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Abstract 

Contactless hand biometrics has emerged as an alternative to traditional biometric 
characteristics, e.g., fingerprint or face, as it possesses distinctive properties that are 
of interest in forensic investigations. As a result, several hand‑based recognition 
techniques have been proposed with the aim of identifying both wanted criminals 
and missing victims. The great success of deep neural networks and their application 
in a variety of computer vision and pattern recognition tasks has led to hand‑based 
algorithms achieving high identification performance on controlled images with few 
variations in, e.g., background context and hand gestures. This article provides a com‑
prehensive review of the scientific literature focused on contactless hand biometrics 
together with an in‑depth analysis of the identification performance of freely avail‑
able deep learning‑based hand recognition systems under various scenarios. Based 
on the performance benchmark, the relevant technical considerations and trade‑offs 
of state‑of‑the‑art methods are discussed, as well as further topics related to this 
research field.

Keywords: Contactless hand recognition, Hand detection, Forensic investigations, 
Uncontrolled scenarios

1 Introduction
The introduction of fingerprint biometrics in the early twentieth century as valid person 
identification method has led to the solving of known crimes, e.g., the death of Franc-
esca Rojas’ children at the hands of their mother in Argentina [1]. For suspect identifica-
tion, fingerprints are usually collected at crime scenes. Afterwards, a recognition system 
may perform a one-to-many (1: N) comparison of the collected evidence against stored 
biometric references in order to confirm the guilt or innocence of a suspect [2]. With the 
rapid development of surveillance applications, other types of biometric characteristics, 
such as face and gait, have emerged as an alternative to fingerprints for forensic investi-
gations [3]. These developments have, nevertheless, driven criminals to become smarter 
and to hide their visible biometric characteristics, e.g., their face and fingerprints. In 
this way, they avoid detection by respective recognition systems. An important aspect 
of forensic investigation is the identification of offenders and victims from evidence 
images. Identification from images of evidence is very problematic if no obvious charac-
teristics such as face or tattoos are available. Due to the prevalence of smartphones and 
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consumer cameras, evidence is increasingly available in the form of digital images taken 
in uncontrolled and uncooperative environments, e.g., images of child pornography and 
images of terrorists, where offenders often hide or cover their biometric characteristics, 
e.g., their face. However, their hands may be visible.

To assist law enforcement in identifying wanted criminals and missing victims, the use 
of contactless hand biometrics shows high potential, as hand images not only have less 
variability compared to other biometric modalities, but also exhibit strong and diverse 
characteristics that remain relatively stable after adulthood [4]. The hand is a primary 
biometric characteristic that provides distinctive features for biometric recognition. 
Besides fingerprint biometrics, former hand-based techniques analysed the features of 
a particular area of the hand, e.g., palm [5] and finger knuckles [6], and others focused 
on the analysis of the geometry of the hand [7] using handcrafted methods. Some of 
the more recently proposed schemes extracted traditional ridge and valley features, e.g., 
minutiae, from contactless 2D palm images [8] and other approaches analysed 3D prop-
erties of finger knuckles [9]. Hand geometry-based pipelines mostly focused on the sil-
houettes or morphology of the hand for a fixed pose [7, 10]. Finger and palm veins have 
also gained a lot of attention, especially in commercial systems, as they enable contact-
less sensing and are more resistant against forgeries (i.e. spoofing, presentation attacks) 
as the vessels are only visible in infrared light [11].

Deep neural networks (DNNs) have successfully replaced traditional approaches like 
handcrafted techniques with powerful architectures that can learn more robust features 
from full hand images in a feed-forward manner. In 2019, Afifi [12] proposed a pub-
lic database of contactless hand images together with a convolutional neural network 
(CNN) method for gender classification and subject identification. Building upon this 
method, more recent CNN-based algorithms have exploited attention mechanisms 
[4, 13] or vision-transformers [14] to improve the baseline identification performance 
reported in [12]. These schemes were mainly evaluated in closed-set identification sce-
narios where the searched identity is known to be included in the database of enrolled 
references. In addition, the databases used in said studies contain controlled hand 
images with few variations in background context, hand pose and finger gestures—prop-
erties that often have high variations in images processed during forensic investigations.

Hand images collected in forensic scenarios exhibit challenging properties, such as 
high variations in background context, hand pose and finger gestures. Motivated by the 
fact, in this work, we conducted a comprehensive study on the identification perfor-
mance of several current deep learning-based hand recognition approaches in various 
scenarios. The main contributions of this article are:

• A comprehensive literature review on hand-based recognition systems which pro-
vides a taxonomy that conceptually categorises hand recognition methods for bio-
metric identification. In contrast to other scientific reviews that analyse a specific 
area of the hand, e.g., palmprint [8], we provide a general overview of all hand-based 
approaches with a particular focus on full hand-based methods which are of special 
interest for forensic investigations.

• A performance benchmark of the freely available full hand-based approaches under 
several scenarios. We selected only deep learning-based techniques, as they have 
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shown the best identification performance in most recognition tasks, e.g., face rec-
ognition [15]. Other methods, such as those based on hand geometry [10], are not 
taken into account in our analysis, as they are sensitive to images taken in uncon-
trolled environments, resulting in low identification performance. For the evaluation, 
we consider easy or difficult scenarios which are encountered in forensic investiga-
tions. Conducted experiments are compliant with the metrics defined in the interna-
tional ISO/IEC 19795-1 for biometric performance testing and reporting [16].

• The evaluation of the impact of tattoos on hand recognition. In this work, we evalu-
ate how the use of tattoos in the dorsal area of the hand affects the identification per-
formance of state-of-the-art hand recognition systems.

• A discussion on technical considerations and trade-offs that are relevant from a 
forensic investigation perspective as well as further topics relevant to this research 
field.

Contrary to our previous conference article [17], this work provides a comprehensive 
review of the literature on hand-based recognition systems, extends the performance 
evaluation of these approaches to several practical scenarios that are of interest in foren-
sic investigations, and sets up a discussion on technical considerations and trade-offs 
that are also relevant from a forensic investigation perspective.

The remainder of this article is organised as follows: Sect. 2 provides an overview of 
background information and outlines current hand recognition systems. In Sect. 3, tech-
nical characteristics of open-source hand detection and recognition systems are outlined, 
together with the properties of currently available databases. An in-depth performance 
benchmark reporting the identification performance of freely available hand-recognition 
schemes under different scenarios is presented in Sect. 4. In Sect 5, we present the discus-
sion of the experimental results reported in the performance benchmark along with fur-
ther topics in this research field. The conclusions are finally drawn in Sect. 6.

