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1. INTRODUCTION

The interest in multispectral imaging has been increasing in
many fields such as agriculture and environmental sciences.
In this context, each earth portion is observed by several sen-
sors operating at different wavelengths. By gathering all the
spectral responses of the scene, a multicomponent image is
obtained. The spectral information is valuable for many ap-
plications. For instance, it allows pixel identification of ma-
terials in geology and the classification of vegetation type in
agriculture. In addition, the long-term storage of such images
is highly desirable in many applications. However, it con-
stitutes a real bottleneck in managing multispectral image
databases. For instance, in the Landsat 7 Enhanced Thematic
Mapper Plus system, the 8-band multispectral scanning ra-
diometer generates 3.8 Gbits per scene with a data rate of
150Mbps. Similarly, the Earth Orbiter I (EO-I) instrument
works at a data bit rate of 500Mbps. The amount of data
will continue to become larger with the increase of the num-
ber of spectral bands, the enhancement of the spatial reso-
lution, and the improvement of the radiometry accuracy re-
quiring finer quantization steps. It is expected that the next

Landsat generation will work at a data rate of several Gbps.
Hence, compression becomes mandatory when dealing with
multichannel images. Several methods for data reduction are
available, the choice strongly depend on the underlying ap-
plication requirements [1]. Generally, on-board compression
techniques are lossy because the acquisition data rates exceed
the downlink capacities. However, ground coding methods
are often lossless so as to avoid distortions that could dam-
age the estimated values of the physical parameters corre-
sponding to the sensed area. Besides, scalability during the
browsing procedure constitutes a crucial feature for ground
information systems. Indeed, a coarse version of the image
is firstly sent to the user to make a decision about whether
to abort the decoding if the data are considered of little in-
terest or to continue the decoding process and refine the
visual quality by sending additional information. The chal-
lenge for such progressive decoding procedure is to design
a compact multiresolution representation. Lifting schemes
(LS) have proved to be efficient tools for this purpose [2, 3].
Generally, the 2D LS is handled in a separable way. Recent
works have however introduced nonseparable quincunx lift-
ing schemes (QLS) [4]. The QLS can be viewed as the next
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generation of coders following nonrectangularly subsampled
filterbanks [5–7]. These schemes are motivated by the emer-
gence of quincunx sampling image acquisition and display
devices such as in the SPOT5 satellite system [8]. Besides,
nonseparable decompositions offer the advantage of a “true”
two-dimensional processing of the images presenting more
degrees of freedom than the separable ones. A key issue of
such multiresolution decompositions (both LS and QLS) is
the design of the involved decomposition operators. Indeed,
the performance can be improved when the intrinsic spatial
properties of the input image are accounted for. A possible
adaptation approach consists in designing space-varying fil-
ter banks based on conventional adaptive linear mean square
algorithms [9–11]. Another solution is to adaptively choose
the operators thanks to a nonlinear decision rule using the
local gradient information [12–15]. In a similar way, Taub-
man proposed to adapt the vertical operators for reducing
the edge artifacts especially encountered in compound doc-
uments [16]. Boulgouris et al. have computed the optimal
predictors of an LS in the case of specific wide-sense station-
ary fields by considering an a priori autocovariance model of
the input image [17]. More recently, adaptive QLS have been
built without requiring any prior statistical model [8] and, in
[18], a 2D orientation estimator has been used to generate an
edge adaptive predictor for the LS. However, all the reported
works about adaptive LS or QLS have only consideredmono-
component images. In the case of multicomponent images,
it is often implicitly suggested to decompose separately each
component. Obviously, an approach that takes into account
the spectral similarities in addition to the spatial ones should
be more efficient than the componentwise approach. A pos-
sible solution as proposed in Part 2 of the JPEG2000 stan-
dard [19] is to apply a reversible transform operating on the
multiple components before their spatial multiresolution de-
composition. In our previous work, we have introduced the
concept of vector lifting schemes (VLS) that decompose si-
multaneously all the spectral components in a separable man-
ner [20] or in a nonseparable way (QVLS) [21]. In this paper,
we consider blockwise adaptation procedures departing from
the aforementioned adaptive approaches. Indeed, most of the
existing works propose a pointwise adaptation of the opera-
tors, which may be costly in terms of bit rate.

More precisely, we propose to firstly segment the image
into nonoverlapping blocks which are further classified into
several regions corresponding to different statistical features.
The QVLS operators are then optimally computed for each
region. The originality of our approach relies on the opti-
mization of a criterion that operates directly on the entropy,
which can be viewed as a sparsity measure for the multireso-
lution representation.

