Martins et al EURASIP Journal on Image
EURASIP Journal on Image and Video Processing (2024) 2024:15

https://doi.org/10.1186/s13640-024-00633-4 and Video Processing

. . . Q
Impact of LiDAR point cloud compression @

on 3D object detection evaluated on the KITTI
dataset

Nuno A. B. Martins"*'®, Luis A. da Silva Cruz'” and Fernando Lopes®?

*Correspondence:

nuno.martins@student.uc.pt Abstract

TDepartment of Electrical The rapid growth on the amount of generated 3D data, particularly in the form of Light
and Computer Engineering, Detection And Ranging (LIDAR) point clouds (PCs), poses very significant challenges
ggr‘tvjrsa'lty of Coimbra, Coimbra, in terms of data storage, transmission, and processing. Point cloud (PC) representation
2 msti?uto de Telecomunicacoes, of 3D visual information has shown to be a very flexible format with many applica-
Coimbra, Portugal tions ranging from multimedia immersive communication to machine vision tasks

? Polytechnic Institute in the robotics and autonomous driving domains. In this paper, we investigate the per-
of Coimbra, Coimbra Institute

of Engineering, Coimbra, formance of four reference 3D object detection techniques, when the input PCs are
Portugal compressed with varying levels of degradation. Compression is performed using two

MPEG standard coders based on 2D projections and octree decomposition, as well

as two coding methods based on Deep Learning (DL). For the DL coding methods, we
used a Joint Photographic Experts Group (JPEG) reference PC coder, that we adapted
to accept LiDAR PCs in both Cartesian and cylindrical coordinate systems. The detec-
tion performance of the four reference 3D object detection methods was evaluated
using both pre-trained models and models specifically trained using degraded PCs
reconstructed from compressed representations. It is shown that LIDAR PCs can be
compressed down to 6 bits per point with no significant degradation on the object
detection precision. Furthermore, employing specifically trained detection mod-

els improves the detection capabilities even at compression rates as low as 2 bits

per point. These results show that LIDAR PCs can be coded to enable efficient storage
and transmission, without significant object detection performance loss.

Keywords: Point clouds, LIDAR, Compression, 3D object detection, Autonomous
driving

1 Introduction

Three dimensional point clouds (PCs) are a flexible format for the representation of 3D
objects and scenes. Light Detection And Ranging (LiDAR) scanners can output data in
PC format facilitating the processing when using the many machine vision algorithms
developed in the last few years for applications in sensing for smart cities, robotics and
automated driving [1]. However, modern LiDAR sensors generate very large amounts
of data, with detrimental effects to the storage, transmission and processing of the cap-
tured PCs.

. ©The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
@ SPrlnger O pen use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
— author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.

http://orcid.org/0000-0002-0269-6561
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-024-00633-4&domain=pdf

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 2 of 28

A possible solution to this problem is to introduce coding for compression in the
LiDAR point cloud (PC) processing flow, as for example in autonomous vehicles, hope-
fully reducing the amount of data to manageable quantities. Two important require-
ments to be fulfilled by the LiDAR point cloud compression (PCC) technology are low
impact on the performance of the processing operations done downstream and low
computational complexity compatible with the use of resource constrained embedded
computing platforms. This is not an easy task as LIDAR PCs acquired by rotating scan-
ners are characterized by sets of points with spatially varying densities. The spatial den-
sity varies based on the complexity of objects or terrain, but also with the distance to
the sensor, where PCs are denser near the sensor. Vertical structures, such as trees and
buildings, are often represented by densely distributed points, contributing to a detailed
understanding of the environment geometry. In terms of point organization, although
the scanning patterns of LiDAR systems are typically fixed and well defined, irregular
arrangements may occur in dynamic or complex environments. Additionally, LiDAR
acquired PCs incorporate intensity or reflectance values, providing information about
the surface properties of the scanned points.

There are several real-world important LiDAR PC data applications that would greatly
benefit from efficient PCC. These include Terrain Mapping to represent terrain elevation
profiles and geographical information, captured using for example an airborne LiDAR
system, or Autonomous Navigation, where the problem of efficient PC processing and
transmission is particularly relevant if inter-vehicle PC exchange or off-vehicle PC pro-
cessing (e.g. on 5G edge computing facilities) are to be used [2].

The main objective of the study presented in this paper is to analyse the impact of
state-of-the-art LIDAR PCC algorithms on the performance of reference object detec-
tion algorithms, fundamental for the detection of other vehicles and pedestrians in
autonomous driving applications. Several studies addressing related problems have
been published, as for example [3] where the impact of image compression on computer
vision tasks is evaluated and, [4] where the effects of PCC on object detection using
interpolated data from the cloud projection into 2D and PointNet++ [5], are compared.

In the present study, two standard and two DL-based PC coding algorithms were used
to compress the KITTI 3D object detection dataset [6] at five compression rates. Four
publicly available pre-trained 3D object detection algorithms were evaluated on the
reconstructed/decompressed PCs and the detection results collected and analysed. As
part of the study, the same 3D object detection algorithms were re-trained on the recon-
structed/decompressed PCs, to understand if re-training using data with the same type
of information loss due to compression as the test data, can improve the performance of
the detectors. The reported results have special relevance for applications in use cases
where LiDAR data need to be efficiently transferred and/or stored, to be further used
for 3D object detection and other computer vision tasks. The inclusion of DL-based PC
coding methods in our study, allows for an analysis on how the learned features and spe-
cific distortions associated with DL-based compression methods may affect DL-based
object detection performance. In this context, the obtained results can be used to under-
stand the tradeoff between data volume reduction brought by the compression and the
degradation on the detection performance, helping LiDAR processing system designers
choose the best compromise between those two variables.

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 3 of 28

The rest of the paper is organized as follows: Section 2 provides background informa-
tion needed to understand PC coding techniques, including DL-based coding, as well as
a description of 3D object detection methods. Section 3 an adaptation of the DL-based
PC coding Joint Photographic Experts Group (JPEG) Verification Model needed to use
LiDAR acquired PCs, in both Cartesian and cylindrical coordinates, including consid-
erations for training dataset construction. In Section 4, the compression setup using the
four coding methods is explained, along with a description of the used evaluation distor-
tion metrics. This is followed by a discussion on some characteristics of the obtained
reconstructed PCs and the achieved compression rates. The impact of the compression
on 3D object detection is evaluated and discussed in Section 5, first using pre-trained
models, and then using models that were re-trained using compression degraded PCs.
Finally, Section 6 summarizes the obtained results, presents some conclusions and pro-
poses directions for future research.

2 Background information

This section provides comprehensive background information, crucial to understand
the subsequent sections, with a detailed overview of important PC coding methods and
standards. It covers LiDAR specific methods as well as recent DL-based coding algo-
rithms, including a solution proposed by the JPEG Pleno project. It also includes a
review of state-of-the-art 3D object detection techniques.

2.1 Generic point cloud coding methods

Various approaches exist for PC data coding, which can generally be categorized into
three main classes based on their coding principles. These include coding of 3D geom-
etry information through direct 3D data processing, coding of 3D data via projection
into 2D planes, and coding of 3D geometry information using graph representations. In
this section, we primarily focus on the first two classes, which include methods employ-
ing 3D spatial decompositions such as octrees and techniques involving projections onto
2D spaces.

Often mentioned together, [7] and [8] propose very similar methods for static PCC
using the octree data structure as the basis of their method, and employ predictive cod-
ing for surface approximation within a node. In [9], a method that encodes the first PC
in a sequence and then only encodes the changes in point distribution for the next ones
is presented. An improvement on the previously described compression scheme, by
sorting the octree before performing the entropy coding task, is introduced in [10]. The
advantage of organizing the nodes in the octree in ascending order is that the serial-
ized output will have long sequences of repeated symbols, that typically yield high com-
pression ratios. Temporal correlation between octree frames is also explored in [11], by
considering the colour of the models as a graph signal. Correspondence is achieved by
matching the spectral features of the nodes in consecutive octrees. A different partition
method [12], explores the use of quadtree division of flat surfaces of the PC and octree
division in non flat surfaces, the result being a hybrid tree with binary and quadtree
nodes.

As for projection-based PCC, a real-time compression method is proposed in [13],
using a pre-processing stage where the space is divided into user-defined size voxels,

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 4 of 28

that are converted individually into planar 2D domains, using height maps that are
then compressed using JPEG. The authors of [14] and [15] present a scheme to con-
vert PC surfaces into surface patches that are also parameterized as height maps.
The main contribution of [16] is that a set of representative surface patches are cho-
sen based on the similarity with others in the object surface. Only representative
patches and their positions are encoded and transmitted. A two-part paper [17] and
[18], describes a volumetric approach towards PCC, where a continuous volumetric
B-spline function is defined as a surface by fitting it to the PC data. The function coef-
ficients are then quantized and transmitted.

Following industry demand for efficient PCC, Moving Pictures Expert Group
(MPEG) developed two PCC standards: video-based point cloud coding (V-PCC) and
geometry-based point cloud coding (G-PCC) [19] based, respectively, on 2D projec-
tions and octree decompositions. V-PCC uses projections to flatten patches of the
geometry into 2D patches and then encodes the sequence of 2D patches as video,
making it adequate for use with dense PCs. In turn, G-PCC uses octree coding meth-
ods and data structures to encode the geometry of voxelized PCs.

2.2 Point cloud coding for LiDAR

LiDAR PCs, acquired by rotating scanners, exhibit varying spatial densities due to
their specific structures and fixed scanning pattern. Typically, these PCs are denser
near the sensor and sparser farther away. Such characteristics can be exploited for
compression, with specific methods for this PC acquisition concept being proposed in
the literature.

For instance, apart from the direct encoding and planar modes, G-PCC also has an
angular mode specifically for LIDAR PCs. The angular mode in G-PCC has resulted
from improvements to the planar mode when dealing with LiDAR acquired data,
since it optimizes binary occupancy octree coding by utilizing sensor priors such as
the position and number of lasers, as well as the angular resolution of each laser [20].