2  Literature review
The anatomy of the hand is the key to determine the different categories of hand-based 
biometrics. In general, a hand consists of a broad palm with five fingers, each attached 
to the joint called the wrist. The back of the hand is formally called the dorsum or dor-
sal of the hand [18]. In this section, the current state-of-the-art is presented. First, we 
introduce and describe the taxonomy summarising the current techniques that analyse 
different anatomical areas of the hand for subject recognition. This is followed by a com-
prehensive survey of existing methods focusing on the proposed taxonomy.

Fig. 1 shows a proposed taxonomy that categorises existing methods for subject recogni-
tion which focus on hand biometrics. For this purpose, hand-based techniques can be sepa-
rated into two main approaches: hand part-based (Sect. 2.1) and full hand-based (Sect. 2.2) 
techniques. While the algorithms in the first category analyse specific areas of the hand, 
such as knuckles, fingerprints, palmprints, and veins, those in the second category focus on 
the full frontal or dorsal part of the hand. Note that some of the described approaches are 
based on hybrid schemes, combining, e.g., the analysis of finger knuckle and palmprint.
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2.1  Hand part‑based

Over the years, several studies have demonstrated the individuality of the different areas 
of the hand for the purpose of recognising persons [8, 19, 20]. The key idea behind the 
hand part-based approaches is the analysis of single or multiple areas of the hand, which 
contain discriminative information for the recognition of individuals.

The discovery of fingerprints in the nineteenth century and their acceptance as a char-
acteristic for person recognition at the beginning of the twentieth century has led to the 
development of numerous scientific investigations [21]. Recently, health concerns related 
to the rise of the SARS-CoV-2 coronavirus have led to the analysis of features that can be 
extracted from contactless fingerprints, palmprints and finger knuckles, i.e. these types 
of biometric characteristics can be acquired using, e.g., a smartphone camera, without 
any need to touch a sensor surface. Traditional global (e.g., orientation field, ridge den-
sity, or fingerprint types) and local (e.g., minutiae and pores) features can be extracted 
from fingerprint images; some of them also correspond to other types of biometric char-
acteristics, such as vascular [22] and palm [8] patterns. While some authors analysed 
local characteristics, such as minutiae together with the principle lines and wrinkles of 
the palmprint ridge pattern [8], others have directly fed DNNs with RGB images of the 
palm [23–25] and finger knuckle images [26, 27]. Some articles also proposed multi-type 
algorithms based on the fusion, e.g., between the palmprint and knuckles [28] or the 
knuckles together with the fingernails [29]. In addition, the 3D technology to extract 
more discriminative features from the fingerprint [30, 31], palmprint [32], and finger 
knuckles [9, 33–36] have been employed. The interested readers are referred to, e.g., 
Alausa et al. [8] for a comprehensive review about techniques used for palmprint rec-
ognition, Cheng and Kumar [36] for an overview on finger knuckle-based schemes, and 
Prietniz et al. [37] and Chowdhury and Imtiaz [38] for scientific advances on contactless 
fingerprint recognition. Scientific studies on finger and palm vein recognition were sur-
veyed by Shaheed et al. [39] and Wu et al. [22].

Despite the advances achieved by the previously mentioned approaches, most tech-
niques have not yet been evaluated on uncontrolled databases that are closer to real-life 
scenarios. That is, data containing various external factors, such as environmental condi-
tions and hand gestures to hide, e.g., the finger knuckles or the palm area, can affect the 
recognition performance. In addition, the recent 3D techniques rely on the integration 
of special sensors (e.g., depth sensor) within the capturing devices, which limits their 
usability in forensic investigations. The near-infrared (NIR) sensors are also a step for-
ward in the development of high-performance recognition systems [22, 39]. However, 
the integration of these NIR sensors also hinders the applicability of associated detection 
techniques in forensic investigations.

Fingertips

Full Front Hand

Inner Knuckles

Hand-based
Techniques

Outer Knuckles

Full Dorsal Hand

Fingernails

Palm

Hand
Part-based

Full
Hand-based

Knuckles Fingerprint Palmprint Veins Geometry Learned Features

Fig. 1 Taxonomy of methods that analyse partial or full hands for subject recognition. As illustrations, the 
different parts of the hand on which the taxonomy is based are shown in the corners
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2.2  Full hand‑based

As the focus of this article is the analysis of the feasibility of full hand-based recogni-
tion techniques for forensic investigations, we will describe the different approaches (i.e. 
Hand geometry—Sect.  2.2.1 as well as Learned features—Sect.  2.2.2) that have com-
monly been used for this purpose. The main characteristics of the techniques outlined in 
this section are also summarised in Table 1.

2.2.1  Hand geometry

The anatomy of the hand shape depends on its geometry, its length, the finger’s width 
and the span of the hand in different dimensions. Sharma et al. [40] combined features 
extracted from finger peaks and valleys and distances between hand landmarks for bio-
metric verification. To yield an equal error rate (EER) of 0.52% over a controlled database 
of 230 subjects [5], several pre-possessing steps that included segmentation, rotation, 
and alignment of the hand were performed. In order to improve the biometric perfor-
mance of geometry-based recognition systems, some studies fused hand geometry with 
other types of biometric characteristics, such as inner knuckle prints and the palmprint. 
Anitha et al. [41] proposed a biometric recognition system by combining hand geometry 
features with inner knuckle prints. Following the pre-processing steps utilised in [40], 
the authors detected the edges of the hand and rotated it accordingly so that the refer-
ence points of the assessed hands were aligned. Chen and Wang [7] finally combined the 

Table 1 Performance overview of full hand‑based biometric recognition approaches

a The CIR value results from the average CIR reported on the left and right palm images
b The CIR value results from the average CIR reported on the left and right dorsal images

CIR correct identification rate at Rank‑1, EER equal error rate

Reference Approach Category Scenario Database Hand‑side Performance

Sharma et al. 
[40]

2015 Geometry Verification IITD‑v1 Palm EER = 0.52%

Anitha et al. 
[41]

Sum rule 
IKP + hand 
shape + angle 
feature

Geometry Verification Bosphorus Palm EER = 0.8%

Chen and 
Wang [7]

Morphology 
and Voronoi 
diagram

Geometry Verification Bosphorus Palm EER = 7.00%

Afifi [12] CNN + LBP/
SVM

Learned 
features

Closed‑set
Identification

11K Hands
IITD‑v1

Palm Dorsal 
Palm

CIR = 95.60%
CIR = 97.00%
CIR = 94.80%

Chen [42] ABD‑Net Learned 
features

Closed‑set
Identification

11K Hands
PolyU‑Dorsal‑
DB

Palm
Dorsal
Dorsal

CIR = 95.88%
CIR = 95.08%
CIR = 94.93%

Zhang [43] RGA‑Net Learned 
features

Closed‑set
Identification

11K Hands
PolyU‑Dorsal‑
DB

Palm
Dorsal
Dorsal

CIR = 93.81%
CIR = 95.04%
CIR = 95.06%

Baisa et al. [13] GPA‑Net Learned 
features

Closed‑set
Identification

11K Hands
PolyU‑Dorsal‑
DB

Palm
Dorsal
Dorsal

CIR = 94.84%a

CIR = 95.78%b

CIR = 94.64%

Baisa et al. [4] MBA‑Net Learned 
features

Closed‑set
Identification

11K Hands
PolyU‑Dorsal‑
DB

Palm
Dorsal
Dorsal

CIR = 97.74%a

CIR = 97.08%b

CIR = 95.12%

Ebrahimian 
et al. [14]

HandVT‑Net Learned 
features

Closed‑set
Identification

11K Hands Palm
Dorsal

CIR = 99.40%a

CIR = 99.40%b
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geometric features of the hand with geometric characteristics extracted from the palm-
print. For more recent works covering the topic of hand geometry-based recognition, 
the interested readers are referred to [44].