This paper is organized as follows. In Section 2, we pro-
vide preliminaries about QVLS. The issue of the adaptation
of the QVLS operators is addressed in Section 3. The objec-
tive of this section is to design efficient adaptive multireso-
lution decompositions by modifying the basic structure of
the QVLS. The choice of an appropriate encoding technique
is also discussed in this part. In Section 4, experimental re-
sults are presented showing the good performance of the
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Figure 1: Quincunx sampling grid: the polyphase components
x(b)0 (m,n) correspond to the “x” pixels whereas the polyphase com-
ponents x̃(b)0 (m,n) correspond to the “o” pixels.

proposed approach. A comparison of the fixed and variable
block size strategies is also performed. Finally, some conclud-
ing remarks are given in Section 5.

2. VECTOR QUINCUNX LIFTING SCHEMES

2.1. The lifting principle

In a generic LS, the input image is firstly split into two sets
S1 and S2 of spatial samples. Because of the local correlation,
a predictor (P) allows to predict the S1 samples from the S2

ones and to replace them by their prediction errors. Finally,
the S2 samples are smoothed using the residual coefficients
thanks to an update (U) operator. The updated coefficients
correspond to a coarse version of the input signal and, a mul-
tiresolution representation is then obtained by recursively re-
peating this decomposition to the updated approximation
coefficients. The main advantage of the LS is its reversibility
regardless of the choice of the P and U operators. Indeed, the
inverse transform is simply obtained by reversing the order
of the operators (U-P) and substituting a minus (resp., plus)
sign by a plus (resp., minus) one. Thus, the LS can be con-
sidered as an appealing tool for exact and progressive coding.
Generally, the LS is applied to images in a separable manner
as for instance in the 5/3 wavelet transform retained for the
JPEG2000 standard.

2.2. Quincunx lifting scheme

More general LS can be obtained with nonseparable decom-
positions giving rise to the so-called QLS [4]. In this case,
the S1 and S2 sets, respectively, correspond to the two quin-

cunx polyphase components x(b)j/2(m,n) and x̃(b)j/2(m,n) of the

approximation a(b)j/2(m,n) of the bth band at resolution j/2
(with j ∈ N):

x(b)j/2(m,n) = a(b)j/2(m− n,m + n),

x̃(b)j/2(m,n) = a(b)j/2(m− n + 1,m + n),
(1)

where (m,n) denotes the current pixel. The initialization
is performed at resolution j = 0 by taking the polyphase
components of the original image x(n,m) when this one
has been rectangularly sampled (see Figure 1). We have then
a0(n,m) = x(n,m). If the quincunx subsampled version of
the original image is available (e.g., in the SPOT5 system), the
initialization of the decomposition process is performed at
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x(b1)j/2 (m,n) +
+
+
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Figure 2: An example of a decomposition vector lifting scheme in
the case of a two-channel image.

resolution j = 1/2 by setting a(b)1/2(n,m) = x(b)(m− n,m+ n).

In the P step, the prediction errors d(b)( j+1)/2(m,n) are com-
puted:

d(b)( j+1)/2(m,n) = x̃(b)j/2(m,n)− ⌊x(b)j/2(m,n)�p(b)j/2

⌉

, (2)

where �·� is a rounding operator, x(b)j/2(m,n) is a vector

containing some a(b)j/2(m,n) samples, and, p(b)j/2 is a vector
of prediction weights of the same size. The approximation

a(b)( j+1)/2(m,n) of a(b)j/2(m,n) is an updated version of x(b)j/2(m,n)

using some of the d(b)( j+1)/2(m,n) samples regrouped into the

vector d(b)j/2(m,n):

a(b)( j+1)/2(m,n) = x(b)j/2(m,n) +
⌊

d(b)j/2(m,n)�u(b)j/2

⌉

, (3)

where u(b)j/2 is the associated update weight vector. The result-
ing approximation can be further decomposed so as to get
a multiresolution representation of the initial image. Unlike
classical separable multiresolution analyses where the input
signal is decimated by a factor 4 to generate the approxima-
tion signal, the number of pixels is divided by 2 at each (half-)
resolution level of the nonseparable quincunx analysis.

2.3. Vector quincunx lifting scheme

The QLS can be extended to a QVLS in order to exploit the
interchannel redundancies in addition to the spatial ones.