More recently, MPEG set out to develop a low complexity encoder specifically tar-
geting LiDAR-acquired PC data. The so-called Low-Latency Low-Complexity LIDAR
Codec (L3C2) was first proposed in [21] and exploits the acquisition order of LiDAR
sensor priors in the horizontal and vertical directions. The horizontal direction cor-
responds to the azimuthal angle step for the acquisition of a laser. The vertical direc-
tion corresponds to the elevation angle step of each laser acquisition. The order of
acquired laser samples fills a coarse 2D occupancy map, that is coded following a col-
umn-by-column lexicographic order, with a column representing the elevation angles
for a given azimuthal angle step. The advantage of respecting the sensor acquisition
order is that only the offset between two consecutive points has to be coded, to deter-
mine the position in the coarse representation.

In [22] and [23] LiDAR data are flattened into 2D range images that are then com-
pressed using image compression methods. A Simultaneous Localization And Map-
ping (SLAM) approach towards predicting and compress consecutively acquired PCs
is presented in [24]. In [25] the redundant raw packet data and structure produced
directly by Velodyne LiDAR devices is exploited.

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 5 of 28

LASzip [26] is another compression tool targeted towards LiDAR PC data. It is a loss-
less and order-preserving codec that treats PCs as sequences mostly used in applications
requiring large-scale LiDAR acquisitions.

2.3 Deep learning-based point cloud coding methods

Recently there has been much interest in the introduction of deep learning techniques
into the compression field, following the pattern observed in many other areas. PC data
compression is no exception to this trend, and there are several recently published pro-
posals for data compression methods using learned models.

One of the early examples of DL-based PCC was the study presented in [27], where the
authors made model optimizations based on a ratio and distortion parameter tradeoff,
to create a static PC geometry compression technique based on learned convolutional
transforms and uniform quantization. The same authors further improve their method
in [28] in a way that, it trains the 3D convolutional neural network autoencoders with a
learned prior. The improvements in PCC performance are achieved with the addition of
features that include sequential training, the inclusion of focal loss, and a more efficient
architectural implementation with the addition of residual blocks and deeper trans-
forms, progressively increasing channels as the resolution decreases. In [29], the same
authors propose an approach to compressing PC attributes. It treats the PC as a discrete
2D manifold in 3D space. The system utilizes 2D parameterization and grid mapping
to leverage image processing and compression tools. This involves using a deep neural
network as a parametric function to fold a 2D grid onto a 3D PC. Attributes from the
original PC are then mapped to this grid, allowing for efficient recovery of PC attributes.
Although the 3D-to-2D mapping creates some distortion, the authors describe strategies
to mitigate this in practice.

In [30] a learning-based PCC method is presented making use of the variational
autoencoder (VAE) concept with stacked Volumetric Rendering Networks (VRNs) and
hyperpriors to improve coding efficiency. Also, during training, the method incorporates
Weighted Binary Cross-Entropy (WBCE) loss. For inference, it uses adaptive thresh-
olding to determine voxel occupancy. A second version of the method in [31] employs
progressive down-scaling and sparse convolution techniques to enhance the efficiency
of tensor processing. The downscaled representation effectively captures the sparse and
unstructured characteristics of the points, while incorporating multiscale re-sampling
to account for geometric structural variations. The geometry’s latent representation is
compressed using lossless octree compression methods. The proposed framework opti-
mizes the bit rate and distortions at each scale, using the Binary Cross-Entropy (BCE)
loss. With the usage of sparse tensors in [32] between representations of the same and
different scales of a PC, the authors managed to greatly reduce the complexity when
compared to the previous implementations. A cylindrical coordinate approach towards
LiDAR PC representation based on [32] is made in [33], with latent features encoded
using G-PCC, improving the original method for this type of representation.

Instead of using PC coordinate data, [34] uses raw packet data directly from a LiDAR
sensor. The data are organized into a 2D image with the help of pitch and yaw infor-
mation from the sensor, as described in [22]. After being normalized to 2D, data are
fed to an autoencoder for spatial compression. The calculated residuals between the

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 6 of 28

reconstructed output from the decoder in the first iteration and the original input, are
used for the subsequent iterations. The same authors further improve upon the previ-
ously described method by exploring the temporal redundancy of the streamed data [2].
As in typical video compression, the authors introduce the definition of I-frames (intra-
predicted frames) and B-frames (bi-directionally predicted frames). The method is based
on a U-net [35] that uses two I-frames to predict B-frames between them. The feedback
to the network is given by the calculated residuals between predicted interpolation
B-frames and real B-frames.

In [36], a point-based compression architecture that avoids discretization effects
caused by using grid-based representations is proposed. It consists of an encoder that
subsequently reduces the number of points and computes, for each point, a feature
based on its local neighbourhood using kernel point convolutions (KPConvs) [37].

Following a call for proposals from JPEG [38], the first version of the so-called JPEG
Pleno Point Cloud Coding codec (JPEG Pleno PCC) [39] was introduced. The JPEG
Pleno PCC is a DL-based neural network compression method that has a unique joint
geometry and colour coding system, that uses the same DL model to process both
geometry and colour simultaneously. Given the relevance of this method to the work
presented in this paper, a detailed description will be provided in Section 3. This will
include an adaptation to encode LiDAR PCs in both Cartesian and cylindrical coordi-
nates. Additionally, among other advancements, recent developments have introduced
sparse convolutions to PC compression [40].

2.4 3D object detection methods
In this section, we review state-of-the-art 3D object detection methods that use LiDAR
as their source.

3D Object detection methods using LiDAR PCs can be classified into four main cat-
egories: point-based, voxel-based, point-voxel, and range-based detection methods [41].
In the following, and in the scope of this classification, we present the main characteris-
tics of four deep learning 3D PC detection methods that are considered state-of-the-art
seminal works by introducing innovative concepts, incorporated into most of the best
performing detection methods that directly use LIDAR data. This excludes range-based
3D object detectors from this study. These four methods are the ones selected in this
work to evaluate the object detection performance when using compression degraded
PCs, with results presented in Section 5.

An important class of 3D object detection methods process the PC raw points. These
methods build upon the advances achieved by deep learning techniques like PointNet
[42] and PointNet++ [5]. One example of a PointNet-based detection method is Poin-
tRCNN, that introduces a two-stage object detection framework combining region
proposal generation and object detection proposals [43]. Another key feature of this
implementation is the employment of a Region Proposal Network (RPN) that generates
3D proposals in the form of oriented 3D boxes. This RPN effectively narrows down the
search space, allowing for better efficiency without sacrificing accuracy. More recent
works such as [44] improve on this general framework to achieve higher performance,

with some variations in the region proposal strategies.

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 7 of 28

In the case of voxel-based 3D object detection frameworks, input PCs are divided into
equally spaced 3D voxels and the points within each voxel are transformed using either
2D or 3D convolutional neural networks. The resulting feature representation is then
connected to a RPN to generate detections. VoxelNet [45] is a pioneering work that uses
a voxel-based approach to 3D object detection. Based on similar ideas, the authors of
SECOND (Sparsely Embedded Convolutional Detection) [46] use a sparse convolutional
backbone network. To generate object proposals, SECOND first projects the 3D PCs
onto multiple 2D bird’s eye view maps, capturing the objects’ spatial relationships from
different perspectives, and then, a RPN is utilized to generate potential object locations
based on the extracted features.

In PointPillars [47], the PC is divided into grids in the x-y coordinates, creating a set of
vertical pillars [48] to produce a 2D bird’s eye view of the scene. Additionally, PointPil-
lars training uses data augmentation techniques specifically designed for PC data. These
techniques include random flipping, scaling, and rotation, which effectively increase the
diversity of the training data and enhance the model’s generalization capabilities. The
partition of the PC into pillars is also used in more recent works such as [49] and [50].

PointVoxel-RCNN (PV-RCNN) [43] follows a combined approach that leverages the
advantages of efficient generation of detection proposals, that are associated with voxel-
based 3D object detection, and more rich PC features associated with point-based 3D
object detection. PV-RCNN also introduces a dynamic voxelization strategy that adap-
tively adjusts the voxel size based on the object scale, ensuring accurate representa-
tion of objects with varying sizes. This adaptability contributes to improved detection
performance for objects at different scales. PV-RCNN++ [51] further improves on the
method by changing the regions of interest generation strategy, and introduces Vector-
Pool Aggregation for better aggregation of local point features.

3 Modified JPEG Pleno PCC coder

We use the JPEG Pleno PCC coder as a representative DL-based approach to compress
and reconstruct PCs for object detection performance evaluation. However, in its origi-
nal form, it has the inability to process the reflectance attribute inherent to LiDAR data.
Given that the object of this work is to evaluate the impact of the compression on 3D
object detection methods that rely on this attribute for object detection, an adaptation
was essential to ensure compatibility and a fair comparison. In this section, we present
the main components and the modifications made to the DL-based JPEG Pleno Point
Cloud Coding Verification Model (VM) V1.0 [39]. The level of detail in this section is
compatible with the description of the modifications to handle the reflectance, and with
the need for a clear definition of the training procedures.

