Note that zero-padding-based lazy scheme achieves even higher PSNR values than more sophisticated

scheme [10].

zeros into the three high bands before doing inverse WT (re-
fer to Figure 2(a)). Figure 2(b) shows the PSNR gain of lazy
scheme over bicubic interpolation—note that the impressive
gain is not due to the ingeniousness of the lazy scheme itself
but an unfair comparison because bicubic interpolation does
not make use of the antialiasing filter at all. Unfortunately,
such subtle difference caused by antialiasing filter appears to
be largely ignored in the literature [10-15] which use bilin-
ear/bicubic interpolation as the benchmark.

In this paper, we propose a data-driven, projection-based
approach toward resolution enhancement by extrapolating
high-band wavelet coefficients. Our work is built upon para-
metric wavelet-based texture synthesis [21] and nonpara-
metric example-based superresolution (SR) [22]. Similar to
[22], we also assume the availability of some HR images
as the training data; however, our extrapolation method is
based on the parametric model proposed in [21]. Since para-
metric texture models [21] cannot be directly used for res-
olution enhancement of generic images due to their inho-
mogeneity, we propose to use [22] as a preprocessing step
of preparing HR training patches to drive parametric mod-
els. Moreover, to reduce the artifacts introduced by patch-
based representations, we propose a strategy of probabilis-
tically fusing the overlapped patches synthesized at the HR,
which can be viewed as the extension of averaging strategy
adopted by [22].

The rest of the paper is structured as follows. In Section 2,
we briefly cover the background and motivation behind our
approach. In Section 3, we present a basic extension of syn-
thesis technique [21] for resolution enhancement of spa-
tially homogeneous textures. In Section 4, we generalize our
new resolution enhancement into the spatially inhomoge-
neous case by introducing patch-based representation and
weighted linear fusion. Experimental results are reported in
Section 5 to demonstrate the performance of our schemes
and we make final concluding remarks in Section 6.

2. PROBLEM FORMULATION AND MOTIVATION

In wavelet-space extrapolation, the objective is to obtain

an estimation of high-band coefficients c?(n) from s(n) (re-
fer to Figure 3). Due to aliasing introduced by the down-
sampling operator, such inter-band prediction (note its dif-
ference from interscale prediction in wavelet-based image
coding [18]) is not expected to work unless we impose some
constraints on the original HR signal x(#). For example, it is
well known that in 1D scenario, the way that extrema points
of isolated singularities propagate across the scales can be
characterized by local Lipschitz regularity [23]. Many pre-
vious wavelet-based interpolation schemes (e.g., [9, 10]) are
based on such observation.

However, there are caveats with the above observation.
First, aliasing introduced by the down-sampling operator
adds phase ambiguity to the extrapolation problem. That is,
the extrema points across the scales cannot be exactly located
due to the phase uncertainty. Additional constraints are re-
quired to help partially resolve such ambiguity. Such issue
was insightfully pointed out by the authors of [9, 16], but
the success has been limited to subjective quality improve-
ment so far. In fact, if such ambiguity is not properly re-
solved, the predicted high-frequency band is often no better
than zero-padding in the lazy scheme (i.e., lower MSE can-
not be achieved). Second and more importantly, the problem
of inter-band prediction becomes dramatically more difficult
in 2D scenario due to the increased complexity of model-
ing image signals in the wavelet space. The diversity of image
structures in generic images (e.g., edges, textures, etc.) dra-
matically increases the difficulty of the extrapolation task.