More precisely, the d(b)j/2(m,n) and a(b)j/2(m,n) coefficients are
now obtained by using coefficients of the considered band
b and also coefficients of the other channels. Obviously, the
QVLS represents a versatile framework, the QLS being a
special case. Besides, the QVLS is quite flexible in terms of
selection of the prediction mask and component ordering.
Figure 2 shows the corresponding analysis structures. As an
example of particular interest, we will consider the simple
QVLS whose P operator relies on the following neighbors of

the coefficient a(b)j/2(m− n + 1,m + n):

x(b1)j/2 (m,n) =
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(4)

where (b1, . . . , bB) is a given permutation of the channel in-
dices (1, . . . ,B). Thus, the component b1, which is chosen as a
reference channel, is coded by making use of a purely spatial
predictor. Then, the remaining components bi (for i > 1) are
predicted both from neighboring samples of the same com-
ponent bi (spatial mode) and from the samples of the previ-
ous components bk (for k < i) located at the same position.
The final step corresponds to the following update, which is
similarly performed for all the channels:

d(bi)j/2 (m,n) =

⎛

⎜

⎜
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⎜

⎜
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⎝

d(bi)j/2 (m− 1,n + 1)
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⎟

⎟

⎟

⎟

⎠

. (5)

Note that such a decomposition structure requires to set
4B + (B − 1)B/2 parameters for the prediction weights and
4B parameters for the update weights. It is worth mention-
ing that the update filter feeds the cross-channel information
back to the approximation coefficients since the detail coef-
ficients contain information from other channels. This may
appear as an undesirable situation that may lead to some
leakage effects. However, due to the strong correlation be-
tween the channels, the detail coefficients of the B channels
have a similar frequency content and no quality degradation
was observed in practice.

3. ADAPTATION PROCEDURES

3.1. Entropy criterion

The compression ability of a QVLS-based representation de-
pends on the appropriate choice of the P and U operators. In
general, the mean entropy HJ is a suitable measure of com-
pactness of the J-stage multiresolution representation. This
measure which is independent of the choice of the encoding
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algorithm is defined as the average of the entropies H (b)
J of

the B channel data:

HJ � 1
B

B
∑

b=1
H (b)

J . (6)

Likewise, H (b)
J is calculated as a weighted average of the en-

tropies of the approximation and the detail subbands:

H (b)
J �

( J
∑

j=1
2− jH (b)

d, j/2

)

+ 2−JH (b)
a,J/2, (7)

where H (b)
d, j/2 (resp., H

(b)
a,J/2) denotes the entropy of the detail

(resp., approximation) coefficients of the bth channel, at res-
olution level j/2.

3.2. Optimization criteria

As mentioned in Section 1, the main contribution of this pa-
per is the introduction of some adaptivity rules in the QVLS

schemes. More precisely, the parameter vectors p(b)j/2 are mod-
ified according to the local activity of each subband. For this
purpose, we have envisaged block-based approaches which
start by partitioning each subband of each spectral compo-
nent into blocks. Then, for a given channel b, appropriate
classification procedures are applied in order to cluster the
blocks which can use the same P and U operators within a

given class c ∈ {1, . . . ,C(b)
j/2}. It is worth pointing out that the

partition is very flexible as it depends on the considered spec-
tral channel. In other words, the block segmentation yields
different maps from a channel to another. In this context, the

entropyH (b)
d, j/2 is expressed as follows:

H (b)
d, j/2 =

C(b)
j/2
∑

c=1
π(b,c)
j/2 H (b,c)

d, j/2, (8)

where H (b,c)
d, j/2 denotes the entropy of the detail coefficients of

the bth channel within class c and, the weighting factor π(b,c)
j/2

corresponds to the probability that a detail sample d(b)j/2 falls
into class c. Two problems are subsequently addressed: (i) the
optimization of the QVLS operators, (ii) the choice of the
block segmentation method.

3.3. Optimization of the predictors

We now explain how a specific statistical modeling of the
detail coefficients within a class c can be exploited to effi-
ciently optimize the prediction weights. Indeed, the detail co-

efficients d(b)( j+1)/2 are often viewed as realizations of a contin-
uous zero mean random variable X whose probability den-
sity function f is given by a generalized Gaussian distribution

(GGD) [22, 23]:

∀x ∈ R, f
(

x;α(b,c)( j+1)/2,β
(b,c)
( j+1)/2

)

=
β(b,c)( j+1)/2

2α(b,c)( j+1)/2Γ
(

1/β(b,c)( j+1)/2

) e−(|x|/α
(b,c)
( j+1)/2)