The encoder follows a sequential process according to the general architecture in
Fig. 1. Initially, the module “PC Block Partitioning” divides the input PC geometry into
3D blocks that are treated as independently coded units with a designated block size
(BS). Subsequently, in the “Block Down-Sampling Module’, these blocks may undergo
optional down-sampling to a lower grid precision, using a specified sampling factor (SF)
to increase block density before coding. This down-sampling serves as a tool to achieve
lower rates and can yield compression gains, particularly for sparse PCs. The final
encoding step in “DL-based Block Encoding” involves coding each 3D block through a

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 8 of 28

Block Positions Sampling Factor Quantization Step Binarization Parameters
et Ly (LSRR (P eterenoneniaisuies RIS
Input PC Block Block DL-based Binarization |
PC Partitioning | Down-sampling g J Optimization| !
b [P Encoding ' P |
Sampling Factor + / ; E
Quantization Step :
Block Positions ~ Binarization Parameters Sampling Factor Binarization Parameters -
Atk L snais ity A MtV hicainsnn ASsueasiss |
: ! ! ! Quantization
i ! ! ! Step
\ Y Y] |
Reconstructred , | PC Block | { Dl-based Di-based | :
IR o ; Binarization < Block Super-] B,IOCk- <€ Binarization Block ¢
P(Merging i : Up-sampling ’
+ resolution | Decoding
Fig. 1 Original architecture of the JPEG Pleno PCC (from [39])
(]]] BR () Latent Representation
21— “l— oo) o0
3 o . 3 ARENNE v
= o i 4 o
= —> 3 2% 3 | 2|3 |2 [—>Rounding et
2 % 1) Ll o1 () Lol Y1 =1 Lol NS Encoder
= > > = =
S RESREE N
3 3 5] S Entropy |_ Entropy
@) O : <o :
Encoding : Encoding
p— Pp— —— — . ide Info
N
= o o 2
= o _|F«x IRz -
LT Bt I K A S .
m = .o H
= g 0 E | @ =] @ 2 = : Entropy P Hyper : Entropy
'§ %‘J °1 Ll I IS Ll 1A IS ol 1 : Decoding Decoder Decoding
)53 é = 2 >
a g L= A= Lz
O S e 15)
@] @] O

Fig. 2 "DL-based Block Encoding” model description (from [39])

DL model according to the architecture illustrated in Fig. 2, where a non-linear trans-
form with multiple 3D convolutional layers progressively reduces data dimensionality
until reaching the bottleneck layer. Additionally, Inception-Resnet Blocks (IRBs) [52] are
incorporated to extract features by employing parallel convolutional layers with varying
filter support sizes. Following quantization of the feature rich latent representation at
the autoencoder bottleneck, adaptive entropy coding is executed through a secondary
network, tasked with extracting information from the latent representation and generat-
ing a more precise entropy model.

On the decoder side, starting with the “DL-based Block Decoder” the representa-
tion of the encoded blocks is transformed back to a degraded representation of the
original input PC blocks, using the trained DL model. The “Basic Block Up-Sampling”
module applies the inverse up-sampling to convert the blocks back to the original
PC precision. The “DL-based Block Super Resolution” module, not utilized in the

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 9 of 28

analysis presented in this paper, serves as an optional post-processing step, designed
to densify PCs already processed by the Block Up-sampling module, thus enhancing
the reconstructed quality without increasing the compression rate. Finally, the recon-
structed blocks are merged back together to form the representation of a completely
reconstructed PC in the “PC Block Merging” module.

An important notion to have about this technique is how the PC input information
is handled and represented within the method. Before encoding, a PC is transformed
into a 3D block representation, which is based on voxels to form a regular structure.
The input PC has data which include geometry and colour components in RGB colour
space. So, every voxel features four channels, of which the first is a binary signal illus-
trating the geometry information; a '1’ stands for an occupied voxel and a ’0’ for an
empty one. The next three channels are represented in a similar fashion, where occu-
pied voxels are given the corresponding value of each one of the RGB channels scaled
down from the range [0, 255] to [0, 1]. So, a PC with attributes can then be divided
into separate blocks which can then be coded separately using the DL coding model,
as illustrated in Fig. 3a.

For the adaptation of the method to accept LiDAR reflectance attributes the same
voxel occupation representation for geometry information is kept, and reflectance for
occupied voxels is represented as a single attribute channel also scaled down from the
initial range [0, 255] to [0, 1] as shown in Fig. 3b. Encoding is done for each one of the
individual partitioned blocks of the original PC.

To maximize the compression performance, the model is trained by minimizing a
loss function that takes into account the distortion of the decoded blocks in relation
to the input blocks, as well as, the estimated coding rate. For this, the loss function of
the original proposal [39] is maintained:

CHANNELS-> XYZ R G B

“
‘=
&

WWWwWwWwWwwwoww=
WN=>20-=2NWN =0

WWWWN =00 0o

(a) JPEG Pleno PCC original representation of voxel occupation (from [39]).

CHANNELS-> XYZ Reflectance

u
=
N

WL W W W W W W=
WON =2 O -a2NWN 2O

WWWWN =S 00 oo

(b) Adaptation of JPEG Pleno PCC made to process LiDAR reflectance attribute.

Fig. 3 Representation of voxel occupation for geometry + colour in the original method (a), and the
adaptation made to process the single LiDAR reflectance attribute (b)

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 10 of 28

LossFunction = Distortion + 1.CodingRate, (1)

where / is a Lagrangian multiplier that sets a target Rate-Distortion(RD) point for each
one of the DL coding models to be trained. This means that models using different val-
ues of /4 have to be trained for every required compression ratio. The total distortion is
given by:

Total Distortion = (1 — w) x DistortionGeometry + @ X Distortiongefectance: 2)

where w sets the weight given to the reflectance over the geometry. For this study w = 0.1
has been used, following initial experiments that showed that giving more importance to
the DistortionGeometry component of the TotalDistortion function, produced better com-
pression with low impact in the reflectance objective quality of the decoded PCs. The
method uses the Focal Loss (FL) to determine geometry distortion as follows:

_) —a(l—=wTlgv), u=1
FL(v,u) = { —(1—a)vlog(1—v), u=0 (3)

where u is the original voxel value and v is the probability value of the corresponding
voxel value. « is a weight to control class imbalance and y defines the importance of cor-
rection of misclassified voxels in relation to correctly classified voxels. The proposed val-
ues of « = 0.7 and y = 2 were left unchanged throughout the entire set of experiments.

In turn, the distortion function for the reflectance (Distortiongefectance) was introduced
to the method, and is a voxel-wise mean squared error as follows:

1

N2
Distortiongefiectance = (Reﬂectancei — Reﬂectancei)) (4)

Ninput i€Nimput
where Nj,py; is the number of occupied voxels in the input block, Reflectance; is the
reflectance value of the occupied voxel i in the input block and, Reﬂecmnce; is the
inferred reflectance value of the corresponding voxel in the decoded block.

3.1 Training procedure for Cartesian coordinates

As the intent is to encode LiDAR PCs, the modified JPEG Pleno PCC coder must be
trained to use learned features that are particular to this sparse PC representation. For
that, the KITTI 3D Object Detection dataset was used to build a training dataset. The
KITTI dataset is widely known in the field of autonomous driving and computer vision
for benchmarking 3D object detection algorithms. It contains an extensive set of real-
world scenarios captured on vehicle-mounted sensors, including images and LiDAR
PCs, along with a comprehensive annotation of object instances within the captured
scenes, including the 3D bounding box coordinates and their corresponding class labels.
In terms of PCs, the KITTT dataset contains a total of 7,481 training and 7,518 testing
samples.

Originally, PCs in the dataset contain 3D coordinates (x, y, z) and reflectance, each
value expressed in a 4-byte floating-point number, meaning an original processing
representation with 128 bits per point. For the coding experiments, a 12-bit integer
voxel grid was used to voxelize the entire dataset. While many works in the literature

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 11 of 28

commonly use 18-bit voxelization to ensure the preservation of geometric information
within LiDAR PCs, an exploratory study done by the authors showed that adopting a
12-bit voxelization preserved almost all the points in the original non-voxelized PC. In
fact, voxelizing the PCs in the KITTI dataset to 12-bit depths retained about 96% of the
points in the original PCs, as reported in Table 1. As for the reflectance attribute, an 8-bit
normalization was used, with values of original points contained within the same voxel
averaged. Apart from maintaining data integrity, this choice positively impacts execu-
tion performance for compression methods that use block partitioning and encoding.
The adoption of 18-bit voxelization would result in an increase in the number of blocks
to encode with a low number of points each, rendering execution within a reasonable
timeframe impractical.

To train the model on LiDAR data, the voxelized PCs must first be characterized. For
KITTI 3D object detection, each PC was partitioned into 64x64x64 (xyz) blocks, result-
ing in a total of 25,333,760 blocks. From Table 2, on average, there are approximately
33.88 points per block and the maximum number of points per block is 8,625 and, from
Table 3, 95% of all blocks have at most 150 points per block. Subsequently, to form
the training dataset, we established one class for each point count per block, ranging
from 1 to 150. To form each class, we populated 200 blocks with the initial 200 block

Table 1 KITTI 3D object detection voxelization vs. average preserved points per PC

Voxelization grid (bits) Preserved points %

18 119,224.68 100
16 119,224.68 100
14 119,218.58 99.99
12 114,736.50 96.24
10 68,649.24 57.58

Table 2 KITTI 3D object detection training dataset description in terms of partition blocks of size 64

Coordinate space Cartesian Cylindrical
Number of blocks 25,333,760 19,318,270
Average points per block 33.881 44,443
Standard deviation 104.303 81.806

Minimum number of points per block 1 1
Maximum number of points per block 8625 1726

Table 3 KITTI 3D object detection training dataset point distribution within partition blocks of size
64

Coordinate space Cartesian Cylindrical

Percentile (number of points per percentage of total blocks)

25% 2 3
50% 6 13
75% 21 47
90% 70 127

95% 150 202

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 12 of 28

occurrences in the KITTI training dataset, for the corresponding number of points.
For instance, class 1 comprises the first 200 64x64x64 blocks with a single point, while
class 2 includes the initial 200 blocks with two points, and so forth. Furthermore, 10%
of the blocks were set aside exclusively for model validation purposes during the train-
ing phase. This approach created a total of 27,000 training blocks and 3,000 validation
blocks, representing approximately 0.11% of the overall number of blocks in the dataset.