The motivation behind our attack is largely based on the
existing parametric models [21] for texture synthesis in the
wavelet space. However, we face two obstacles while apply-
ing parametric models into resolution enhancement: aliasing
and inhomogeneity. Aliasing makes the parameter extraction
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FIGURE 3: Problem formulation in 1D scenario: in wavelet-based interpolation, interscale prediction is designed to predict high-band coef-

ficients from the low-band ones at the same scale.

nontrivial (essentially a missing data problem) and inho-
mogeneity calls for spatially varying (or localized) models.
To overcome those difficulties, we borrow ideas from data-
driven or example-based superresolution (SR) [22] to make
the problem tractable. Assuming the availability of some cor-
related HR images as training data, we propose to use non-
parametric sampling [22] to first generate initial HR patches,
then use them to drive the parametric model to synthesize in-
termediate HR patches and lastly obtain the final HR patches
via probabilistic fusion.

3. RESOLUTION ENHANCEMENT OF TEXTURE IMAGES

In this work, we have adopted a definition of textures in
the narrow sense—that is, textures are modeled by a homo-
geneous (stationary) random field. Homogeneity refers to
that the probability distribution function (pdf) is indepen-
dent of the spatial position. Statistical modeling of textures
has been extensively studied in the literature (see [24-26]).
In recent years, multiscale approaches toward texture anal-
ysis and synthesis have also received more and more atten-
tion (e.g., [21, 27-29]). Both parametric and nonparametric
models have been developed and demonstrated visually ap-
pealing synthesis results. Among them, parametric models in
the wavelet space [21] are adopted as the foundation for this
work.

Resolution enhancement, unlike synthesis, addresses a
new dimension of challenge due to aliasing introduced by
the down-sampling operation. Depending on the choice of
antialiasing filter and the spectral distribution of texture im-
ages, we might observe significant visual difference between
LR and HR pairs due to spatial aliasing. Even when aliasing
does not dramatically change the visual appearance, HR im-
age reconstructed by the lazy scheme often appears blurred
due to the knock down of high-frequency coefficients. In pre-
vious works on wavelet-based interpolation such as [30], no
experimental results are reported for texture images. Accord-
ing to [10], the PSNR gain of wavelet-based interpolation
over bilinear/bicubic is almost unnoticeable for mandrill im-
age which contains abundant texture regions.

In view of the difficulty with finding a universal prior
constraint for textures, we propose to make additional as-
sumption that some HR training patches are available (re-
fer to Figure 5(a)). It is believed that such training data are
necessary for resolution enhancement of textures because the
problem is ill-posed (i.e., two HR images corresponding to
the same LR data can be visually different). However, the size
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FIGURE 4: Resolution enhancement of textures: HR image is ob-
tained by alternating the projection onto two constraint sets.

of training patch could be small since its role is to resolve
the ambiguity among multiple solutions caused by aliasing.
Specifically, we propose to combine patch-based prior con-
straint with observation data constraint (i.e., the low-low
band in the wavelet space is specified by the given LR image)
and reconstruct HR images by alternating projections (refer
to Figure 4).

Various statistical models developed for texture synthe-
sis (e.g., [21, 27, 28]) can be used to derive the prior con-
straint sets. Since the parametric model developed in [21]
is projection-based and computationally efficient, we can
easily build our resolution enhancement algorithm upon it.
In [21], four types of statistical constraints (SC), namely,
marginal statistics, raw coefficient correlation, coefficient
magnitude statistics, and cross-scale phase statistics, are se-
quentially enforced to iteratively adjust complex high-band
coefficients (we denote it by projection operator Py[x]).
Mathematical details on adjustment of constraints can be
found in the appendix of [21]. The implementation of pro-
jection onto observation constraint (Pops[x]) is trivial—we
simply replace the low-low band of x in the wavelet space
by the given LR image (the MSE of low-low band is denoted
by MSE; ). By alternatively applying model-based prior con-
straint and data-driven observation constraint to high-band
and low-band coefficients, we have the following algorithm.