β
(b,c)
( j+1)/2

,

(9)

where Γ(z) �
∫ +∞
0 tz−1e−tdt, α(b,c)( j+1)/2 > 0 is the scale parame-

ter, and β(b,c)( j+1)/2 > 0 is the shape parameter. These parameters
can be easily estimated from the empirical moments of the
data samples [24]. The GGDmodel allows to express the dif-

ferential entropyH(α(b,c)( j+1)/2,β
(b,c)
( j+1)/2) as follows:

H
(

α(b,c)( j+1)/2,β
(b,c)
( j+1)/2

)

= log

(

2α(b,c)( j+1)/2Γ
(

1/β(b,c)( j+1)/2

)

β(b,c)( j+1)/2

)

+
1

β(b,c)( j+1)/2

.
(10)

It is worth noting that the proposed lifting structure gener-
ates integer-valued coefficients that can be viewed as quan-
tized versions of the continuous random variable X with a
quantization step q = 1. According to high rate quantiza-

tion theory [25], the differential entropy H(α(b,c)( j+1)/2,β
(b,c)
( j+1)/2)

provides a good estimate ofH (b,c)
d, j/2. In practice, the following

empirical estimator of the detail coefficients entropy is em-
ployed:

̂Hd,K (b,c)
j/2

(

α(b,c)( j+1)/2,β
(b,c)
( j+1)/2

)

= − 1

K (b,c)
j/2

K (b,c)
j/2
∑

k=1
log
(

f
(

x̃(b,c)j/2 (k)− (x(b,c)j/2 (k)
)�
p(b,c)j/2

))

,

(11)

where x̃(b,c)j/2 (1), . . . , x̃(b,c)j/2 (K (b,c)
j/2 ) and x(b,c)j/2 (1), . . . , x(b,c)j/2 (K (b,c)

j/2 )

are K (b,c)
j/2 ∈ N∗ realizations of x̃(b)j/2 and x(b)j/2 classified in c.

As we aim at designing the most compact representation,

the objective is to compute the predictor p(b,c)j/2 that mini-
mizes HJ . From (6), (7), and (8), it can be deduced that the

optimal parameter vector also minimizes H (b)
d, j/2 and there-

fore, H(α(b,c)( j+1)/2,β
(b,c)
( j+1)/2), which is consistently estimated by

̂Hd,K (b,c)
( j+1)/2

(α(b,c)( j+1)/2,β
(b,c)
( j+1)/2). This leads to the maximization of

L
(

p(b,c)j/2 ;α(b,c)( j+1)/2,β
(b,c)
( j+1)/2

)

=
K (b,c)

j/2
∑

k=1
log
(

f
(

x̃(b,c)j/2 (k)− (x(b,c)j/2 (k)
)�
p(b,c)j/2

))

.
(12)

Thus, the maximum likelihood estimator of p(b,c)j/2 must be
determined. From (9), we deduce that the optimal predictor

minimizes the following �β
(b,c)
( j+1)/2 criterion:

�β
(b,c)
( j+1)/2

(

p(b,c)j/2 ;α(b,c)( j+1)/2,β
(b,c)
( j+1)/2

)

�
K (b,c)

j/2
∑

k=1

∣

∣

∣x̃(b,c)j/2 (k)− (x j/2(k)(b,c)
)�
p(b,c)j/2

∣

∣

∣

β(b,c)( j+1)/2
.

(13)
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Hence, thanks to the GGD model, it is possible to design a
predictor in each class c that ensures the compactness of the
representation in terms of the resulting detail subband en-
tropy. However, it has been observed that the considered sta-
tistical model is not always adequate for the approximation
subbands whichmakes impossible to derive a closed form ex-
pression for the approximation subband entropy. Related to
this fact, several alternatives can be envisaged for the selec-
tion of the update operator. For instance, it can be adapted to
the contents of the image so as to minimize the reconstruc-
tion error [8]. It is worth noticing that, in this case, the un-
derlying criterion is the variance of the reconstruction error
and not the entropy. A simpler alternative that we have re-
tained in our experiments consists in choosing the same up-
date operator for all the channels, resolution levels, and clus-
ters. Indeed, in our experiments, it has been observed that
the decrease of the entropy is mainly due to the optimization
of the predictor operators.

3.4. Fixed-size block segmentation

The second ingredient of our adaptive approach is the block
segmentation procedure. We have envisaged two alternatives.
The first one consists in iteratively classifying fixed size blocks
as follows [8].

INIT

The block size s(b)j/2 × t(b)j/2 and the number of regions C(b)
j/2

are fixed by the user. Then, the approximation a(b)j/2 is par-
titioned into nonoverlapping blocks that are classified into

C(b)
j/2 regions. It should be pointed out that the classification

of the approximation subband has been preferred to that of
the detail subbands at a given resolution level j. Indeed, it is
expected that homogenous regions (in the spatial domain)
share a common predictor, and such homogeneous regions
are more easily detected from the approximation subbands
than from the detail ones. For instance, a possible classifica-
tion map can be obtained by clustering the blocks according
to their mean values.