In general, biometric systems based on hand geometry are widely deployed in access 
control applications because they are easy to use, and have high public acceptance and 
good integration capability [45]. However, the geometry features of the hand are not 
considered suitable for use in a large-scale personal identification of individuals, as the 
sole geometric properties of the hand are not very distinctive [18].

2.2.2  Learned features

In order to improve the balance between applicability, user convenience, and recogni-
tion performance of previous approaches, the latest techniques map whole hand images 
acquired in the visible spectrum into a latent representation using DNNs. Afifi [12] 
introduced an annotation-rich hand database (referred to in the scientific literature as 
11K Hands) consisting of 11,076 high-quality hand images captured in the visible spec-
trum. In addition, the same author proposed a dual-stream CNN-based algorithm whose 
recognition performance values (i.e. correct identification rates (CIRs) ranging from 94% 
to 97% in Rank-1 for the palmar and dorsal area, respectively) provided a starting bench-
mark for future investigations. Following the above idea, Baisa et al. [13] recently pro-
posed a dual-stream CNN approach which learns both global and local features of the 
hand image. The experimental results reported a CIR in Rank-1 of around 95% on 11K 
Hands [12]. Baisa et al. [4] extended this architecture by including an extra stream and 
incorporating both channel and spatial attention modules in branches. An improvement 
in recognition of around 3% (i.e. CIR = 98.05%) was achieved on the right palm images 
compared to the 95.83% obtained in [13]. In the same study, other CNNs were evaluated 
for the hand recognition task, e.g., ABD-Net [42] and RGA-Net [43], resulting in similar 
recognition performance to the one in [13]. Finally, Ebrahimian et al. [14] evaluated the 
feasibility of using Vision Transformers for hand recognition, resulting in a CIR of 99.4% 
on a small subset of 11K Hands consisting of 30% of the images. In spite of the results 
achieved for the techniques described in this category, a proper evaluation remains 
missing that includes more realistic and challenging hand images (e.g., images in NTU-
PI-v1 [23] or HaGRID [46]) and scenarios (e.g., open-set scenario). The above methods 
were only evaluated in a closed-set scenario over controlled images stemming from the 
datasets: 11K Hands [12], Hong Kong Polytechnic University Hand Dorsal (HD) [47] 
and IIT Delhi Touchless Palmprint Database [5] (see Sect. 3.1 for details).

Motivated by the fact that previous scientific studies have shown that there is a reli-
able balance between applicability (i.e. they can be used in most applications, including 
forensic investigations), user convenience (i.e. hand images are acquired with a contact-
less capture device without requiring any subject effort) and recognition performance 
(i.e. the results summarised above demonstrated that the palmar and dorsal areas con-
tain distinctive information for subject recognition), we conducted a comprehensive 
benchmark of the performance of the available schemes on uncontrolled images cover-
ing realistic and challenging scenarios that are of interest in forensic investigations (see 
Sect. 4).
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3  Resources
To facilitate academic and industrial research on hand recognition, an overview of avail-
able databases (Sect. 3.1) is provided. Technical characteristics of open-source hand rec-
ognition systems are also outlined (Sect. 3.2). Since hand detection is an important step 
in the recognition pipeline, open-source techniques employed for hand detection are 
also presented (Sect. 3.3).

3.1  Databases

Table  2 summarises the main characteristics of the available databases for hand rec-
ognition. Note that most of the databases consist of several samples (more than 1,000 
instances) from a large number of subjects ranging from 114 to 43,669. Samples in most 
of the databases were acquired with high-resolution capture devices and in controlled 
scenarios, i.e. controlled background, fixed gesture and high image quality, which are 
unrealistic properties in the context of forensic investigations (see Fig.  2a–e). In con-
trast, images in NTU-PI-v1 [23] and HaGRID [46] were captured under uncontrolled 
parameters, i.e. varying the aforementioned attributes (see Fig. 2f-g). The two databases 
11K Hands [12] and NTU-PI-v1 [23] also include information on demographic attrib-
utes of the subjects that could potentially benefit research related to both demographic 
fairness in full hand-based recognition systems and forensic analysis. For example, age 
and gender attributes might be of interest, e.g., to reduce the false positive rates in bio-
metric identification systems. Hand gesture variations in HaGRID images are also useful 
for the development of automatic hand gesture detection techniques.

Table 2 Summary of available databases for hand recognition

a https:// www4. comp. polyu. edu. hk/ ~csaja ykr/ IITD/ Datab ase_ Palm. htm
b http:// www4. comp. polyu. edu. hk/ ∼csaja ykr/ Datab ase/ 3Dhand/ Hand3 DPose. htm 
c http:// www4. comp. polyu. edu. hk/ ∼csaja ykr/ knuck leV2. htm 
d https:// www4. comp. polyu. edu. hk/ ∼csaja ykr/ palmp rint3. htm 
e https:// sites. google. com/ view/ 11kha nds
f https:// github. com/ matko wski‑ voy/ Palmp rint‑ Recog nition‑ in‑ the‑ Wild 
g https:// github. com/ huken ovs/ hagrid

Database Year #Subjects #Samples Visible 
area

Hand Demographic 
info

Image 
quality

Uncontrolled

IITD‑v1 [5]a 2008 230 2,601 Palm Left–
right

None High ✗

PolyU‑
3D‑Hand‑
DB [48]b

2010 114 1,140 Palm Right None High ✗

PolyU‑
Dorsal‑DB 
[47]c

2016 501 2,505 Dorsal Right Ethnicity High ✗

PolyU‑IITD‑
v3 [49]d

2018 600 12,000 Palm Left–
right

Ethnicity High ✗

11K Hands 
[12]e

2019 190 11,076 Palm‑
dorsal

Left–
right

Age, skin, 
gender

High ✗

NTU‑PI‑v1 
[23]f

2019 1,093 7,781 Palm Left–
right

Age, ethnicity, 
gender

Variable ✓

HaGRID 
[46]g

2022 43,669 552,992 Palm‑
dorsal

Left–
right

None Variable ✓

https://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Palm.htm
http://www4.comp.polyu.edu.hk/∼csajaykr/Database/3Dhand/Hand3DPose.htm
http://www4.comp.polyu.edu.hk/∼csajaykr/knuckleV2.htm
https://www4.comp.polyu.edu.hk/∼csajaykr/palmprint3.htm
https://sites.google.com/view/11khands
https://github.com/matkowski-voy/Palmprint-Recognition-in-the-Wild
https://github.com/hukenovs/hagrid
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3.2  End‑to‑end full hand recognition systems