Like any iterative schemes, starting point and stopping
criterion are important to the performance of Algorithm 1.
We have found that Algorithm 1 is reasonably robust to the
starting point (x°) (one example can be found in Figure 10).
We also note that unlike existing projection onto convex set
(POCS) based algorithms [31], convergence is not a neces-
sary condition even though we have found that MSE;;, often
drops rapidly in the first few iterations and then goes sat-
urated (refer to Figure 6(b)). In fact, as pointed out in [21],
the convexity of constraint sets defined by parametric texture
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(i) Initialization: extract the parameter set ® from the train-
ing patch and obtain HR image x° by lazy scheme or
example-based SR [22].

(ii) Iterations: alternate the following two projections.

(1) Projection onto prior constraint set: sequentially run
the projection onto four statistical constraint sets to
modify the HR image

= Psc[jc\n | 9] (1)
(2) Projection onto observation constraint set:
X% = Poys [x"']. (2)

(iii) Termination: if MSE; keeps decreasing, continue the it-
eration; otherwise stop.

ALGORITHM 1: Project-based resolution enhancement for textures.

model is often unknown. However, in the application of reso-
lution enhancement, our projection-based algorithm can be
stopped by checking MSE; because it is correlated with the
MSE of reconstructed HR image as shown in Figure 6. De-
spite the lack of theoretical justification, such empirical stop-
ping criterion works fairly well in practice.

4. RESOLUTION ENHANCEMENT OF GENERIC IMAGES

Generic photographic images contain a variety of singular-
ities including edges, textures, and so on. The diversity of
singularities suggests that image source cannot be modeled
by a globally stationary (homogeneous) process. A natu-
ral strategy of handling nonstationary process is via spatial
localization—that is, to view an image as the composition of
overlapping patches [22] (refer to Figure 5(b)). Such patch-
based representation has led to many state-of-the-art image
processing algorithms in both spatial and wavelet domains.
Using patch-based representation, we decompose resolution
enhancement of generic images into two subproblems: (1)
how to enhance the resolution of a single patch? (2) How to
combine the enhancement results obtained for overlapped
patches? The first can be solved by Algorithm 1 except the
generation of HR training patch; the second is related to the
issue of global consistency due to the locality assumption of
patches. We will study these two problems, respectively, next.

4.1. Single-patch resolution enhancement

Since generic images do not satisfy the assumption of global
homogeneity, HR training patches have to be made spatially
adaptive. Unlike texture images, how to generate an appro-
priate HR training patch is nontrivial due to the location un-
certainty. In texture images, an HR patch of any location
is arguably useable because of the homogeneity constraint
(we will illustrate this in Figure 10). However, such flexibility

it Testing patch
[ Training patch

A: Overlapping patches
B: Nonoverlapping patches

(®)

FIGURE 5: (a) Training patch and test patch in texture images; (b)
overlapping and nonoverlapping patches in generic images.

does not hold for generic images any more—since the con-
ditional probability distribution becomes a function of loca-
tion, additional uncertainty needs to be resolved in the gen-
eration of HR training patches.

One solution to resolve such location uncertainty is
through nonparametric sampling [22, 32]. In nonparametric
sampling, patches with similar photometric patterns are clus-
tered and new patch can be synthesized by sampling the em-
pirical distribution. Such strategy cannot be directly applied
here because the target to approximate is an LR patch and
the population to draw from is the collection of HR patches.
However, we can modify the distance metric in nonparamet-
ric sampling to accommodate such resolution discrepancy,
that is,

d[xi,yn] = |lxi = DH (yn)|[,» 3)

where D, H denotes the down-sampling operation and
convolution with antialiasing filter, respectively. When an-
tialiasing filter H is the same as the lowpass filter of WT,
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F1GURE 6: The behavior of iterative Algorithm 1: (a) MSE of reconstructed HR image; (b) MSE of low-low band MSE, ;. Note that they are
highly correlated which empirically justifies the stopping criterion based on MSE;;.

example-based superresolution [22] offers a convenient im-
plementation of generating HR training patch.