3.2 Training procedure for cylindrical coordinates

For the case of LiDAR PC acquisition, the sensor uses a horizontal rotational move-
ment in fixed increments and scans consistently across the vertical plane, resulting in
the generation of data points. In an autonomous driving situation, the nature of objects
often causes them to appear at the same horizontal level. Specifically, these PCs tend to
exhibit denser points in close proximity to the sensor, gradually becoming sparser as the
distance increases. Taking advantage of the fact that a cylindrical geometry is closer to
the natural characteristics of the LiDAR sensor acquisition, the cylindrical coordinate
system is a natural fit to represent this type of data, since all points exist within a cir-
cular acquisition range. In [33], the authors use the cylindrical coordinate system on a
DL-based coding method improving on a Cartesian approach. Given the above reason-
ing, we also included in this work the training of the modified JPEG Pleno PCC using
cylindrical coordinates.

Cylindrical coordinates are a three-dimensional coordinate system that represents
a point in space using three parameters: radial distance (p), azimuthal angle (6), and
height (z). The radial distance p, is the distance from the origin to the point of interest,
measured along a line that is perpendicular to the z-axis. Azimuthal angle 6 is the angle
measured in the xy-plane representing the rotation around the z-axis from a reference
direction. The height z represents the vertical position of the point, measured along the
z-axis from the xy-plane. Another advantage of using this representation is that, in prac-
tice, the acquired points would not need to be converted to a Cartesian xyz coordinate
system before being used for downstream processing tasks.

Since all available datasets use the Cartesian coordinate system, one must first convert
the PCs into cylindrical coordinates using the formula:

0 = 1/x2 + 2,0 = arctan (%),and z=z. (5)

Figure 4 shows the result of the conversion from the Cartesian coordinate system to the
cylindrical coordinate system.

Following the training procedure employed for the Cartesian coordinate case, the
training dataset from the KITTI 3D object Detection benchmark is firstly converted to
the cylindrical coordinate system and also voxelized to the integer grid bit depth of 12
bits, as in the Cartesian coordinate case, resulting in a total of 19,318,270 blocks with
a size of 64x64x64 (p0z). For this case, on average, each block contains 44.44 points.
Expectedly, from Table 3, 95% of these blocks have at least 200 points, while the max-
imum number of points in any given block is 1,726. This time, to cover 95% of the
block configurations present in this partition configuration, the training dataset con-
tains, in this case, 200 classes with each class having 200 examples of block occupation

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 13 of 28

Fig. 4 lllustration of the conversion of a PC from Cartesian (top) to cylindrical coordinate system (bottom)
where azimuthal angle (6) is mapped to the x axis, radial distance (p) is mapped to the y axis, and height (2) is
mapped to z axis

distributions. Again, 10% of the blocks were used for validation purposes. As a result
of this conversion and representation in cylindrical coordinates, we can observe that
this scheme produces a denser representation of the scene, as the number of total parti-
tioned blocks is smaller while the number of points per block increased, when compared
to the same information represented in the Cartesian coordinate system.

The networks were trained from scratch using the corresponding datasets. 4 values
of 0.000025, 0.00005, 0.0003, 0.0001 and 0.0006 were used for training. The sequential
procedure of re-training subsequent compression rate models from the smallest to the
largest A, was used as described in the original implementation.

4 Experimental setup, coding configurations and test conditions

In this section, we present the experimental setup, PC coding configurations and test
conditions that will be used to prepare the PCs and evaluate the impact of the compres-
sion on the computer vision task under consideration. The selected coding methods
are the previously described modified JPEG Pleno PCC coder, both for Cartesian (M]
L-PCC) and for cylindrical coordinates (MJ LC-PCC), G-PCC version 14 [53] in angu-
lar mode, as well as L3C2. For each of the selected compression methods, five differ-
ent compression parameters were selected to generate compressed datasets with varying
levels of data reduction and associated objective quality.

Compression parameters for geometry and attributes for both G-PCC and L3C2
encoders, are shown in Table 4. Attributes were encoded using the Hierarchical Neigh-
bourhood Prediction as Lifting Transform mode for both encoders, and G-PCC was con-
figured to use the angular mode for geometry encoding. Other important parameters
for the encoders are the priors related to the position of the LiIDAR sensor head, as well
as the vertical angle for each laser beam and the number of acquisitions per head turn.

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 14 of 28

Table 4 G-PCC and L3C2 encoder settings for the used compression ratios

R1 R2 R3 R4 R5

iti i7ati 1 1 1 1 1
Position quantization scale Tood 4 = 7 e
Attributes quantization 51 43 37 32 30

parameter

These priors were parameterized according to the KITTI sensor calibration file since the
laser positions differ from the default configurations provided with the MPEG CTC [54].
JPEG Pleno PCC for LiDAR used the previously trained models with / values of
0.000025, 0.00005, 0.0003, 0.0001 and 0.0006, and a SF of 1 for PCs represented in
both Cartesian and cylindrical coordinates, and a for a BS of 64.
The results of these experiments in terms of PC reconstruction distortion are pre-
sented in Section 4.2.

4.1 Distortion metrics

To evaluate the quality of the coded PCs, the recommended objective quality metrics
PSNR D1, PSNR D2 and reflectance PSNR are used [54], as well as the density-to-
density distortion—PSNR D3 [55].

When using point-to-point metrics, the distance between each point in the refer-
ence PC and the point that is closest to it in the reconstructed PC is computed. The
most common distance measure used is the Euclidean distance, which calculates the
straight-line distance between two points in a three-dimensional space. It is impor-
tant to note that the point-to-point metric solely focuses on the position of individ-
ual points and does not take into account other factors such as surface normals or
semantic information. As a result, it may not capture all aspects of quality or similar-
ity in complex 3D scenes.

To complement the D1 quality metric, the D2 point-to-plane metric, that is based
on the distance between a point and the corresponding plane, is used. The plane is
determined based on the neighbouring points around each point in the reference PC.
Then, for each point in the degraded PC, the distance between the point and the cor-
responding plane is computed. The point-to-plane metric provides a more compre-
hensive evaluation of the alignment quality because it takes into account not only the
position of individual points, but also the local surface geometry. For PSNR D1 and
D2 distortion values, the PSNR is defined as the peak signal over the symmetric dis-
tortion, computed as [54]:

PSNRp, = 101log,, 3" , ©)
max(Bf‘\),max(ez’]‘g)

— 2bitdepth

where p — 1 is the associated resolution of the PC voxelization, in this case

12 bits are used. egiil, 6%3 are the mean squared errors depending on the PC being used
as the reference—PC A being the original and PC B being the reconstructed PC—com-

puted according to the D1 metric (point-to-point) or D2 metric (point-to-plane).

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 15 of 28

For the reflectance attribute quality metric, the symmetric computation of the reflec-
tance mean square error (MSE) (symmetricMSE) is done following the same approach
used for geometric distortions. The highest level of distortion of the two passes is then
chosen as the measure of distortion:

2

PSNRReﬂectance = 1010glo (W)’ (7)
where the peak value p in this case is 255 as the reflectance component of all used PCs
has a bit depth of 8 bits per point.

The D1 point-to-point quality metric, the D2 point-to-plane metric and the reflec-
tance PSNR values were calculated using the evaluation metric software for PC coding
[56]. It is important to note that this tool assumes a 16-bit peak quantization value for
the reflectance attribute. In our case, the tool was adapted to accurately determine the
8-bit reflectance PSNR.

The PSNR D3 measure described in [55] is a density-to-density measure that is based
on the comparison of the input and reconstructed PC density distributions. It was spe-
cifically designed to detect density distribution degradation such as incorrect occupancy
estimation. These occurrences are most common in DL-based coding methods such as
the evaluated LiDAR JPEG Pleno PCC adaptation.

Finally, the number of bits per point from the input PC (bpp) is used as reference to

measure the compression ratio.

4.2 Discussion on compression performance

This section presents an analysis of the rate-distortion performance of the PCs codings
using G-PCC, L3C2 and both JPEG PCC LiDAR adaptations, tested according to the
description at the beginning of Section 4. It describes the tradeoff between compression
efficiency and reconstruction quality for each coding method. Figure 5 shows the results
for the D1 point-to-point metric, D2 point-to-plane metric, D3 density-to-density met-
ric and the reflectance attribute PSNR. Each point in the plots corresponds to the aver-
age PSNR for a given quality metric and achieved compression bit rate for every PC of
the KITTI dataset. The error bars represent the standard deviation of the data points for
both quality and bit rate. We included these error bars to account for the variability in
quality and compression performance observed across different PCs within the dataset,
which is influenced by the specific features present in each acquired scene.

Analysing the rate distortion (RD) performances in Fig. 5—point-to-point D1 and
point-to-plane D2, it is clear that on average G-PCC and L3C2 outperform the DL meth-
ods in terms of geometry coding distortion performance. The same can be said for the
reflectance attribute coding distortion according to Fig. 5—reflectance PSNR, while both
JPEG PCC LiDAR adaptations, MJ L-PCC and MJ LC-PCC average PSNR values indi-
cate good performance for the implemented methods. Also, Fig. 5—density metric D3
indicates that MJ L-PCC and MJ LC-PCC can produce reconstructed PCs with a density
distribution pattern similar to that of the input. However, with an increase in both the
local and global number of points (Fig. 6).