PREDICT

In each class c, the GGD parameters α(b,c)( j+1)/2 and, β
(b,c)
( j+1)/2 are

estimated as described in [24]. Then, the optimal predictor

p(b,c)j/2 that minimizes the �β
(b,c)
( j+1)/2 criterion is derived. The ini-

tial values of the predictor weights are set by minimizing the
detail coefficient variance.

ASSIGN

The contents of each class c are modified so that a block of
details initially in class c could be moved to another class c∗

according to some assignment criterion. More precisely, the

global entropyH (b,c)
d, j/2 is equal to the sum of the contributions

of all the detail blocks within class c. This additive property
enables to easily derive the optimal assignement rule. At each

resolution level and, according to the retained band ordering,
a current block B is assigned to a class c∗ if its contribution
to the entropy of that class induces the maximum decrease of
the global entropy. This amounts to move the block B, ini-
tially assumed to belong to class c, to class c∗ if the following
condition is satisfied:

h
(

B,α(b,c)( j+1)/2,β
(b,c)
( j+1)/2

)

< h
(

B,α(b,c
∗)

( j+1)/2,β
(b,c∗)
( j+1)/2

)

, (14)

where

h
(

B,α(b,c)( j+1)/2,β
(b,c)
( j+1)/2

)

�
s(b)j/2
∑

m=1

t(b)j/2
∑

n=1
log
(

f
(

B(m,n);α(b,c)( j+1)/2,β
(b,c)
( j+1)/2

))

.
(15)

PREDICT and ASSIGN steps are repeated until the conver-
gence of the global entropy. Then, the procedure is iterated
through the J resolution stages.

At the convergence of the procedure, at each resolution
level, the chosen predictor for each block is identified with a
binary index code which is sent to the decoder leading to an
overall overhead not exceeding

o =
⌈ B
∑

b=1

J
∑

j=1

log2
(

C(b)
j/2

)

s(b)j/2t
(b)
j/2

⌉

(bpp). (16)

Note that the amount of side information can be further re-
duced by differential encoding.

3.5. Variable-size block segmentation

More flexibility can be achieved by varying the block sizes
according to the local activity of the image. To this respect, a
quadtree (QT) segmentation in the spatial domain is used
which provides a layered representation of the regions in
the image. For simplicity, this approach has been imple-
mented using a volumetric segmentation (same segmenta-
tion for each image channel at a given resolution as depicted
in Figure 3) [26]. The regions are obtained according to a
segmentation criterion R that is suitable for compression
purposes. Generally, the QT can be built following two al-
ternatives: a splitting or a merging approach. The first one
starts from a partition of the transformed multicomponent
image into volumetric quadrants. Then, each quadrant f is
split into 4 volumetric subblocks c1, . . . , c4 if the criterion R
holds, otherwise the untouched quadrant f is associated with
a leaf of the unbalanced QT. The subdivision is eventually
repeated on the subblocks c1, . . . , c4 until the subblock min-
imum size k1 × k2 is achieved. Finally, the resulting block-
shaped regions correspond to the leaves of the unbalanced
QT.

In contrast, the initial step of the dual approach (i.e., the
merging procedure) corresponds to a partition of the image
into minimum size k1 × k2 subblocks. Then, the homogene-
ity with respect to the rule R of each quadrant formed by
adjacent volumetric subblocks c1, . . . , c4 is checked. In case
of homogeneity, the fusion of c1, . . . , c4 is carried out, giv-
ing rise to a father block f . Similar to the splitting approach,



6 EURASIP Journal on Image and Video Processing

B
sp
ec
tr
al
co
m
po

n
en
ts

Figure 3: An example of a volumetric block-partitioning of a B-
component image.

the fusion procedure is recursively performed until the whole
image size is reached.