Table  3 summarises technical details of open-source hand recognition systems which 
might be of interest to industry and academia. Note that the works with hand recog-
nition systems implemented in Matlab provide the trained weights, while the studies 
implemented in PyTorch only describe the training and testing pipelines on the respec-
tive websites. From a business point of view, one approach (i.e. MBA-Net [4]) does not 
provide licensing information and can therefore be used in commercial applications. 
The remaining works comply with the MIT license which permits unrestricted use of 
the Software, i.e. without limitation on the rights to use, copy, modify, merge, publish, 
distribute, sublicense and/or sell copies of the software. Finally, it should be perceived 
that MBA-Net reports the best balance between recognition performance (i.e. it yields 
one of the best CIR values for the closed-set scenario) and spatial efficiency (i.e. it is the 
lightest architecture with a model size of 173 MB). To benchmark the hand recognition 
performance, we selected the most competitive approaches, i.e. MBA-Net [4] ABD-Net 
[42], and RGA-Net [43].

(a) IITD-v1. (b) PolyU-3D-Hand-DB.

(c) PolyU-Dorsal-DB. (d) PolyU-IITD-v3.

(e) 11K Hands. (f) NTU-PI-v1.

(g) HaGRID.
Fig. 2 Examples of images in controlled (a)‑(e) and uncontrolled (f)‑(g) databases

Table 3 Summary of the technical characteristics of open‑source hand recognition systems

 ∗  The CNN model size is only reported
a https:// github. com/ mahmo udnafi fi/ 11K‑ Hands
b https:// github. com/ matko wski‑ voy/ Palmp rint‑ Recog nition‑ in‑ the‑ Wild
c https:// github. com/ VITA‑ Group/ ABD‑ Net
d https:// github. com/ micro soft/ Relat ion‑ Aware‑ Global‑ Atten tion‑ Netwo rks
e https:// github. com/ natha nlem1/ MBA‑ Net

Approach Framework Model size (MB) Pre‑trained License

CNN + LBP/SVM [12]a MatConvNet 694∗ ✓ MIT

EE‑PRnet [23]b MatConvNet 382 ✓ ✗
ABD‑Net [42]c PyTorch 206 ✗ MIT

RGA‑Net [43]d PyTorch 462 ✗ MIT

MBA‑Net [4]e PyTorch 173 ✗ ✗

https://github.com/mahmoudnafifi/11K-Hands
https://github.com/matkowski-voy/Palmprint-Recognition-in-the-Wild
https://github.com/VITA-Group/ABD-Net
https://github.com/microsoft/Relation-Aware-Global-Attention-Networks
https://github.com/nathanlem1/MBA-Net
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3.3  Hand‑based detection systems

Table  4 summarises the technical details of the state-of-the-art approaches employed 
for hand detection. Note that all studies make the trained weights available and pro-
vide licensing information. In contrast to all works described in Table  3, three of the 
described hand detection-based algorithms can only be used for commercial purposes, 
namely Hand-CNN [50], ContactHands [51], and BodyHands [54]. In contrast, Goog-
le’s MediaPipe solution [52] and HandLer [53] comply with the Apache-2.0 license that 
limits, e.g., its use in market applications. The former also proposed a lightweight CNN 
architecture whose weights are 4 MB in size. This characteristic, together with its usabil-
ity and performance, has led to Google’s MediaPipe solution being widely used in a high 
number of academic research projects. Note that hand detection is outside the scope of 
this study, as the hand images in the evaluation databases were previously cropped by 
the authors [12, 23, 46]. As a future research topic, we recommend evaluating the influ-
ence of hand detection on the performance of contactless hands recognition.

4  Performance benchmark
At present, available full hand-based approaches depicted in Table 3 have been mostly 
evaluated on non-challenging controlled scenarios (e.g., closed-set on 11K Hands). 
Therefore, a proper evaluation for more realistic and difficult settings, e.g., open-set and 
cross-database identification on uncontrolled databases, remains missing. To provide 
insights on the performance of the state-of-the-art full hand-based approaches, a set of 
experiments ranging from easier to more challenging scenarios is outlined in Sect. 4.1. 
The results for each experimental setup are then presented in Sect. 4.2.

4.1  Experimental setup

Table 5 summarises the experimental protocols to evaluate the performance of available 
full hand-based algorithms (see Table 3) from easier to challenging scenarios. For this 
purpose, the most recent databases in Table 2 are selected, i.e. 11K Hands, HaGRID, and 
NTU-PI-v1. We then defined six configurations for evaluation: easy controlled (Table 5, 
row 1), easy uncontrolled (Table  5, row 2), challenging uncontrolled (Table  5, row 3) 
databases, and cross-database on challenging databases (Table 5, rows 4–6). Note that 
most experimental protocols focus on the analysis of the palm, as this is the visible area 

Table 4 Summary of technical characteristics of open‑source hand detection approaches

 ∗  Model size of the heavy architecture
a https:// github. com/ Supre ethN/ Hand‑ CNN
b https:// github. com/ cvlab‑ stony brook/ Conta ctHan ds
c https:// google. github. io/ media pipe/ solut ions/ hands. html
d https:// github. com/ reckjn/ HandL er
e https:// github. com/ cvlab‑ stony brook/ BodyH ands

Approach Framework Model size (MB) Pre‑trained License

Hand‑CNN [50]a Keras 264 ✓ MIT

ContactHands [51]b Pytorch 819 ✓ MIT

MediaPipe [52]c Pytorch 4 ∗ ✓ Apache‑2.0

HandLer [53]d Pytorch 724 ✓ Apache‑2.0

BodyHands [54]e Pytorch 734 ✓ MIT

https://github.com/SupreethN/Hand-CNN
https://github.com/cvlab-stonybrook/ContactHands
https://google.github.io/mediapipe/solutions/hands.html
https://github.com/reckjn/HandLer
https://github.com/cvlab-stonybrook/BodyHands
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of the hand in difficult database images. Since high performance degradation is expected 
for protocols 2–6, the open-set scenario is only evaluated in configuration 1. In the 
open-set evaluation, fivefold validation sets on the 11K Hands subjects were randomly 
created. In all experiments, subjects used for scheme training are different from those 
used for enrolment and transactions. To avoid bias, subjects and their respective images 
were randomly chosen for the enrolment as well as the and reported in compliance with 
the metrics defined in the international ISO/IEC [16]:

 (i) Identification rate (IR), which is presented as a graph of the cumulative matching 
characteristic (CMC) at different Rank values.