Comparing both non-DL methods, it is clear that the RD performance of G-PCC in
angular mode, on average, is better than L3C2. But it can be said that the performance of

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 16 of 28

Point-to-Point D1 Point-to-Plane D2
7 3? 1 ?F
65 %_‘ 70 | —
2 [
o 601 l o 651
z — z
551 A1 601
g
50 4
-+ G-PCC 55 -+F G-PCC
-+ L3C2 -+ L3C2
45 4 ~F+ MJ L-PCC -+F+ M) L-PCC
+F+ M) LC-PCC 507 ~F~ Mj LC-PCC
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
BPP BPP
Density Metric D3 Reflectance PSNR
20 4
+F+- G-PCC 28 1 +F+ G-PCC
-+F~ L3C2 +F L3C2
18 1 —+F+~ MJ L-PCC 56 “E- MIL-PCC —
~F+ MJ LC-PCC ~+F M) LC-PCC
16 4 e
24 4
€14 i E
& / & 224
-4 -4
— | T
124
J 201 |
10 4
1 4;17‘%
8
T T T T T T T T 161 T T T T T T T T
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
BPP BPP

Fig. 5 Point-to-point D1 PSNR, point-to-plane D2 PSNR, density-to-density D3 PSNR, and reflectance PSNR
for the KITTI 3D object detection benchmark

Fig. 6 Scene“003237"from the training set of KITTI 3D object detection benchmark, with examples of “Car’,
“Pedestrian”and “Cyclist” classes. To be used as visual reference to PCs shown in Figs. 7 and 13

G-PCC is highly dependent on the scene being compressed as for any given compression
ratio there is a considerable deviation from the average value. This is due to the way the
angular mode works, as it tries to approximate all points to a set of planes defined by the
sensor head laser angle priors. Figure 7c, d shows this behaviour with the reconstructed
PC having points placed in a well-ordered grid, that preserves the structure of objects
but eliminates fine contour details. This gives G-PCC an advantage when encoding
scenes containing regular surfaces as buildings, but poor performance in complex scenes
in rural or forest areas. On the other hand, L3C2 can produce accurate reconstructed PC
representations relatively independent of the morphology of the scene for a given target
compression ratio. This is indicated by the error bars in Fig. 5—point-to-point D1 and
point-to-plane D2 that present a small deviation from the average RD values for L3C2.
This effect can be seen in Fig. 7e, f.

For the case of MJ L-PCC and MJ LC-PCC, they both perform worse than G-PCC and
L3C2 in RD geometry metrics D1 and D2. This can be attributed to the fact that this DL

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15

(a) original uncompressed (b) 12-bit voxelized

(¢) G-PCC at R04 (4.63 bpp) (d) G-PCC at R02 (1.55 bpp)

(f) L3C2 at R02 (2.40 bpp)

(g) MJ L-PCC at A = 0.00005 (4.56 bpp) ~ (h) MJ L-PCC at A = 0.0003 (1.54 bpp)

(i) MJ LC-PCC at A = 0.00005 (2.86 bpp) (j) MJ LC-PCC at A = 0.0003 (1.15 bpp)
Fig. 7 Detail from PC“003237"from the training set of KITTI 3D object detection benchmark, compressed
with G-PCC, L3C2, MJ L-PCC and MJ LC-PCC.“Low compression”refers to 4 = 0.00005 and “high compression”
refers to A =0.0003

method uses a “top-k” approach based on the voxel occupancy probability to determine
whether a point should be added to the reconstructed decoded representation or not.
This adds points to the vicinity of where the original point actually was, increasing the
density in that area. This is also shown by the D3 metric, as the PSNR values indicate
that MJ L-PCC and MJ LC-PCC can accurately replicate the original PC density distri-
bution, where denser areas of the original PC are also denser areas in the reconstructed
PC. Fig. 7h and j shows a detail of this behaviour. This increased density may be helpful

Page 17 of 28

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 18 of 28

in the case of dense PCs where the presence of a point generally means that a surface
is present, but less in the case of sparse LIDAR PCs where this is not true. This behav-
iour can be confirmed by looking at the reconstruction where regular structures such as
roads are maintained, while intricate details disappear. Another obvious shortcoming is
the ability of the method to represent points along the partition block boundaries, with
the introduction of artefacts either by adding points to the boundary in sparser blocks or
not representing them in denser ones. The consistency of the output is another problem.
For instance, Fig. 7 features two cars exhibiting similar structures at a close distance, so
one would assume a reconstruction with comparable characteristics for both structures
as it is the case for G-PCC and L3C2. Yet this does not happen for MJ L-PCC and MJ
LC-PCC. The division of the PC into blocks also aggravates the problem with the poten-
tial for an object of interest to be divided across contiguous blocks. This introduces deg-
radation along the partition boundary affecting the representation of the object.

In turn, MJ LC-PCC performs worse than M] L-PCC in terms of RD, even though intu-
itively the denser cylindrical representation should benefit the ability of the method to
reconstruct PCs more faithfully to the original. This discrepancy in RD can be explained
as the results shown are computed after converting the reconstructed PCs from cylin-
drical to Cartesian coordinate space. Consequently, even though the method works to
reduce the error in cylindrical coordinate space, the conversion to Cartesian coordinate
space does not correlate well with the geometry characteristics of the original input PC.
In the particular case of MJ LC-PCC, although artefacts exist also in the block partition
boundaries, they are distributed in the azimuthal axis of the LiDAR and widens with
increasing distance from the sensor. Thus, there is a greater likelihood of an element of
interest being entirely contained within a single block.

5 Impact of compression on 3D object detection

Following the reconstruction of the PCs using G-PCC in angular mode, L3C2, MJ L-PCC
and MJ LC-PCC, this section describes the procedure to determine the impact that the
use of degraded PCs has on 3D object detection method performance.

As described in Section 3.1, a 12-bit voxelized version of the KITTI 3D object detec-
tion training set is used to determine the performance of the detection methods on the
reconstructed PCs subjected to the compression methods. It features annotated ground
truth bounding boxes for each object class—“Car’, “Cyclist” and “Pedestrian”—and
each one is categorized in “Easy” (minimum object size of 40 Px, fully visible and max
truncation of 15%), “Moderate” (minimum object size of 25 Px, partly occluded and
max truncation of 30%) and “Hard” (minimum object size of 25 Px, difficult to see and
max truncation of 50%). The official evaluation detection metric for this dataset is the
3D average precision (3D AP) and relies on the intersection over union (IoU) between
predicted bounding boxes and ground truth bounding boxes. Only detections with a
bounding box overlap of at least 70% for cars, and 50% for cyclists and pedestrians are
considered for performance estimation on detection. Also, the result of the “Moderate”
evaluation is used to rank a detection method submitted to evaluation on the bench-
mark. Following the standard literature practice, the official training dataset was divided
into 3712 training samples and 3769 validation samples [57].

Martins et al. EURASIP Journal on Image and Video Processing

(2024) 2024:15

The four 3D object detection methods, SECOND, PointPillars, PointRCNN and
PV-RCNN, were chosen, given their seminal work status in the literature, and each
representing different approaches to the detection problem, that could be impacted
differently depending on the compression method and compression parameters used:
compression rate for G-PCC and L3C2; 4 for MJ L-PCC and MJ LC-PCC.

The compressed PCs for each of the five compression rates and for the four encod-
ing methods, G-PCC, L3C2, MJ L-PCC and MJ LC-PCC, were reconstructed and
converted back to the original coordinate system and format of the KITTI dataset.
Then, all four 3D object detection methods were applied to the reconstructed and
converted PCs, and their detection performance was evaluated using publicly avail-
able pre-trained models [58]. With this experiment, we evaluated if learned PC fea-
tures that are used by the pre-trained detection models are lost to some extent during
the compression, affecting object detection performance. Figure 8 summarizes this
experiment.

Another experiment was conducted, to evaluate to which extent the detection mod-
els’ performance when using compression degraded PCs, could improve by being re-
trained on reconstructed PCs after compression. With this approach, the re-trained
models could learn new PC features introduced by the compression using PCs recon-
structed on a particular compression parameter. To this end, all detection methods
were re-trained using each individual reconstructed dataset (divided by compression
parameters) from G-PCC, L3C2, MJ L-PCC and MJ LC-PCC, as the source. The pre-
trained models were used as a starting point and re-trained for 140 epochs. The best
performing epoch of the re-trained detection models were then evaluated using the
corresponding reconstructed validation set from KITTI, as shown in Figure 9.

Point Cloud

3D Object Detection
Compresson / ~

Evaluation N\

\

Pre-Trained
PointPillars
G-PCC -R1

3DAP
PointPillars
G-PCC-R1

G-PCC
R1 (train)

Pre-Trained 3DAP

PointPillars
G-PCC -R5

PointPillars
G-PCC-RS

G-PCC
R5 (train)

\& =

Fig. 8 Flowchart for the procedure to evaluate the pre-trained object detection performance on
compressed PCs

Page 19 of 28

Martins et al. EURASIP Journal on Image and Video Processing

(2024) 2024:15

Point Cloud 3D Object Detection
Compresson | Training / Evaluation
=ree | Foiiers Pompirs
R1 (va) PointPillars Saiigils
R2 annm
R4 e nm
R5
> PointPillars Pofs I3AiIT;rs
R%'ﬁgﬁ) G-PCC - R5 iyt

Fig. 9 Flowchart for the re-training and evaluation procedure to determine object detection performance
on compression degraded PCs

5.1 Compression effects on 3D object detection using pre-trained models

The results of evaluating 3D object detection methods using pre-trained models are
shown in Fig. 10. It can be observed that the performance for all tested detection
techniques, difficulty levels and for both G-PCC and L3C2, suffer only a small degra-
dation, even for very high compression ratios, down to about the average coding rate
of 3 bpp for the “Car” class, 4 bpp for the “Cyclist” class and 5 bpp for the “Pedestrian”
class.

Exceptions are PV-RCCN with the “Pedestrian” class where detection degradation is
observed right from 6 bpp down, and PointPillars, also with the “Pedestrian” class, which
has poor detection performance for the entire rate range. On the other hand, for the case
of “Car” and the “Easy” category, degradation in detection starts to be noticed only near
the 3 bpp rate mark.

Interestingly enough, PointRCNN detection performance on compressed PCs with
G-PCC or L3C2 is slightly higher than that obtained on original uncompressed PCs.
This is probably due to a filtering-like effect of the compression, that eliminates outlier/
noisy points.

On the comparison between 3D object detection performance using G-PCC or
L3C2, for the same rates, PCs encoded with G-PCC lead to better object detection per-
formance than those encoded with L3C2. This should be expected since, according to
Fig. 5—point-to-point D1 and point-to-plane D2, G-PCC produces, on average, better
RD results for any given compression ratio, but looking into the error bars, L3C2 pro-
duces a reconstruction with less variation in objective quality independently of the input
PC.