Obviously, the key issue of such QT partitioning lies in
the definition of the segmentation rule R. In our work, this
rule is based on the lifting optimization criterion. Indeed, in
the case of the splitting alternative, the objective is to decide
whether the splitting of a node f into its 4 children c1, . . . , c4
provides a more compact representation than the node f
does. For each channel, the optimal prediction and update

weights p
(b, f )
j/2 u

(b, f )
j/2 of node f are computed for a J-stage

decomposition. The optimal weights p(b,ci)j/2 and, u(b,ci)j/2 of the

children c1, . . . , c4 are also computed. Let H
(b, f )
d, j/2 and, H (b,ci)

d, j/2
denote the entropy of the resulting multiresolution represen-
tations. The splitting is decided if the following inequalityR
holds:

1
4B

4
∑

i=1

( B
∑

b=1
H (b,ci)

d, j/2

)

+ o
(

ci
)

<
1
B

( B
∑

b=1
H

(b, f )
d, j/2

)

+ o( f ),

(17)

where o(n) is the coding cost of the side information re-
quired by the decoding procedure at node n. This overhead
information concerns the tree structure and the operators
weights. Generally, it is easy to code the QT by assigning the
bit “1” to an intermediate node and the bit “0” to a leaf. Since
the image corresponds to all the leaves of the QT, the prob-
lem amounts to the coding of the binary sequences point-
ing on these terminating nodes. To this respect, a run-length
coder is used. Concerning the operators weights, these ones
should be exactly coded. As they take floating values, they
are rounded prior to the arithmetic coding stage. Obviously,
to avoid any mismatch, the approximation and detail coef-
ficients are computed according to these rounded weights.
Finally, it is worth noting that the merging rule is derived in
a straightforward way from (17).

Table 1: Description of the test images.

Name
Number of
components

Source Scene

Trento6 6 Thematic Mapper Rural

Trento7 7 Thematic Mapper Rural

Tunis3 3 SPOT3 Urban

Kair4 4 SPOT4 Rural

Tunis4-160 4 SPOT4 Rural

Tunis4-166 4 SPOT4 Rural

Table 2: Influence of the prediction optimization criterion on the
average entropies for non adaptive 4-level QLS and QVLS decom-
positions. The update was fixed for all resolution levels and for all
the components.

Image
QLS
�2

QLS
�β

Gain
QVLS
�2

QVLS
�β

Gain

Trento6 4.2084 4.1172 0.0912 3.8774 3.7991 0.0783

Trento7 3.9811 3.8944 0.0867 3.3641 3.2988 0.0653

Tunis3 5.3281 5.2513 0.0768 4.5685 4.4771 0.0914

Kair4 4.3077 4.1966 0.1111 3.9222 3.8005 0.1217

Tunis4-160 4.7949 4.7143 0.0806 4.2448 4.1944 0.0504

Tunis4-166 3.9726 3.9075 0.0651 3.7408 3.6205 0.1203

Average 4.4321 4.3469 0.0853 3.9530 3.8651 0.0879

3.6. Improved EZW

Once the QVLS coefficients have been obtained, they are en-
coded by an embedded coder so as to meet the scalability
requirement. Several scalable coders exist which can be used
for this purpose, for example, the embedded zerotree wavelet
coder (EZW) [27], the set partitioning in hierarchical tree
(SPIHT) coder [28], the embedded block coder with opti-
mal truncation (EBCOT) [29]. Nevertheless, the efficiency of
such coders can be increased in the case of multispectral im-
age coding as will be shown next. To illustrate this fact, we
will focus on the EZW coder which has the simplest struc-
ture. Note however that the other existing algorithms can be
extended in a similar way.

The EZW algorithm allows a scalable reconstruction in
quality by taking into account the interscale similarities be-
tween the detail coefficients [27]. Several experiments have
indeed indicated that if a detail coefficient at a coarse scale
is insignificant, then all the coefficients in the same orienta-
tion and in the same spatial location at finer scales are likely
to be insignificant too. Therefore, spatial orientation trees
whose nodes are detail coefficients can be easily built, the
scanning order starts from the coarsest resolution level. The
EZW coder consists in detecting and encoding these insignif-
icant coefficients through a specific data structure called a ze-
rotree. This tree contains elements whose values are smaller
than the current threshold Ti. The use of the EZW coder
results in dramatic bit savings by assigning to a zerotree a
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Table 3: Average entropies for several lifting-based decompositions. Two resolution levels were used for the separable decompositions and
four (half-)resolution levels for the nonseparable ones. The update was fixed except for Gouze’s decomposition OQLS (6,4).