Unlike [22], nonparametric sampling is used here to gen-
erate the initial rather than the final result. This is because
although nonparametric sampling often produces perceptu-
ally appealing results, they do not necessarily have small L,
distance to the ground truth. Therefore, we propose to use
the outcome of nonparametric sampling as the training HR
patch to drive the parametric texture model, as shown in
Figure 7. Meantime, due to the descriptive nature of para-
metric texture models, synthesized images might have sim-
ilar statistical properties such as marginal or joint pdf but
large L, distance to the original. Such weakness with para-
metric models can be alleviated by defining a new prior con-
straint projection operator P

Py [xF] + X0

R = P[4 =

(4)

Such modification can be viewed as adding a bounded vari-
ation constraint enforcing the initial condition x°.

Such combination of nonparametric and parametric
sampling is important to achieve good performance in terms
of both subjective quality and objective fidelity. On one hand,
it extends the parametric texture model [21] by introduc-
ing nonparametric sampling to generate training patches re-
quired at the HR. Despite being conceptually simple, such
extension effectively overcomes the difficulty of resolution
discrepancy and handles inhomogeneity in generic images.
On the other hand, our combined scheme is more robust to
training data than example-based SR [22]. This is because
parametric texture model can tolerate some errors in the ini-
tial estimate as long as they do not significantly change the
four types of statistical constraints.

Training
data

Example-based
super-resolution

HR training
patch m
x0(n) P

m Algorithm 1

x(n)

FIGURE 7: Algorithm 2 for resolution enhancement of a single patch
(example-based SR provides an initial result to drive the parametric
texture model).

4.2. Bayesian fusion of overlapped HR patches

When patches overlap with each other, a pixel might be in-
cluded into multiple patches and therefore the pixel can have
more than one HR synthesized result (refer to Figure 5(b)).
Such redundancy is the outcome of spatial localization—
although it effectively reduces the dimensionality, the poten-
tial inconsistency across patches arises. For instance, how to
consolidate the multiple synthesis results generated by over-
lapping patches is related to the enforcement of global con-
sistency. In example-based SR [22], multiple HR versions are
simply averaged to produce the final result. Although aver-
aging represents the simplest way of enforcing global con-
sistency across patches, its optimality is questionable espe-
cially due to the ignorance of the impact of location (i.e.,
whether a pixel is at the center or at the border of a patch)
on the fusion performance. We propose to formulate such
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patch-based fusion problem under a Bayesian framework
and derive a closed-form solution as follows.

Using patch-based representation, we adopt the follow-
ing probability model for each pixel:

p(x) = f p(x2)dz = j p(x | 2)p(2)dz, (5)

where the new random variable z denotes the location of pixel
x in the patch. Given a set of HR reconstruction results y =
[¥1>---> Yks---» yn] (k is the discretized version of location
variable z, N is the total number of patches containing x),
the Bayesian least-square estimator is

Elx | yl= [ xp(x | y)dx

= pr(x,z | y)dxdz
(6)
- pr(x | 2y)p(z | y)dxdz

_ Jp(z | y)E[x | 2,y]dz.

Note that when z is given (i.e., the indexing k of HR patch
yk), we have E[x | k,y] = yx and (6) boils down to

N
x=Elx|yl=> wy (7)
k=1

where wi = p(k | yx) is the weighting coefficient for the kth
patch. To determine wy, we use Bayesian rule

_ ok 1 R)pth)
PR =5 bl TR p) ©

where likelihood function p(yx | k) (the likelihood of pixel x
belonging to the kth patch) can be approximated by a Gaus-
sian distribution of exp(—e?/K) where e = d[x,yn] as de-
fined in (3) indicates how well the observation constraint is
satisfied and K is a normalizing constant as used in bilateral
filter [33]. Currently, we adopt a uniform prior p(k) = I/N
for the simplicity but more sophisticated form such as Gaus-
sian can also be used.

Combining single-patch resolution enhancement and
Bayesian fusion, we obtain the following algorithm of res-
olution enhancement for generic images.