The better performance of G-PCC means that the detection methods do not use
fine details to define the structure of an object of interest, so the features of G-PCC in

Page 20 of 28

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 21 of 28

PV-RCNN - Car PV-RCNN_- Pedestrian PV-RCNN_- Cyclist

POIntRCNN - Pedestrian

=

SECOND - Pedestrian

3D Average Precision

PointPillars - Car PointPillars - Cyclist

Average coding rate of PCs in the evaluation set of the detection methods

—e— MJLC-PCC Easy —e— M) L-PCC Easy L3C2 Easy —e— G-PCC Easy —— 12 bit Voxelized Easy
MJLC-PCC Moderate ~ —+— M) L-PCC Moderate ~ —+— L3C2 Moderate ~—¥— G-PCC Moderate ---- 12 bit Voxelized Moderate
—— M LC-PCC Hard —— MJ L-PCCHard L3C2Hard G-PCCHard 12 bit Voxelized Hard

Fig. 10 3D average precision results for each object class and detection method evaluated on pre-trained
models—method and class on top of each plot

angular mode produce a compatible PC representation that preserves relevant object
features resulting in a more successful detection.

For the case of the DL-based coding methods, MJ L-PCC and MJ LC-PCC, the pre-
trained 3D object detection methods struggle for all tested /4 values. It is only for the
case of “Pedestrian” PV-RCCN and SECOND, that these methods near the detection
performance for G-PCC and L3C2. Comparing both DL coding methods, MJ L-PCC
outperforms MJ LC-PCC for the “Car” class, while for the other two classes, MJ LC-
PCC has the best performance.

M]J LC-PCC even has the best performance on PV-RCNN “Pedestrian’, and achieves
similar results to G-PCC and L3C2 for SECOND and PointPillars. The DL-based
compression methods produce a denser representation when compared to the input
PC, whose retained fine detailed features such as those in pedestrians and cyclists
seem to aid the detection methods. The differences between MJ L-PCC and the bet-
ter performing MJ LC-PCC can be attributed to the denser cylindrical representation
shown in Fig. 5—Density Metric D3.

Comparing DL with non-DL compression methods, the 3D object detection perfor-
mance remained comparable for similar objective quality of the reconstructed PCs.

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 22 of 28

5.2 Compression effects on 3D object detection using re-trained models

In Fig. 11, we present the detection performance of the re-trained detection meth-
ods using reconstructed PCs. These models were evaluated on PCs with the same
compression parameters as those used during training. The performance of all object
detection methods improved for low bit rates when compared to the pre-trained eval-
uation in Fig. 10.

At an average coding rate of 1 bpp, there is a noticeable improvement in the 3D AP
value for “Car” in the “Easy” category when using G-PCC compression. Specifically,
PV-RCNN shows an increase from about 60% to above 80%, while PointPillars also
experiences a similar behaviour from approximately 50% to above 80%. However, the
improvement for SECOND and PointRCNN at this average coding rate is relatively
small, as their initial performance with evaluation on pre-trained models was already
around 75%. On the other hand, when PCs are compressed with L3C2 at an average
coding rate of around 0.5 bpp, there is a consistent enhancement in the 3D AP value
for “Car” across all detection methods, reaching 70%, except for PV-RCNN, which
achieves an even higher detection rate of 80% in the “Easy” category.

00 PV-RCNN - Car PV-RCNN - Pedestrian PV-RCNN - Cyclist

PointRCNN - Car PointRCNN - Pedestrian

SECOND - Car SECOND - Pedestrian SECOND - Cyclist

3D Average Precision

—)
e e

:: jp=anE

o PointPillars - Car PointPillars - Pedestrian PointPillars - Cyclist

[1 2 3 1 5 6 [1 2 3 4 5 6 [1 2 3 2 5 6
Average coding rate of PCs in the training set of the detection methods

—e— M) LC-PCC Easy —e— M) LPCC Easy L3C2 Easy +— G-PCC Easy —= 12 bit Voxelized Easy
M) LC-PCC Moderate ~ —¥— M]L-PCC Moderate ~ —¥— L3C2 Moderate ~—¥— G-PCC Moderate ---- 12 bit Voxelized Moderate
—+— MJ LC-PCC Hard —+— MJ L-PCC Hard L3C2 Hard G-PCC Hard 12 bit Voxelized Hard

Fig. 11 3D average precision results for each object class and detection method evaluated on specifically
trained models for each coding method and rate—method and class on top of each plot

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 23 of 28

M]J L-PCC and MJ LC-PCC also benefit from re-training, giving the detection meth-
ods a chance to learn from reconstructed PCs with a denser representation than that of
the original KITTI dataset.

From the overall results in Fig. 11, there are significant improvements on detection
performance when re-training the models with reconstructed PCs, relative to the pre-
trained model performance. For the higher compression rates used, in the range of 2
bpp—6 bpp, it approaches the detection performance when using pre-trained models on
the uncompressed data. In all cases, PCC below an average coding rate of 1 bpp degrades
the PCs to the point where models also struggle to learn features that define an object
class.

A special case can be observed with PointRCNN, that sees no meaningful improve-
ments with re-training using compressed PCs, meaning that this detection model
already learns to use PC features that are preserved during compression and re-training
does not help to improve its performance. Interestingly, for PCs encoded with G-PCC,
the detection performance actually worsens with re-training, particularly for the “Car”
category. This can be attributed to the nature of the re-training process, which involves
multiple epochs using data similar to the original, especially in cases where recon-
structed PCs were subjected to lower compression ratios. Consequently, re-training may
not necessarily lead to an improvement in detection performance and may introduce
instability as the network struggles to converge towards a clear direction.

Also in this case, for both DL and non-DL compression methods, the 3D object detec-
tion performance using re-trained models remained comparable for similar objective
quality of the reconstructed PCs.

In Figure 12, we present the evaluation result of the pre-trained PointRCNN model on
a 12-bit voxelized PC before compression. This serves as the baseline for evaluating the
performance of the re-trained models on the same reconstructed PC. This visual evalu-
ation of the impact of compression on object detection is presented in Figure 13. Images
on the left (13a, ¢, e, g) represent the scenario with lower compression, where compared
to the baseline, object detection performance is similar, as shown by the bounding boxes
around detected objects. Conversely, the images on the right (13b, d, f, h) demonstrate
the result for higher compression. In this case, there is a noticeable degradation in
object detection performance, where bounding boxes appear misaligned, there are false-

positive classifications, and objects are not detected altogether when compared to the

1
i
1
|

. g (! Vi
Fig. 12 Detection results using the pre-trained model of PointRCNN on 12-bit voxelized PC“003237" Light

green boxes denote ground truth annotations, while black, red, and blue boxes represent detected instances
of “Car’,"Pedestrian”and “Cyclist” classes, respectively

Martins et al. EURASIP Journal on Image and Video Processing (2024) 2024:15

(a) G-PCC at R04 (4.63 bpp) (b) G-PCC at RO1 (0.43 bpp)

s

o ARG A e
-
.
;
:
i
R

EES 1]
>
v 3
o
Fl

(f) MJ L-PCC at A = 0.0006 (0.97 bpp)

,\
@
&
<~
&
e}
Q
Q
®
o+
>
Il
o
o
S
S
S
S
—
L
RS
>
o
]
T
2

(g) MJ LC-PCC at A = 0.00005 (2.86 bpp) (h) MJ LC-PCC at A = 0.0006 (0.34 bpp)
Fig. 13 Detection results using re-trained models of PointRCNN on PC“003237" compressed with G-PCC,

3C2, MJ L-PCC and MJ LC-PCC. Light green boxes denote ground truth annotations, while black, red, and
blue boxes represent detected instances of “Car’, “Pedestrian” and “Cyclist” classes, respectively

A v o Sxeon

baseline, indicating instances where the compressed data adversely affected the accuracy

of object detection.

6 Conclusions

Our investigation into PCC and object detection using various methods, has produced
valuable conclusions into both PC coding and object detection performance, as well as
on the joint effects of compressing the source PCs on object detection performance. The
successful adaptation of JPEG PCC for LiDAR, specifically for Cartesian (M] L-PCC)

Page 24 of 28

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 25 of 28

and cylindrical (MJ LC-PCC) coordinates provided the means to include DL-based
coding methods into this study. Both MJ L-PCC and M]J LC-PCC are reliant on a voxel
occupancy probability threshold and the partition of PCs into blocks for encoding. This
results in increased point density and artefact generation on the borders of the partition
blocks, impacting objective quality and reconstruction consistency.

In what concerns PC coding alone, comparing the RD performance, non-DL methods
such as G-PCC and L3C2 consistently outperformed MJ L-PCC and M] LC-PCC meth-
ods, with L3C2 demonstrating high consistency in reconstructed representations across
different scenes. G-PCC in angular mode, while better on average, exhibited most varia-
tions in RD depending on the scene environment.

In what concerns object detection performance using pre-trained models on com-
pressed PCs, degradation was observed across all tested techniques and difficulty lev-
els. G-PCC outperformed L3C2 for object detection, aligning with their respective RD
results and showing that the smaller variation in objective quality in reconstruction
of L3C2 does not contribute to better detection performance. It is only for the case of
“Pedestrian” that the DL-based methods, MJ L-PCC and MJ LC-PCC, achieve detec-
tion performance close to that of G-PCC and L3C2, for the tested compression ratios.
Furthermore, the use of cylindrical coordinates improves the detection performance of
the DL-based detection methods, with M]J LC-PCC outperforming MJ L-PCC, indepen-
dently of the used detection model for the case of “Pedestrian” and “Cyclist” classes.

In terms of object detection performance in a re-training scenario, object detection
methods demonstrated improved performance at the higher compression ratios, that is,
in the lower rate range. PV-RCNN, SECOND and PointPillars improved over the pre-
trained model detection for average coding rate values below 3 bpp, benefiting from
learning on reconstructed PCs.

Overall, we can conclude that PCs can be compressed using G-PCC or L3C2, down
to 6 bpp while maintaining minimal detection degradation with pre-trained detec-
tion models. This is especially important when taking into account the original struc-
ture of the tested KITTI dataset that represents each PC coordinate component as a
4-byte floating-point number. This highlights the potential for achieving better storage
and transmission efficiency by employing compressed representations of PCs for object
detection purposes.