Image 5/3 RKLT+5/3 QLS (4,2) OQLS (6,4) Our QLS Our QVLS

Merging QLS
RKLT and
merging QLS

Merging QVLS

k1 = 16 k1 = 16 k1 = 16

k2 = 16 k2 = 16 k2 = 16

Trento6 3.9926 3.9260 4.6034 3.9466 4.1172 3.7991 3.7243 3.5322 3.4822

Trento7 3.7299 3.7384 4.4309 3.9771 3.8944 3.2988 3.5543 3.3219 3.0554

Tunis3 5.0404 4.6586 5.7741 4.7718 5.2513 4.4771 4.2038 3.9425 3.0998

Kair4 4.0581 3.9104 4.6879 3.8572 4.1966 3.8005 3.6999 3.5240 3.1755

Tunis4-160 4.5203 4.2713 5.2312 4.1879 4.7143 4.1944 4.1208 3.6211 3.2988

Tunis4-166 3.6833 3.5784 4.4807 3.6788 3.9075 3.6205 3.8544 3.2198 3.0221

Average 4.1708 4.0138 4.8680 4.0699 4.3469 3.8651 3.8596 3.5269 3.1890

single symbol (ZTR) at the position of its root. In his pio-
neering paper, Shapiro has considered only separable wavelet
transforms. In [30], we have extended the EZW to the case
of nonseparable QLS by defining a modified parent-child re-
lationship. Indeed, each coefficient in a detail subimage at
level ( j + 1)/2 is the father of two colocated coefficients in
the detail subimage at level j/2. It is worth noticing that a
tree rooted in the coarsest approximation subband will have
one main subtree rooted in the coarsest detail subband. As in
the separable case, the Quincunx EZW (QEZW) alternates
between dominant passes DPi and subordinate passes SPi at
each round i. All the wavelet coefficients are initially put in a
list called the dominant list,DL1, while the other list SL1 (the
subordinate list) is empty. An initial threshold T1 is chosen
and the first round of passes R1 starts (i = 1). The dominant
pass DPi detects the significant coefficients with respect to
the current threshold Ti. The signs of the significant coeffi-
cients are coded with either POS or NEG symbols. Then, the
significant coefficients are set to zero in DLi to facilitate the
formation of zerotrees in the next rounds. Their magnitudes
are put in the subordinate list, SLi. In contrast, the descen-
dants of insignificant coefficient are tested for being included
in a zerotree. If this cannot be achieved, then these coeffi-
cients are isolated zeros and they are coded with the specific
symbol IZ. Once all the elements inDLi have been processed,
the DPi ends and the SPi starts: each significant coefficient
in SLi will have a reconstruction value given by the decoder.
By default, an insignificant coefficient will have a reconstruc-
tion value equal to zero. During SPi, the uncertainty interval
is halved. The new reconstruction value is the center of this
smaller uncertainty range depending on whether its magni-
tude lies in the upper (UPP) or lower (LOW) half. Once the
SLi has been fully processed, the next iteration starts by in-
crementing i.

Therefore, for each channel, both EZW and QEZW pro-

vide a set of coefficients (d(b)n )n encoded according to the se-
lected scanning path.We subsequently propose tomodify the
QEZW algorithm so as to jointly encode the components of

the B-uplet (d(1)n , . . . ,d(B)n )n. The resulting algorithm will be
designated as V-QEZW. We begin with the observation that,
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Figure 4: Image Trento7: average PSNR (in dB) versus average bit
rate (in bpp) generated by the embedded coders with the equivalent
number of decomposition stages. The EZW coder is associated with
the RKLT+5/3 transform and the QEZW, and the V-QEZWwith the
same QVLS. We have adopted that the convention PSNR = 100 dB
amounts to an infinite PSNR.

if a coefficient d(b)n is significant with respect to a fixed thresh-

old, then all the coefficients d(b
′)

n in the other channel b′ 
= b
are likely to be significant with respect to the same threshold.
Insignificant or isolated zero coefficients also satisfy such in-
ter channel similarity rule. The proposed coding algorithm
will avoid to manage and encode separately B dominant lists
and B subordinate lists. The vector coding technique intro-
duces 4 extra-symbols that indicate that for a given index n,
all the B coefficients are either positive significant (APOS) or
negative significant (ANEG), or insignificant (AZTR) or iso-
lated zeros (AIZ). More precisely, at each iteration of the V-
QEZW, the significance map of the b1 channel conveys both
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Recontructed images at several passes of the V-QEZW concerning the first channel (b = 1) of the SPOT image TUNIS. (a) PSNR =
21.0285 dB channel bit rate = 0.1692 bpp. (b) PSNR = 28.2918 dB channel bit rate = 0.7500 bpp. (c) PSNR = 32.9983 dB channel bit rate =
1.4946 bpp. (d) PSNR = 39.5670 dB channel bit rate = 2.4972 bpp. (e) PSNR = 57.6139 dB channel bit rate = 4.2644 bpp. (f) PSNR = +∞
channel bit rate = 4.5981 bpp

inter- and intrachannel information using the 3- bit codes:
APOS, ANEG, AIZ, AZTR, POS, NEG, IZ, ZTR. The remain-
ing channel significance maps are only concerned with intra-
channel information consisting of POS, NEG, IZ, ZTR sym-
bols coded with 2 bits. The stronger the similarities are, the
more efficient the proposed technique is.