 (ii) False negative identification rate (FNIR), which is defined as the proportion of a 
specified set of identification transactions of subjects registered in the system for 
which the correct subject reference identifier is not among those returned.

 (iii) False positive identification rate (FPIR), which is defined as the proportion of 
non-enrolled subject identification transactions for which a reference identifier is 
returned.

4.1.1  Experimental databases

As mentioned in Sect.  4.1, the most recent databases were selected, i.e. 11K Hands, 
HaGRID, and NTU-PI-v1, where the latter reflects the diversity of hands in the scenarios, 
where there is no control over image acquisition parameters or subject cooperation and 
images are taken without any intention to recognise the hand. Diversity is represented by 
significant differences in hand gestures, point of view, lighting, background, image qual-
ity and resolution [23]. Since HaGRID [46] was initially proposed for gesture recogni-
tion purposes, it contains many different gestures. We only selected those similar to 11K 

Table 5 Experimental setup characteristics

# Experiment 
name

Database Hand area Scenario Train
(#id, #images)

Enrolment
(#id, #images)

Transactions
(#id, 
#comparisons)

1 Easy uncon‑
trolled

11 K Hands Dorsal
Palm
Palm

Closed‑set
Open‑set

(91, 1,343)
(94, 1,301)
(94, 1,301

(89, 89)
(86, 86)
(55, 55)

(86, 1,376)
(86, 1,376)
(55, 880), (31, 
527)

2 Easy uncon‑
trolled

HaGRID Palm Closed‑set (75, 1,200) (75, 75) (75, 360)

3 Challenging 
uncontrolled

NTU‑PI‑v1 Palm Closed‑set (477, 2,900) (477, 477) (477, 840)

4 Cross‑database
Easy uncon‑
trolled

11K Hands Palm Closed‑set (94, 1,301) (75, 75) (75, 360)

5 Cross‑database
Easy uncon‑
trolled

NTU‑PI‑v1 Palm Closed‑set (447, 2,900) (75 75) (75, 360)

6 Cross‑database
Challenging

HaGRID Palm Closed‑set (75, 1,200) (90, 90) (90, 152)

7 Tattooed‑Hand
Impact

11K Hands Dorsal Closed‑set
Open‑set

(72, 890) Tenfold cross‑validation on 71 
subjects
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Hands and NTU-PI-v1 from its test set, i.e. palm and stop gesture. In the experiments, 
those hand images having extremely low quality were filtered out by using a Laplacian 
variance approach [55]. A low Laplacian variance indicates an edge absence and therefore 
a blurred image. Fig. 3 shows the image quality distributions computed on HaGRID and 
NTU-PI-v1 as well as the selected threshold (λ = 10) to remove the low-quality images. λ 

Fig. 3 Image quality distributions for HaGRID and NTU‑PI‑v1 and the respective filtered threshold (black 
dashed line)

Table 6 Characteristics of databases used in the experimental evaluation

Database Conditions #Subjects #Images

11K Hands [12] Controlled 180 2,763

HaGRID [46] Uncontrolled (easy) 150 1,635

NTU‑PI‑v1 [23] Uncontrolled (challenging) 894 4,187

Fig. 4 Examples of 11K Hands images (first row) and their respective tattooed hands (second row)
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was selected by a visual inspection of the images. Table 6 provides details of the databases 
used in the performance benchmark after removal of the low-quality images and single-
sample subjects. In case of the  7th protocol (last row), 10 tattooed versions of each hand 
image are generated from the respective evaluation subset using the proposed method 
described in [17], resulting in 10,420 generated images for right dorsal (see Fig. 4, second 
row). It is worth noting that not all images used as biometric transactions in the dorsal 
evaluation were processed, due to a failure in the detection of their landmarks. In the final 
evaluation of the tattoos, 33 out of 71 identities are considered for the right dorsal.

4.1.2  Implementation details

All algorithms used in the performance benchmark were implemented in PyTorch [56] 
and trained utilising a Nvidia A100 Tensor Core GPU with 40GB of GPU Memory. For 
the training and testing of the systems, we took the parameters as indicated in their 
corresponding articles. The image size was set to 256 256 pixels for ABD-Net [42] and 
RGA-Net [43], and 356 356 for MBA-Net [4]. The networks were initialised with their 
pre-trained weights in ImageNet [57] and trained for 70 and 100 epochs for the experi-
ments with controlled and uncontrolled data, respectively, using the Adam optimiser 
with a learning rate of 0.02. As indicated in [43], the RGA-Net architecture was trained 
for 600 epochs in all cases. More technical details on the network architectures can be 
found in the papers MBA-Net [4], ABD-Net [42], and RGA-Net [43]

4.2  Experimental results

This section summarises detailed results computed for the experimental protocols, 
defined in Table 5. To make the result’s discussion more accessible to the readers, the 
next sections are named with respect to the Experiment name in Table 5, except for the 
cross-database experiments which are reported in Sect. 4.2.4.

4.2.1  Easy controlled

The Easy Controlled scenario aims at evaluating the most competitive full hand-based 
approaches under ideal conditions. For this purpose, the 11K Hands database was 
selected, containing images of hands acquired with few gestural variations and static 
white backgrounds. Fig. 5 depicts the CMC curves for dorsal and palmar images in 11K 
Hands in a closed-set scenario where the same subjects participate in both enrolment 
and biometric transactions. Note that, MBA-Net yields the best identification perfor-
mance for dorsal and palm images under controlled conditions: IRs greater than 96.7% 
at the Rank-1 are computed for both hand regions. This algorithm also achieves an 
IR of 99.9% in the Rank-5, indicating that the biometric identifiers of transactions are 
retrieved by the system with almost 100% success in the top 5 positions of the candi-
date list. From a forensic point of view, high IRs for Ranks above 1 are still interesting, 
as additional candidates might be searched suspects. Regarding ABD-Net and RGA-Net 
performances, degradation of their IRs with respect to the ones attained by MBA-Net 
can be observed: IRs ranging from 84% to 92% are yielded for both hand regions. Both 
schemes are also of interest for use in forensic investigations, due to the reported IRs for 
ranges above 1, i.e. IRs    94.8% for ABD-Net and IRs    91.2%, respectively, at the Rank-5.
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The identification performance of the available full hand-based methods is also 
reported in Table 7 for an open-set scenario in which some biometric identifiers remain 
missing from the enrolment. Similar to the results in Fig. 5, MBA-Net achieves the best 
performance, resulting in a FNIR = 10.18% for a high-security threshold, i.e. FPIR = 
0.1%—1 out of 1000 non-mated transactions is accepted, while at most 10 out of 100 
mated transactions are rejected by the system.