We note that the above Bayesian fusion degenerates into
simple averaging across overlapping patches [22] when the
likelihood function is approximately independent of loca-
tions (i.e., all coefficients in (7) have the same weights). The
characteristics of likelihood function depend on the size of
patches as well as their overlapping ratio. As we will see from
the experimental results next, even simple averaging can sig-
nificantly improve the objective performance due to the ex-
ploitation of the diversity provided by overlapping patches.
The only penalty is the increased computational complex-
ity which is approximately proportional to the redundancy
ratio.

(i) Initialization: obtain HR training image x° by example-
based SR [22].

(ii) Iteration: for every patch xj in the LR image, use the
corresponding patch in x° as the training patch and call
Algorithm 1 to reconstruct the HR patch y, and record
the residue d[xy, yn].

(iii) Fusion: calculate the final HR image by (7) and (8).

ALGORITHM 2: Patch-based resolution enhancement for generic im-
ages.

TaBLE 1: Comparison of PSNR(dB) performance among lazy
scheme, example-based SR, and Algorithm 1 for six texture images.

Lazy scheme Example-based SR This work
D6 22.85 22.37 26.51
D20 23.22 22.05 25.27
D21 16.22 17.05 18.44
D34 23.84 25.47 28.04
D49 17.71 19.99 20.63
D53 24.43 25.08 26.94

5. EXPERIMENTAL RESULTS

In this section, we use experimental results to show that
(1) for texture images, Algorithm 1 significantly outper-
forms lazy scheme and example-based SR [22] on both
subjective and objective qualities; (2) for generic images,
Algorithm 2 achieves arguably better subjective performance
than lazy scheme and better objective performance than
example-based SR [22]. The wavelet filter used in this work
is Daubechies’ 9-7 filter and resolution enhancement ratio is
fixed to be two (i.e., one-level WT). Our implementation is
based on several well-known toolboxes including WaveLab
8.5 for wavelet transforms, OpenTSTool for example-based
SR [34], and MATLAB package for texture analysis/synthesis
[21]. Test images and research codes accompanying this work
will be made available at http://www.csee.wvu.edu/~xinl/
demo/wt-interp.html.

5.1. Resolution enhancement of texture images

We have chosen six Brodatz texture images which approx-
imately satisfy the homogeneity condition (see Figure 8) to
test the performance of Algorithm 1. The training patch and
testing patch are sized 128 x 128 and 64 x 64, respectively. The
training patch driving the parametric texture model does not
overlap with the testing patch for the reason of fairness (re-
fer to Figure 5(a)). The benchmark includes lazy scheme and
example-based SR [22] and MSE is calculated for nonborder
pixels only (to eliminate potential bias introduced by varying
boundary handling strategies in different schemes).

Table 1 includes the PSNR performance comparison
among lazy scheme, example-based SR, and Algorithm 1. It
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FIGURE 8: The collection of Brodatz texture images used in our experiments (left to right and top to bottom: D6, D20, D21, D34, D49, and
D53).

F1GUre 9: Performance comparison for D6 (top) and D34 (bottom): (a) original HR images; (b) reconstructed HR image by lazy scheme;
(¢) reconstructed HR image by example-based SR; (d) reconstructed HR image by Algorithm 1.
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FiGure 10: Impact of training patch on the performance of Algorithm 1: (a) original D20 image; (b) reconstructed image by Algorithm 1
(PSNR = 25.27 dB); (b) reconstructed image by Algorithm 1 with a different starting point (PSNR = 25.32 dB); (d) reconstructed image by

Algorithm 1 with a different training patch (PSNR = 23.79 dB).