4. EXPERIMENTAL RESULTS

Table 1 lists the 512 × 512 multichannel images used in
our experiments. All these images are 8 bpp multispec-
tral satellite images. The Trento6 image corresponds to the
Landsat-Thematic Mapper Trento7 image where the sixth
component has been discarded since it is not similar to the

other components. As the entropy decrease is not significant
when more than 4 (half-)resolution levels are considered, we
choose to use 4-stage nonseparable decompositions (J = 4).
All the proposed decompositions make use of a fixed up-

date u(b)j/2 = (1/8, 1/8, 1/8, 1/8)�. The employed vector lift-
ing schemes implicitly correspond to the band ordering that
ensures the most compact representation. More precisely,
an exhaustive search was performed for the SPOT images
(B ≤ 4) by examining all the permutations. If a greater num-
ber of components are involved as for the Thematic Mapper
images, this approach becomes computationally intractable.
Hence, an efficient algorithmmust be applied for computing
a feasible band ordering. Since more than one band are used
for prediction, it is not straightforward to view the problem
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as a graph theoretic problem [31]. Therefore, heuristic so-
lutions should be found for band ordering. In our case, we
have considered the correlations between the components
and used the component(s) that is least correlated in an in-
tracoding mode and the others in intercoding mode. Alter-
natively, the band with the smallest entropy is coded in in-
tramode as a reference band, the others in intermode.

First of all, we validate the use of the GGD model for the
detail coefficients. Table 2 gives the global entropies obtained
with the QLS and the QVLS first using global minimum vari-
ance predictors, then using global GGD-derived predictors
(i.e., minimizing the �β criterion in (13)). It shows that using
the predictors derived from the �β criterion yields improved
performance in the monoclass case. It is important to ob-
serve that, even in the nonadaptive case (one single class),
the GGD model is more suitable to derive optimized pre-
dictors. Besides, Table 2 shows the outperformance of QVLS
over QLS, always in the nonadaptive case. For instance, in
the case of Tunis4-160, a gain of 0.52 bpp is achieved by the
QVLS schemes over the componentwise QLS.

In Table 3, the variable block size adaptive versions of
the proposed QLS and QVLS are compared to those ob-
tained with the most competitive reversible wavelet-based
methods. All of the latter methods are applied separately to
each spectral component. In particular, we have tested the
5/3 biorthogonal transform. Besides, prior the 5/3 transform
or our QLS, a reversible Karhunen-Loève transform (RKLT)
[32] has been applied to decorrelate the B components as rec-
ommended in Part 2 of the JPEG2000 standard. As a bench-
mark, we have also retained the OQLS (6,4) reported in [8]
which uses an optimized update and a minimum variance
predictor. It can be noted that the merging procedure was
shown to outperform the splitting one and that it leads to
substantial gains for both the QLS and QVLS. Our simula-
tions also confirm the superiority of the QVLS over the op-
timal spectral decorrelation by the RKLT. Figure 4 provides
the variations of the average PSNR versus the average bit rate
achieved at each step of the QEZW or V-QEZW coder for
the Trento7 data. As expected, the V-QEZW algorithm leads
to a lower bit rate than the QEZW. At the final reconstruction
pass, the V-QEZW bit rate is 0.33 bpp below the QEZW one.
Figure 5 displays the reconstructed images for the first chan-
nel of the Tunis3 scene, which are obtained at the different
steps of the V-QEZW algorithm. These results demonstrate
clearly the scalability in accuracy of this algorithm, which is
suitable for telebrowsing applications.

5. CONCLUSION

In this paper we have suggested several tracks for improv-
ing the performance of lossless compression for multichan-
nel images. In order to take advantage of the correlations
between the channels, we have made use of vector-lifting
schemes combined with a joint encoding technique derived
from EZW. In addition, a variable-size block segmentation
approach has been adopted for adapting the coefficients of
the predictors of the considered VQLS structure to the lo-
cal contents of the multichannel images. The gains obtained

on satellite multispectral images show a significant improve-
ment compared with existing wavelet-based techniques. We
think that the proposed method could also be useful in
other imaging application domains where multiple sensors
are used, for example, medical imaging or astronomy.

Note

Part of this work has been presented in [26, 33, 34].
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