In contrast to the results illustrated in Fig. 5b, the identification performance of RGB-
Net outperforms the one yielded by ABD-Net for high-security thresholds, i.e. FNIR ≥ 
11.88% for RGA-Net vs. FNIR ≥ 30.48% for ABD-Net at a FPIR ≤ 20%. These results 
state that RGB-Net is more robust to unknown subjects that are not enrolled in the sys-
tem, compared to ABD-Net, which is a desired behaviour for forensic investigations.

4.2.2  Easy uncontrolled

This set of experiments evaluates the identification performance of full hand-based sys-
tems on an uncontrolled database in which the background context looks different from 
that represented by 11K Hands images (see Fig. 2). For this purpose, we computed the 
performance of the schemes in the HaGRID database and depicted it in Fig. 6.

Note that, the algorithm’s performance considerably dropped with respect to the 
ones reported in Fig. 5b. In particular, the best-performing architecture for the con-
trolled database (MBA-Net) achieves an IR of 54.10% at Rank-1 which is almost half of 
the result outlined in Fig. 5b for the same Rank (i.e. 96.80%). Subsequently, RGA-Net 
and ABD-Net also have a decrease in accuracy down to 30.60% and 59.80%, indicat-
ing the need to develop and adopt hand segmentation strategies as a pre-processing 
step. Despite the performance deterioration, we can observe that both MBA-Net and 

(a) CMC for dorsal images. (b) CMC for palm images.
Fig. 5 CMC curves for the controlled dorsal (5a) and palm (5b) images in 11K Hands

Table 7 Identification performance (%) for palm images in 11K Hands

Approach EER FNIR@FPIR = 1.0% FNIR@
FPIR = 0.1%

ABD‑Net [42] 20.18 79.76 83.04

RGA‑Net [43] 14.62 39.97 58.80

MBA‑Net [4] 5.49 8.22 10.18
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ABD-Net yield IRs ≥ 80% for Rank values ≥ 10 that are still of interest in forensic 
investigations.

4.2.3  Challenging uncontrolled

We then selected the NTU-PI-v1 database to evaluate the performance of the systems 
on difficult images with varying background context, finger gestures and hand poses. 
Fig. 7 shows the algorithm’s performance plotted for different Rank values. Note that, 
the identification performance of the evaluated schemes suffers a significant deterio-
ration, which is even worse than the results shown in Sect. 4.2.1. IR values computed 
for all networks are lower than 40% for Ranks ≤ 20. In contrast to the previous experi-
ments, ABD-Net outperforms MBA-Net for high-Rank values (i.e. Rank ≥ 6), indicating 
that the former also analyses non-textural features and is therefore more robust against 
uncontrolled databases. Since the images of NTU-PI-v1 show high variations in hand 
poses, we strongly believe that an alignment of the hands could lead to improved results 
compared to those in Fig. 7.

Fig. 6 CMC curves for the easy uncontrolled HaGRID database

Fig. 7 CMC curves for the challenging uncontrolled NTU‑PI‑v1 database
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4.2.4  Cross‑database

In the last set of experiments, we evaluate the generalisation capabilities of the 
embedding representation computed by the systems. For this purpose, we focused on 
the three last train–test configurations defined in Table 5 (rows 5–7) and computed 
their respective CMC curves; compare Fig. 8. As expected, a significant performance 
deterioration can be seen, with respect to the above intra-database evaluation. Note 
that, on the one hand, training the systems on controlled images (i.e. 11K Hands) with 
few background variations leads to the highest performance deterioration on uncon-
trolled images like those from HaGRID (down to 34.90% for ABD-Net in Fig. 8a), and 
on the other hand, the inclusion of images with varying background context and fin-
ger gestures improves the algorithm’s performance shown in Fig.  8a for high-Rank 
values (Rank ≥ 5 in Fig. 8b). However, this is not sufficient to achieve the results out-
lined in Fig. 6, having an IR of 76.50% for the same Rank values.

In contrast to the above results, an improvement in identification performance was 
achieved for images in NTU-PI-v1 (Fig. 8c), when systems are trained with data from 
the HaGRID database. While MBA-Net reports IRs ≥ 30.10% for Ranks ≥ 5 using 
HaGRID as the training database, this yields IRs ≥ 22.70% for the same Rank ranges 
within its intra-database evaluation (see Fig. 7). These results are mainly due to the 
fact that images of hands with few variations in finger gestures (e.g., HaGRID images) 

(a) 11K Hands vs. HaGRID. (b) NTU-PI v1 vs. HaGRID.

(c) HaGRID vs. NTU-PI v1.
Fig. 8 Cross‑database performance evaluation representing the last three train–test experimental 
configurations in Table 5
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introduce less bias (i.e. high generalisation) in CNN training than those with large 
gesture variations (e.g., NTU-PI-v1 samples).

4.2.5  Impact of tattooed hands on recognition

The use of tattoos on the hand has recently gained popularity. In this section, the results 
of the impact of the use of tattooed hands on the recognition performance of the sys-
tems evaluated for closed-set and open-set scenarios, respectively, are presented.

4.2.5.1 Closed‑set evaluation In the experiments we evaluate the impact of tattooed 
hands on the recognition performance of the available systems. Fig. 9 shows the identifi-
cation rates for non-tattooed (9a), tattooed only on the probe (9b), and tattooed on both 
reference and probe (9c) dorsal hands for the closed-set scenario. To compute IRs at dif-
ferent rank values, we split the database into 10 disjoint sets of enrolment and biometric 
transactions, each time randomly selecting one sample per subject for enrolment and the 
remaining samples for identification transactions. Then the mean and standard deviation 
(std) are reported. For biometric transactions of tattooed hand images, we enrolled either 
a non-tattooed (9a) or tattooed (9c) reference from the same probe subject. To simulate 
a real scenario, reference and probe hand images were generated using the same tattoo 
template in the latter case (9c).

Comparing the results in Fig. 9a, all networks report on average a performance dete-
rioration for tattooed hands: the IRs for the best-performing approaches (i.e. MBA-Net 

(a) Non-ta�ooed reference and probe. (b) Ta�ooed probe.

(c) Ta�ooed reference and probe.
Fig. 9 CMC curves reported by the evaluated systems on non‑tattooed (a), tattooed only on probe (b), and 
tattooed on reference and probe (c) images from 11 K Hands
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and ABD-Net) decrease down to 97% in Rank-1. Furthermore, the std values increase 
regarding the ones depicted for non-tattooed hands. This deterioration in recognition 
performance is due to the fact that the features calculated by both architectures describe 
mainly textural details. Therefore, they are prone to fail on tattooed hands. In contrast to 
MBA-Net and ABD-Net, RGA-Net obtains on average similar results for tattooed and 
non-tattooed hands, i.e. IRs in around 87%. However, compared to the other methods, 
this technique obtains the worst std values for subjects with tattooed hands.