FIGURE 11: Performance comparison for D2. From left to right: original HR image, reconstructed images by lazy scheme (PSNR = 25.00dB),
example-based SR (PSNR = 22.12 dB), and Algorithm 1 (PSNR = 23.06 dB).

can be observed that Algorithm 1 uniformly outperforms
lazy scheme and example-based SR by a large margin (0.7—
4.1dB) for the six test images. The most significant SNR
improvement is observed for D6 and D34 which contain
sharp contrast and highly regular texture patterns. Figure 9
compares the original HR image with the reconstructed HR
images by three different schemes. It can be observed that
Algorithm 1 driven by parametric texture model achieves the
best visual quality among the three, lazy scheme suffers from
blurred edges, and example-based SR introduces noticeable
artifacts.

To illustrate the impact of starting point (x°) on recon-
structed HR image, we test Algorithm 1 with two differ-
ent initial settings: lazy scheme versus example-based SR.
Figure 10 includes the comparison between reconstructed
HR images by these two different starting points. It can be
observed that the PSNR gap is negligible (0.05 dB), which
suggests the insensitivity of Algorithm 1 to x°. To show
how the choice of training patch affects the performance of
Algorithm 1, we run it with two different training patches on
D20. It can be seen from Figure 10 that although two train-
ing patches produce visually similar results, the gap on PSNR
values of reconstructed HR images could be as large as 1.4 dB.
Such finding is not surprising because it is widely known that

MSE does not well correlate with the subjective quality of an
image.

The discrepancy between subjective quality and objec-
tive fidelity becomes even more severe as texture patterns
become more irregular (i.e., spatial homogeneity condi-
tion is less valid). To see this, we report the experimental
results of Algorithm 1 for two other Brodatz texture im-
ages (D2 and D4) containing less periodic patterns (refer
to Figures 11 and 12). Due to more complex texture pat-
terns involved, we observe that the PSNR performance of
Algorithm 1 falls behind lazy scheme (though still outper-
forms example-based SR). However, the subjective quality
of HR images reconstructed by Algorithm 1 is convincingly
better than that by lazy scheme especially in view of the im-
provements on edge sharpness. Therefore, we conclude that
our Algorithm 1 achieves a better balance between subjective
quality and objective fidelity than lazy scheme or example-
based SR.

5.2. Resolution enhancement of generic images

The generic image for testing the proposed algorithms is
chosen to be the JPEG2000 test image bike which contains
a diversity of image structures. Due to its large size, we



FIGURE 12: Performance comparison for D4. From left to right: original HR image, reconstructed images by lazy scheme (PSNR = 22.23 dB),
example-based SR (PSNR = 19.16 dB), and Algorithm 1 (PSNR = 21.39 dB).
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FIGURE 13: 128 x 128 portiones cropped out from the bike image. (a), (c) test data; (b), (d) training data.

I

(d)

FIGURE 14: (a) Original wheel image; (b) reconstructed HR image by lazy scheme (PSNR = 21.86dB); (c) reconstructed HR image by
example-based SR (PSNR = 26.91 dB); (d) reconstructed HR image by Algorithm 1 (PSNR = 26.88 dB). Note that lazy scheme suffers from

severe ringing artifacts around sharp edges.

crop out two 128 x 128 portions (called wheel and leaves)
as the ground-truth HR images and their adjacent portions
as the training data (refer to Figure 13). Figures 14 and 15
include the comparison between reconstructed HR images
by lazy scheme, example-based SR, and our Algorithm 1
which can be viewed as a special case of Algorithm 2 with
patch size being the same as the image size. It can be ob-

served that Algorithm 1 achieves higher subjective quality
than lazy scheme and comparable quality to example-based
SR. The objective PSNR performance depends on the train-
ing data—for instance, significant positive gain (> 5dB) is
achieved for wheel (favorable training data) while the gain
over lazy scheme becomes negative for leaves (unfavorable
training data).
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(a) (b)

(c) (d)

FiGUREe 15: (a) Original Jeaves image; (b) reconstructed HR image by lazy scheme (PSNR = 27.08 dB); (c) reconstructed HR image by
example-based SR (PSNR = 24.31dB); (d) reconstructed HR image by Algorithm 1 (PSNR = 25.13 dB). Note that despite lower PSNR

value, our HR image appears sharper than the one by lazy scheme.