Furthermore, using pre-trained detection models makes compression factors as low
as 4 bpp feasible, provided that a certain level of detection performance degradation
is acceptable for the intended application. In scenarios where preserving higher detec-
tion performance is crucial at average compression rates below this threshold, using
re-trained models proves to be effective in improving detection capabilities down to
compression rates as low as 2 bpp. Also, while the used DL-based methods exhibit lower
compression efficiency in this context, the impact on 3D object detection performance
remains comparable across both DL and non-DL methods for similar values of objective
quality.

Future research should explore alternatives to the partition-based DL compression
methods. One path worth investigating is the adoption of a sparse tensor-based repre-
sentation, which relies solely on occupied voxel information, eliminating the require-
ment for PC partitioning.

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 26 of 28

Acknowledgements
Not applicable.

Author contributions

Nuno A. B. Martins developed the adaptation of the DL-based compression method to accept LiDAR data. He also made
data preparation, test, and analysis of the compression methods and 3D object detection performance, as well as, the
manuscript preparation. Luis A. da Silva Cruz and Fernando Lopes participated in the development of the presented
experiments. All authors read and approved the final manuscript.

Funding

This research was supported by the Instituto de Telecomunicagdes under Fundagéo para a Ciéncia e Tecnologia (FCT)
projects UIDB/EEA/50008/2020 (https://doi.org/10.54499/UIDB/50008/2020) and LA/P/0109/2020, and, FCT doctoral
grant 2023.00308 BDANA.

Availability of data and materials
The datasets generated and/or analyzed during the current study are available on request from the corresponding
author.

Declarations

Competing interests
Luis A. da Silva Cruz is a Guest Editor for this publication.

Received: 8 February 2024 Accepted: 9 June 2024
Published online: 17 June 2024

References

1. S.Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, PA. Chou et al,, Emerging MPEG standards for point cloud
compression. [EEE J. Emerg. Sel. Top. Circuits Syst. 9(1), 133-148 (2019). https://doi.org/10.1109/JETCAS.2018.28859
81

2. C.Tu, E. Takeuchi, A. Carballo, K. Takeda, Real-time streaming point cloud compression for 3D LiDAR sensor using
U-Net. [EEE Access. 7, 113616-113625 (2019). https://doi.org/10.1109/access.2019.2935253

3. T.Gandor, J. Nalepa, First gradually, then suddenly: understanding the impact of image compression on object
detection using deep learning. Sensors. (2022). https://doi.org/10.3390/522031104

4. L. Garrote, J. Perdiz, L.AA. da Silva Cruz, UJ. Nunes, Point cloud compression: impact on object detection in outdoor
contexts. Sensors. 22(15), 1-12 (2022). https://doi.org/10.3390/522155767

5. CR.Qij,L.Yi, H. Su, LJ. Guibas, PointNet++: Deep hierarchical feature learning on point sets in a metric space.
Advances in Neural Information Processing Systems. 2017:5100-5109. (2017) arXiv:1706.02413

6. A.Geiger, P Lenz, R. Urtasun, Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In: Confer-
ence on Computer Vision and Pattern Recognition (CVPR); (2012)

7. R.Schnabel, R. Klein, Octree-based Point-Cloud Compression. Symposium on Point-Based Graphics 2006. (2006)

8. Y.Huang, J. Peng, C. Kuo, M. Gopi, Octree-Based Progressive Geometry Coding of Point Clouds. Eurographics Sym-
posium on Point-Based Graphics (SPBG). (2006). https://doi.org/10.2312/SPBG/SPBG06/103-110

9. J.Kammerl, N. Blodow, RB. Rusu, S. Gedikli, M. Beetz, E. Steinbach, Real-time compression of point cloud streams.
Proceedings - IEEE International Conference on Robotics and Automation. p. 778-785. (2012). https://doi.org/10.
1109/ICRA.2012.6224647

10. D.C. Garcia, R. L. De Queiroz, Context-based octree coding for point-cloud video. Proceedings - International Confer-
ence on Image Processing, ICIP. 2017-Septe(September):1412-1416, (2018). https://doi.org/10.1109/ICIP2017.82965
14

11. D.Thanou, PA. Chou, P. Frossard, Graph-based compression of dynamic 3D point cloud sequences. IEEE Trans. Image
Process. 25(4), 1765-1778 (2016). https://doi.org/10.1109/TIP2016.2529506. arXiv:1506.06096

12. B.Kathariya, L. Li, Z. Li, J. Alvarez, J. Chen, Scalable Point Cloud Geometry Coding with Binary Tree Embedded
Quadtree. Proceedings - IEEE International Conference on Multimedia and Expo. 2018-July. (2018). https://doi.org/
10.1109/ICME.2018.8486481

13. T.Golla, R. Klein, Real-time point cloud compression. IEEE International Conference on Intelligent Robots and Sys-
tems. 2015-Decem:5087-5092. (2015). https://doi.org/10.1109/IROS.2015.7354093

14. T.Ochotta, D. Saupe, Compression of point-based 3D models by shape-adaptive wavelet coding of multi-height
fields. Proc Symposium on Point-Based Graphics. p. 103-112. (2004)

15. T.Ochotta, D. Saupe, Image-based surface compression. Comput. Graphics Forum. 27(6), 1647-1663 (2008). https://
doi.org/10.1111/j.1467-8659.2008.01178.x

16. E.Hubo, T. Mertens, T. Haber, P. Bekaert, Self-similarity based compression of point set surfaces with application to
ray tracing. Comput. Graph. (Pergamon). 32(2), 221-234 (2008). https://doi.org/10.1016/j.cag.2008.01.012

17. PA.Chou, M. Koroteev, M. Krivokuca, A volumetric approach to point cloud compression—part I: attribute compres-
sion. IEEE Trans. Image Process. 29(c), 2203-2216 (2020). https://doi.org/10.1109/TIP2019.2908095

18. M. Krivokuca, PA. Chou, M. Koroteev, A volumetric approach to point cloud compression-Part Il: geometry compres-
sion. IEEE Trans. Image Process. 29(c), 2217-2229 (2020). https://doi.org/10.1109/TIP2019.2957853

https://doi.org/10.54499/UIDB/50008/2020
https://doi.org/10.1109/JETCAS.2018.2885981
https://doi.org/10.1109/JETCAS.2018.2885981
https://doi.org/10.1109/access.2019.2935253
https://doi.org/10.3390/s22031104
https://doi.org/10.3390/s22155767
http://arxiv.org/abs/1706.02413
https://doi.org/10.2312/SPBG/SPBG06/103-110
https://doi.org/10.1109/ICRA.2012.6224647
https://doi.org/10.1109/ICRA.2012.6224647
https://doi.org/10.1109/ICIP.2017.8296514
https://doi.org/10.1109/ICIP.2017.8296514
https://doi.org/10.1109/TIP.2016.2529506
http://arxiv.org/abs/1506.06096
https://doi.org/10.1109/ICME.2018.8486481
https://doi.org/10.1109/ICME.2018.8486481
https://doi.org/10.1109/IROS.2015.7354093
https://doi.org/10.1111/j.1467-8659.2008.01178.x
https://doi.org/10.1111/j.1467-8659.2008.01178.x
https://doi.org/10.1016/j.cag.2008.01.012
https://doi.org/10.1109/TIP.2019.2908095
https://doi.org/10.1109/TIP.2019.2957853

Martins et al. EURASIP Journal on Image and Video Processing (2024) 2024:15

20.
21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, A. Tabatabai, An overview of ongoing point cloud compres-
sion standardization activities : video- based (V-PCC) and geometry-based (G-PCC). APSIPA Trans. Sig. Info. Process.
9, E13 (2020). https://doi.org/10.1017/ATSIP2020.12

G-PCC Codec Description V12. In: MPEG Output Document N0OO151 (ISO). ISO/IEC JTC 1/SC 29/WG 7; (2021)

S. LASSERRE, J. TAQUET, A point cloud codec for Lidar data with very low complexity and latency. In: m56477. 1SO/
IEC JTC 1/SC 29/WG 7; (2021)

C.Tu, E. Takeuchi, C. Miyajima, K. Takeda, Compressing continuous point cloud data using image compression meth-
ods. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. p. 1712-1719, (2016). https://doi.org/
10.1109/ITSC.2016.7795789

K. Kohira, H. Masuda, POINT-CLOUD COMPRESSION for VEHICLE-BASED MOBILE MAPPING SYSTEMS USING PORT-
ABLE NETWORK GRAPHICS. ISPRS Ann. Photogramm. Remote Sens. Spat. Info. Sci. 4(2W4), 99-106 (2017). https://
doi.org/10.5194/isprs-annals-IV-2-W4-99-2017

C.Tu, E. Takeuchi, C. Miyajima, K. Takeda, Continuous point cloud data compression using SLAM based prediction.
IEEE Intelligent Vehicles Symposium, Proceedings. (Iv):1744-1751, (2017). https://doi.org/10.1109/1VS.2017.7995959
H.Yin, C. Berger, Mastering data complexity for autonomous driving with adaptive point clouds for urban environ-
ments. IEEE Intelligent Vehicles Symposium, Proceedings. (Iv):1364-1371, (2017). https://doi.org/10.1109/IVS.2017.
7995901

M. Isenburg, LASzip: lossless compression of lidar data. Photogramm. Eng. Remote. Sens. 79, 209-217 (2013).
https://doi.org/10.14358/PERS.79.2.209

M.Quach, G. Valenzise, F. Dufaux, Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression.
Proceedings - International Conference on Image Processing, ICIP. 2019-Septe:4320-4324, (2019). arXiv:1903.08548
M. Quach, G. Valenzise, F. Dufaux, Improved Deep Point Cloud Geometry Compression. IEEE 22nd International
Workshop on Multimedia Signal Processing, MMSP 2020. (2020). arXiv:2006.09043