Note that the biometric performance yielded by the networks when both reference 
and biometric transactions contain tattooed hands (see 9c) is similar to that of non-tat-
tooed hands in Fig. 9a. A direct result of this observation is focused on the use of images 
of tattooed hands to train the algorithms. Thus, the performance shown in Fig. 9b might 
be significantly improved.

4.2.5.2 Open‑set evaluation The identification performance of the available hand-based 
methods is also reported in Fig. 10 for an open-set scenario. To compute mated and non-
mated comparisons, we perform a tenfold cross-validation evaluation. Thus, each time, 
the subjects belonging to the validation fold at hand are employed for computing the non-
mated comparisons, while the remaining subjects from the other subsets are used for the 
mated comparisons. For the assessment of the impact of the tattoos, the non-tattooed 
subjects in the validation fold in question are replaced by the same subjects with tattooed 
hands.

Similar to the results in Fig.  9, MBA-Net achieves the best performance (dark blue 
thick lines), resulting in a FNIR = 12.03% for a high-security threshold, i.e. FPIR = 0.1% 
on the dorsal images, respectively: 1 out of 1000 non-mated transactions is accepted, 
while at most 12 out of 100 mated transactions are rejected by the recognition system. 
Note that the use of tattooed hands significantly affects the performance of the archi-
tectures: FNIR values at a FPIR=0.1% are above 60% for the evaluated images, indicat-
ing the sensitivity of the current hand recognition systems to tattooed hands. Finally, we 
note that RGA-Net is less sensible to tattooed hands than the other approaches. This is 
due to some attention mechanisms which leverage both texture and shape properties.

ABD-Net(No tattoo)
MBA-Net(No tattoo)
RGA-Net(No tattoo)
ABD-Net(Tattoo)

MBA-Net(Tattoo)
RGA-Net(Tattoo)
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Fig. 10 DET curves for left and right dorsal images
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4.2.6  Discussion

The naïve identification mode relies on a one-to-many (1:N) template compari-
son between the probe image and N biometric references belonging to N different 
enrolled subjects. This operational method is commonly used in forensic investiga-
tions to retrieve, e.g., the biometric identifier of a wanted criminal or to find a match 
within a list of missing individuals. The comprehensive study conducted in this manu-
script through several experimental protocols showed that current full hand-based 
approaches performed well on controlled hand images having few finger gestures and 
background context variations (see Table 8). IR values in around 99.90% at Ranks ≥ 3 
on palm and dorsal hand images from 11K Hands database show the networks suit-
ability for many real applications, such as hand authentication.

In the Sects.  4.2.2 and 4.2.3, we observed that variables such as the finger gestures 
and variations in the background context caused a significant deterioration in the 
performance of the algorithms, resulting in undesirable accuracy for forensic investi-
gations: IRs decreased down to 12.50% at Rank-1 for challenging NTU-PI-v1 images. 
We noticed that HaGRID and NTU-PI-v1 images vary from pose to pose, therefore 
we strongly believe that a pre-processing step for pose alignment would improve the 
performance of the techniques. An additional segmentation step would also benefit 
those schemes.

In our exhaustive study, we only selected uncontrolled HaGRID images having the 
hand gestures palm and stop to evaluate the approaches. The results presented in 
Fig. 6 show a performance decrease for these uncontrolled images compared to the 
controlled hand images in 11K Hands. Therefore, we do confirm that the inclusion of 
more difficult hand gestures can significantly decrease the identification performance 
of the algorithms. Research into new techniques to disentangle these hand gestures 
and then transform them into controlled images of open hands in which the dorsal 
or palmar area is visible would be one solution to achieve high identification perfor-
mance (see Fig. 11). In this context, 3D hand recognition, which, to our best knowl-
edge, has not been addressed in the scientific literature, should be also investigated. 
To improve the IRs presented in Table 8, combinations of systems can also be consid-
ered. A fusion of the evaluated schemes at score or rank level is expected to enhance 
these results, in particular for more realistic and challenging scenarios, e.g., Challeng‑
ing Uncontrolled and Cross‑database Challenging, related to forensic investigations.

Table 8 Summary of identification rates (%) in Rank‑1 achieved by hand recognition systems in 
several scenarios

The best result per scenario is highlighted in bold

Approach Easy Easy Challenging Cross‑
database

Cross‑
database

Cross‑database

Controlled Uncontrolled Uncontrolled Easy 
controlled

Easy 
uncontrolled

Challenging

ABD‑Net [42] 92.80 59.80 12.50 34.90 34.90 11.20
RGA‑Net [43] 84.90 30.60 4.50 21.00 30.30 6.60

MBA‑Net [4] 96.80 54.10 12.50 26.80 31.40 10.50
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5  Further research topics
Based on the above study and results, we summarise further topics and recommenda-
tions in contactless hand biometrics in the section, e.g., soft biometrics (Sect. 5.1), tem-
plate protection (Sect. 5.2), presentation attack detection (Sect. 5.3), workload reduction 
(Sect.  5.4), demographic fairness (Sect.  5.5), sample quality (Sect.  5.6), image synthe-
sis (Sect.  5.7), and information fusion (Sect.  5.8) which may be of interest to indus-
try, academia or forensics, and which should be used depending on the context of the 
application.

5.1  Soft biometrics

Soft biometrics are usually descriptive and have a semantic representation. They can be 
computationally inexpensive, discernible from a distance in a crowded environment, 
and require less or no cooperation from the observed subjects [19]. Extracting gender 
information from the hand can be traced back to forensic medicine and archaeology, 
which established gender from the hand morphology [19]. As a result of these studies, 
several approaches have been proposed to extract gender information from the hand. A 
comprehensive survey summarising gender classification-based techniques is outlined 
in [12, 19, 58]. Recently, other scientific works have also used hand information to esti-
mate the age of subjects [59], resulting in a reliable classification accuracy of 96.50%. 
The hand-based age classification is a new field of research that needs to be analysed 
in depth for different demographic attributes of the subjects, e.g., work occupation. In 
general, soft biometrics can be used to improve the identification performance shown in 
Sect. 4.2. Reducing the candidate list given the gender information of the probe leads to 
a considerable reduction in both the FPIR and the system workload [60].

5.2  Template protection

Privacy regulations, e.g., the European Union (EU) General Data Protection Regulation 
2016/679 (GDPR) [61], usually define biometric information as sensitive data. Unpro-
tected storage of biometric references could lead to different privacy threats, such as 
identity theft, linking through databases or limited renewability [62]. In the context of 
biometric template protection, the majority of the scientific literature is focused on tra-
ditional types of biometric characteristics, such as fingerprint, palmprint, iris, face, voice, 
and vascular veins [63, 64]. To the best of our knowledge, few studies have addressed 
template protection in the context of hand recognition [65]. Since demographic 

Undesired
Hand Gestures Desired

Hand Gesture
Transformer

Hand Gesture

Fig. 11 Conceptual overview of the transformation of different hand gestures into the desired open hand, 
while preserving the subject identity
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information, such as age and gender, can be obtained from the hand, the application of 
template protection techniques to protect hand features should also be addressed in the 
future.