I/

(b)

(c) (d)

FiGure 16: Comparison of reconstructed wheel images: (a) Algorithm 2 with redundancy ratio of 1 (PSNR = 27.06 dB); (b) Algorithm 2
with redundancy ratio of 4 (PSNR = 27.55dB); (c) Algorithm 2 with redundancy ratio of 16 (PSNR = 27.60 dB); (d) example-based SR [22]

(PSNR = 27.23dB).

(a) (b)

(0) (d)

FiGure 17: Comparison of reconstructed leaves images: (a) Algorithm 2 with redundancy ratio of 1 (PSNR = 25.73 dB); (b) Algorithm 2
with redundancy ratio of 4 (PSNR = 26.05 dB); (c) Algorithm 2 with redundancy ratio of 16 (PSNR = 26.09 dB); (d) example-based SR [22]

(PSNR = 24.31dB).

To test Algorithm 2, we have chosen a fixed patch size
of 32 x 32 but different redundancy ratios. By increasing
the overlapping ratio of adjacent patches from 0 to 1/2 and
then 3/4, we observe that the redundancy ratio goes from 1
(nonoverlapping) to 4 and then 16. In our current imple-
mentation, we have adopted the averaging strategy in [22] in-
stead of the Bayesian fusion formula in Section 4 (therefore,

better performance is expected from nonuniform weight-
ing). Figures 16 and 17 include the reconstructed HR im-
ages by Algorithm 2 with different redundancy ratios as well
as the benchmark scheme [22]. It can be seen that PSNR
improvement over no-fusion scheme is around 0.6-0.8 dB
and noticeable suppression of artifacts around patch bound-
aries can be observed. Algorithm 2 with fusion strategy also
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outperforms example-based SR [22] on PSNR performance
due to the enforcement of observation and priori constraints
by alternating projections.

Finally, we want to report the experimental results on
computational complexity. In our current nonoptimized
MATLAB implementation, the running time of Algorithm 1
with 10 iterations is typically 30 seconds for reconstruct-
ing an HR image sized 128 X 128 on a Pentium-IV lap-
top (24GHz and 512M memory). The running time of
Algorithm 2 depends on the redundancy ratio of patch-based
representation (i.e., how much overlap is allowed from one
patch to the next) as well as patch size. For 128 x 128 im-
ages, it takes around 2 minutes to run our Algorithm 2 with
redundancy ratio of one and patch size of 32 x 32 (iteration
number is 5). When the redundancy ratio is increased to 4
and 16, the running time becomes 4 minutes and 20 min-
utes, respectively. In view of PSNR results in Figures 16-17,
we conclude that a modest redundancy ratio of 4 is preferred
to achieve a good balance between the performance and the
computational cost.

6. CONCLUDING REMARKS

In this paper, we present a data-driven, projection-based
resolution enhancement scheme which extends the previ-
ous work of parametric texture models in the wavelet space.
When both target HR data and training data are character-
ized by homogeneous textures, parametric models are used
to define prior constraint and we show how the paramet-
ric texture model can be used as prior constraint along with
observation constraint to derive an alternating projection-
based HR image reconstruction algorithm. When both target
HR data and training data are generic images, we propose to
borrow the idea of nonparametric sampling and synthesize
new training data to drive the parametric texture models.
Using patch-based representation, we show how to proba-
bilistically fuse the reconstruction results at HR. Experimen-
tal results have shown that our new schemes achieve a good
balance between subjective quality and objective fidelity. The
importance of using both subjective quality and objective fi-
delity in evaluating the performance of resolution enhance-
ment is argued, which is expected to clarify some misunder-
standings about wavelet-based approaches toward resolution
enhancement in the literature.
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