M. Quach, G. Valenzise, F. Dufaux, Folding-Based Compression of Point Cloud Attributes. Proceedings - International
Conference on Image Processing, ICIP. 2020-Octob:3309-3313. (2020). arXiv:2002.04439

J.Wang, H. Zhu, H. Liu, Z. Ma, S. Member, Lossy point cloud geometry compression via end-to-end learning. 8215(c),
1-15 (2021). https://doi.org/10.1109/TCSVT.2021.3051377

J.Wang, D. Ding, Z. Li, Z. Ma, Multiscale point cloud geometry compression. (Dcc):73-82, (2021). https://doi.org/10.
1109/DCC50243.2021.00015

J.Wang, D. Ding, Z. Li, X. Feng, C. Cao, Z. Ma, Sparse tensor-based multiscale representation for point cloud geom-
etry compression. IEEE Trans. Pattern Anal. Mach. Intell. 45(7), 9055-9071 (2023). https://doi.org/10.1109/TPAMI.
2022.3225816. arXiv:2111.10633v2

Y. Gao, P. Zhang, X. Wang, LOSSY LIDAR POINT CLOUD COMPRESSION VIA CYLINDRICAL 3D CONVOLUTION NET-
WORKS. IEEE Int. Conf. Image Process. (ICIP). 2023, 3508-3512 (2023). https://doi.org/10.1109/ICIP49359.2023.10222
471

C.Tu, E. Takeuchi, A. Carballo, K. Takeda, Point cloud compression for 3d lidar sensor using recurrent neural network
with residual blocks. Proceedings - IEEE International Conference on Robotics and Automation. 2019-May:3274—
3280, (2019). https://doi.org/10.1109/ICRA.2019.8794264

O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation. 2022 IEEE/
CVF WACV 9, 1989-1998 (2015). https://doi.org/10.48550/arXiv.1505.04597. arXiv:1505.04597

L. Wiesmann, A. Milioto, X. Chen, C. Stachniss, J. Behley, Deep compression for dense point cloud maps. IEEE Robot.
Automat. Lett. 6(2), 2060-2067 (2021). https://doi.org/10.1109/LRA.2021.3059633

H.Thomas, C.R. Qi, J.E. Deschaud, B. Marcotegui, F. Goulette, L. Guibas, KPConv: Flexible and deformable convolution
for point clouds. Proceedings of the IEEE International Conference on Computer Vision. 2019-Octob:6410-6419,
(2019). arXiv:1904.08389

ISO/IEC JTC 1/SC 29/WG1 N100097. Final Call for Proposals on JPEG Pleno Point Cloud Coding. 94th Meeting, Online,
Jan 2022. (January):1-14, (2022)

ISO/IEC JTC1/5C29/WG1 N100367.: Verification Model Description for JPEG Pleno Learning-based Point Cloud Cod-
ing v1.0. https://dsjpeg.org/documents/jpegpleno/wg1n100367-097-PCQ-Verification_Model_Description_for_
JPEG_Pleno_Learning-based_Point_Cloud_Coding_v1_0.pdf

Davi, Lazzarotto, E. Touradj, Evaluating the effect of sparse convolutions on point cloud compression. In: 2023 11th
European Workshop on Visual Information Processing (EUVIP). IEEE; (2023)

J.Mao, S. Shi, X. Wang, H. Li, 3D Object Detection for Autonomous Driving: A Review and New Outlooks. (2022);
arXiv:2206.09474

CR.Qi, H. Su, K. Mo, L.J. Guibas, PointNet: Deep learning on point sets for 3D classification and segmentation.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua:77-85,
(2017). arXiv:1612.00593

S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, et al., PV-RCNN: point-voxel feature set abstraction for 3D object
detection. (2019); arXiv:1912.13192

H.Wu, J. Deng, C. Wen, X. Li, C. Wang, J. Li, CasA: a cascade attention network for 3D object detection from LIDAR
point clouds. IEEE Trans. Geosci. Remote Sens. (2022). https://doi.org/10.1109/TGRS.2022.3203163

Y. Zhou, O. Tuzel, VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. p. 4490-4499, (2018). arXiv:1711.06396
Y.Yan, Y. Mao, B. Li, Second: Sparsely embedded convolutional detection. Sensors (2018). https://doi.org/10.3390/
s18103337

AH.Lang, S.Vora, H. Caesar, L. Zhou, J. Yang, O. Beijoom, Pointpillars: fast encoders for object detection from point
clouds. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
2019:12689-12697, (2019). arXiv:1812.05784

X.Zhu, H. Zhou, T. Wang, F. Hong, W. Li, Y. Ma, et al., Cylindrical and Asymmetrical 3D Convolution Networks for
LiDAR-based Perception. IEEE Transactions on Pattern Analysis and Machine Intelligence. (2021). arXiv:2109.05441

Page 27 of 28

https://doi.org/10.1017/ATSIP.2020.12
https://doi.org/10.1109/ITSC.2016.7795789
https://doi.org/10.1109/ITSC.2016.7795789
https://doi.org/10.5194/isprs-annals-IV-2-W4-99-2017
https://doi.org/10.5194/isprs-annals-IV-2-W4-99-2017
https://doi.org/10.1109/IVS.2017.7995959
https://doi.org/10.1109/IVS.2017.7995901
https://doi.org/10.1109/IVS.2017.7995901
https://doi.org/10.14358/PERS.79.2.209
http://arxiv.org/abs/1903.08548
http://arxiv.org/abs/2006.09043
http://arxiv.org/abs/2002.04439
https://doi.org/10.1109/TCSVT.2021.3051377
https://doi.org/10.1109/DCC50243.2021.00015
https://doi.org/10.1109/DCC50243.2021.00015
https://doi.org/10.1109/TPAMI.2022.3225816
https://doi.org/10.1109/TPAMI.2022.3225816
http://arxiv.org/abs/2111.10633v2
https://doi.org/10.1109/ICIP49359.2023.10222471
https://doi.org/10.1109/ICIP49359.2023.10222471
https://doi.org/10.1109/ICRA.2019.8794264
https://doi.org/10.48550/arXiv.1505.04597
http://arxiv.org/abs/1505.04597
https://doi.org/10.1109/LRA.2021.3059633
http://arxiv.org/abs/1904.08889
https://ds.jpeg.org/documents/jpegpleno/wg1n100367-097-PCQ-Verification_Model_Description_for_JPEG_Pleno_Learning-based_Point_Cloud_Coding_v1_0.pdf
https://ds.jpeg.org/documents/jpegpleno/wg1n100367-097-PCQ-Verification_Model_Description_for_JPEG_Pleno_Learning-based_Point_Cloud_Coding_v1_0.pdf
http://arxiv.org/abs/2206.09474
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1912.13192
https://doi.org/10.1109/TGRS.2022.3203163
http://arxiv.org/abs/1711.06396
https://doi.org/10.3390/s18103337
https://doi.org/10.3390/s18103337
http://arxiv.org/abs/1812.05784
http://arxiv.org/abs/2109.05441

Martins et al. EURASIP Journal on Image and Video Processing ~ (2024) 2024:15 Page 28 of 28

49. Y.Wang, A. Fathi, A. Kundu, D.A. Ross, C. Pantofaru, T. Funkhouser, et al,, Pillar-based object detection for autonomous
driving. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). 12367 LNCS:18-34, (2020). arXiv:2007.10323

50. L.Fan,Z Pang,T.Zhang, Y.X. Wang, H. Zhao, F. Wang, et al., Embracing single stride 3D object detector with sparse
transformer. p. 8448-8458, (2022). arXiv:2112.06375

51. S.Shi, L. Jiang, J. Deng, Z.Wang, C. Guo, J. Shi, et al., PV-RCNN++: Point-voxel feature set abstraction with local vec-
tor representation for 3D object detection. (2021); arXiv:2102.00463

52. C.Szegedy, S. loffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-ResNet and the impact of residual connections
on learning. In: 31st AAAI Conference on Artificial Intelligence, AAAI 2017. p. 4278-4284, (2017)

53. G-PCC test model v14.1SO/IEC JTC 1/SC 29/WG 7, Doc NO0094. Online - April 2017;p. 19

54. 1SO/IEC JTC 1/5C 29/WG 11.: Common test conditions for point cloud compression

55. A.Zaghetto, D Graziosi, A. Tabatabai, On density-to-density distortion; Technical Report, ISO/IEC JTC1/SC29/WG7
m60331. ISO/IEC

56. D.Tian, H. Ochimizu, C. Feng, R. Cohen, A. Vetro, Updates and integration of evaluation metric software for PCC.
Technical Report M40522, ISO/IEC JTC1/SC29/WG11(MPEG)

57. X.Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler, et al., 3D object proposals for accurate object class detec-
tion. Adv Neural Info Process Syst. 2015:424-432, (2015)

58. OpenPCDet Development Team.: OpenPCDet: An open-source toolbox for 3D object detection from point clouds.
https://github.com/open-mmlab/OpenPCDet

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2007.10323
http://arxiv.org/abs/2112.06375
http://arxiv.org/abs/2102.00463
https://github.com/open-mmlab/OpenPCDet

	Impact of LiDAR point cloud compression on 3D object detection evaluated on the KITTI dataset
	Abstract
	1 Introduction
	2 Background information
	2.1 Generic point cloud coding methods
	2.2 Point cloud coding for LiDAR
	2.3 Deep learning-based point cloud coding methods
	2.4 3D object detection methods

	3 Modified JPEG Pleno PCC coder
	3.1 Training procedure for Cartesian coordinates
	3.2 Training procedure for cylindrical coordinates

	4 Experimental setup, coding configurations and test conditions
	4.1 Distortion metrics
	4.2 Discussion on compression performance

	5 Impact of compression on 3D object detection
	5.1 Compression effects on 3D object detection using pre-trained models
	5.2 Compression effects on 3D object detection using re-trained models

	6 Conclusions
	Acknowledgements
	References