5.3  Presentation attack detection

Presentation attack detection (PAD) refers to the task of determining whether an input 
sample stems from a live subject or from an artificial replica. PAD is one of the most 
active biometric fields of research. Similar to biometric template protection, PAD 
techniques have been mainly proposed for a single type of biometric characteristic, 
e.g., fingerprint [66, 67], face [68–70], iris [71], voice [72, 73] and their combination in 
a multi-type PAD method [74]. With the increase in respiratory infections due to the 
SARS-CoV-2 coronavirus, contactless biometrics has experienced a broad development. 
The contactless fingerprint biometrics has received more attention to be used in real 
applications. It is therefore expected that other types of contactless biometric charac-
teristics, such as the hand, can be used in the near future. In this context, hand-based 
attack presentation detection could benefit from the development achieved in other 
biometric characteristics mentioned above and lead to new PAD schemes for detecting 
attack presentations.

5.4  Workload reduction

In forensic investigations, researchers must efficiently handle a lot of data generated on a 
daily basis for the identification of criminals and victims. According to the study in [60], 
increasing the number of subjects enrolled in an identification system steadily raises, on 
the one hand, the response time of the system and, on the other hand, the false positive 
acceptance rates. Daugman [75] investigated the relationship between the number of 
subjects enrolled (i.e. N) and false positive acceptance rates, showing that the probability 
of false positives from one-to-many template comparisons increases rapidly to unaccep-
table levels with N. Current hand-based recognition schemes have the above limitation, 
as they perform a one-to-many comparison of the probe template against N enrolled 
subjects. It is therefore of particular interest for forensic investigations to develop work-
load reduction techniques, e.g., pre-filtering or binning based on soft biometrics, that 
can reduce both system response time and false positive acceptance rates.

5.5  Demographic fairness

The successful use of artificial intelligence to support humans in making complex deci-
sions has led to the development of automated systems that, in many cases, are already 
outperforming and thus replacing humans. Recently, a number of ethical and legal issues 
have been raised, in particular in relation to the transparency, accountability, explain-
ability and fairness of those systems [76]. Regarding the latter, an algorithm is consid-
ered to be biased (or unfair) if significant differences are observed in its performance 
for subjects from different demographic groups (e.g., women or dark-skinned people), 
thus benefiting certain groups of individuals [76]. In this context, biometric systems are 
not exempt from biased decision-making [77]. As hand recognition systems are mainly 
based on deep neural networks and can be deployed in several real applications, the 
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need to reduce the negative effect of demographic fairness should be also addressed with 
new scientific studies in the near future.

5.6  Image quality

The performance of biometric systems mostly depends on the quality of the acquired 
data, which is influenced by numerous external factors, e.g., lighting conditions. Auto-
matically evaluating the quality of data in terms of biometric utility can thus be useful to 
detect low-quality samples and then make decisions accordingly. According to ISO/IEC 
29794-1 [78], the utility-based quality depends on the character and fidelity of a sample. 
Whereas the latter refers to the degree of similarity (e.g., of a blurred image) to its bio-
metric feature of origin, the former is related to some uncontrolled biometric attributes 
(e.g., skin texture, scars). In our study, we used hand fidelity, computed using the Lapla-
cian approach [55], as an image quality metric. Thus, blurred images of the hand were 
eliminated from the experimental evaluation. Despite the results obtained, our study 
lacks a proper evaluation of the performance of the schemes in terms of other utility-
based quality metrics, e.g., image quality assessment (IQA) in [79]. Since the character 
attributes of the hand vary slightly from sample to sample, hand-based recognition sys-
tems can also exploit these properties to reduce the final candidate list by following, e.g., 
intelligent search based on image quality proposed in [80].

5.7  Image synthesis

Due to some privacy issues in the acquisition of biometric samples, new technologies 
such as Generative Adversarial Networks (GAN) and the recent Latent Diffusion Mod-
els (LDM) have proven their advantages in the generation of synthetic images that can 
replace real samples in many computer vision and pattern recognition tasks. Those gen-
erative models have been mostly employed in the synthesis of realistic facial images [81, 
82]. In contrast to facial images, few works [38, 83] have explored hand image synthesis 
to alleviate the lack of databases needed to properly train and evaluate hand recognition 
systems. From a forensic point of view, there is a need for generative approaches that can 
create identity-preserving hand images that can be used to train robust hand identifica-
tion systems. Such synthetic hand images can be generated under realistic environmen-
tal conditions by varying hand gestures and image quality.

5.8  Information fusion

The use of complementary information from different sources has mostly reported a 
performance improvement in several biometric tasks, e.g., subject identification [84] and 
PAD [66, 69, 73]. To improve the above identification performance shown in Sect. 4.2, 
investigators can proceed with strategies similar to those proposed in [85] in which hand 
recognition models were fused at different levels. Thus, the candidate list can be short-
ened and the FPIR values can be further reduced. In addition, forensic researchers can 
exploit latent representations of other soft biometric data, such as tattoos [86], to com-
plement the hand representation and thus improve the identification of both criminals 
and missing persons. Tattoos, unlike other soft biometrics such as gender, age or race, 
contain more discriminative information to support the identification of individuals and 
are a useful indicator to track members of a criminal gang or organisation [86].
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6  Conclusions
The use of hand biometrics has emerged as a potential candidate to assist law enforce-
ment in identifying both criminals and victims. In this study, we summarised different 
hand-based techniques that can be classified into different categories. Based on which 
part of the hand current recognition systems analyse, we defined a taxonomy with 
two main categories: hand part-based and full hand-based schemes. This was followed 
by a comprehensive review outlining the advantages and disadvantages of the algo-
rithms. Afterwards, an in-depth performance evaluation of available full hand-based 
pipelines led to several issues and open challenges that need to be addressed in future 
directions. In particular, improving the identification performance of the current sys-
tem (i.e. a low IR at Rank-1 of around 12% for challenging scenarios) through, e.g., the 
use of soft biometrics as a workload reduction approach is of utmost importance for 
forensic investigations: a short list of candidates can reduce both false positives and 
the processing time to identify an offender. The findings summarised in this paper can 
serve as a starting point for professionals in academia or industry involved in the field 
of forensic research. Finally, the deployment of hand recognition systems in authenti-
cation applications should benefit from the use of various security modules, e.g., PAD 
subsystems to spot attack presentations at the capture device and template protection 
schemes to prevent identity or demographic information theft.
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