
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Seleem et al.
EURASIP Journal on Image and Video Processing (2024) 2024:13
https://doi.org/10.1186/s13640-024-00631-6

EURASIP Journal on Image
and Video Processing

Adaptive bridge model for compressed
domain point cloud classification
Abdelrahman Seleem1,2,3* , André F. R. Guarda2, Nuno M. M. Rodrigues2,4 and Fernando Pereira1,2

Abstract

The recent adoption of deep learning-based models for the processing and coding
of multimedia signals has brought noticeable gains in performance, which have estab-
lished deep learning-based solutions as the uncontested state-of-the-art both for com-
puter vision tasks, targeting machine consumption, as well as, more recently, cod-
ing applications, targeting human visualization. Traditionally, applications requiring
both coding and computer vision processing require first decoding the bitstream
and then applying the computer vision methods to the decompressed multimedia sig-
nals. However, the adoption of deep learning-based solutions enables the use of com-
pressed domain computer vision processing, with gains in performance and compu-
tational complexity over the decompressed domain approach. For point clouds (PCs),
these gains have been demonstrated in the single available compressed domain
computer vision processing solution, named Compressed Domain PC Classifier, which
processes JPEG Pleno PC coding (PCC) compressed streams using a PC classifier largely
compatible with the state-of-the-art spatial domain PointGrid classifier. However,
the available Compressed Domain PC Classifier presents strong limitations by imposing
a single, specific input size which is associated to specific JPEG Pleno PCC configura-
tions; this limits the compression performance as these configurations are not ideal
for all PCs due to their different characteristics, notably density. To overcome these
limitations, this paper proposes the first Adaptive Compressed Domain PC Classifier
solution which includes a novel adaptive bridge model that allows to process the JPEG
Pleno PCC encoded bit streams using different coding configurations, now maximiz-
ing the compression efficiency. Experimental results show that the novel Adaptive
Compressed Domain PC Classifier allows JPEG PCC to achieve better compression
performance by not imposing a single, specific coding configuration for all PCs, regard-
less of its different characteristics. Moreover, the added adaptability power can achieve
slightly better PC classification performance than the previous Compressed Domain
PC Classifier and largely better PC classification performance (and lower number
of weights) than the PointGrid PC classifier working in the decompressed domain.

Keywords: Point cloud, Classification, Coding, Compressed domain, Deep learning

1 Introduction
Point clouds (PCs) have emerged as an attractive 3D visual representation model, offer-
ing immersive experiences for humans and providing rich spatial information for com-
puter vision (CV) tasks. A PC consists of a set of points in the 3D space represented by

*Correspondence:
a.seleem@lx.it.pt

1 Instituto Superior Técnico-
Universidade de Lisboa, Lisbon,
Portugal
2 Instituto de Telecomunicações,
Lisbon, Portugal
3 Faculty of Computers
and Information, South Valley
University, Qena, Egypt
4 ESTG, Politécnico de Leiria,
Leiria, Portugal

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-024-00631-6&domain=pdf
http://orcid.org/0000-0003-3254-0872

Page 2 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

their coordinates (x, y, z), referred to as the PC geometry. Besides geometry, a PC may
include additional information about the points, the so-called attributes, such as color
and normal vectors. For realistic and immersive applications, PCs usually have a mas-
sive number of points to model the surfaces. Due to the substantial number of points,
efficient PCC is crucial for practical applications, notably those involving transmission
or storage. Recognizing the critical need for efficient PCC in application scenarios where
interoperability is essential, the Moving Picture Experts Group (MPEG) has already
established two PCC standards: geometry-based PCC (G-PCC) for static PC coding;
and video-based PCC (V-PCC) for dynamic PC coding [1]. These coding solutions may
be classified as ‘conventional’ since they follow the usual hand-crafted design approach
adopted for decades in multimedia coding solutions.

Following the success of deep learning (DL)-based solutions for multimedia signal
processing and coding, also the Joint Photographic Experts Group (JPEG) has taken
the PCC challenge by launching the JPEG Pleno PCC Call for Proposals (CfP) in April
2021, aiming to specify the first DL-based PCC standard. In contrast with MPEG PCC
standards which mostly target compression for human visualization, the scope of the
JPEG Pleno PCC project targets both human visualization and machine consumption
[2]. Despite its relatively recent development, the current JPEG Pleno PCC Verification
Model (VM), which specifies the standard under development, referred to from now
on as JPEG PCC, has achieved state-of-the-art compression results when compared
with the MPEG PCC standards, notably for geometry-only compression of static and
dense PCs, showcasing the capabilities of DL-based coding solutions [3]. However, for
sparse PCs, the JPEG PCC rate-distortion (RD) performance is not so competitive with
G-PCC Octree still performing better. In parallel, JPEG is also developing a DL-based
image coding standard, known as JPEG AI [4] which although still under development,
is already achieving more than a 30% reduction in rate compared to the powerful Versa-
tile Video Coding (VVC) standard in its intra-coding mode [5].

Regarding the coding approach, JPEG PCC is based on the recent advancements in
DL-based coding and processing for multimedia signals [6, 7]. These DL-based coding
solutions adopt convolutional DL models that extract features from the spatial–tempo-
ral multimedia signal resulting in a rich latent representation. These convolutional DL
models are at the core of DL-based solutions used for both multimedia coding and CV
tasks. For human visualization applications, the latent representation is compressed
using a DL-based entropy coding scheme (e.g., for JPEG PCC, a hyperprior model is
used to estimate the probability distribution of the latent representation and improve
the entropy coding compression efficiency). For CV tasks, the latent representation is
processed by additional layers which are trained to perform the target task, e.g., segmen-
tation, classification, and recognition, among others.

In PC classification scenarios, existing solutions apply the classification models to the
original (uncompressed) PC. If compression is applied, due to storage or bandwidth
resource limitations, the PC classifier is applied to the decompressed version of the PC,
meaning that the PC content must be first decoded before being processed. This option,
referred to in this paper as decompressed domain PC classification, has two main dis-
advantages: the first and most serious is the penalty in the classification accuracy due
to the artifacts that are introduced by coding/decoding the original PC [8]; additionally,

Page 3 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

the decoding stage computational complexity must be considered on top of the (decom-
pressed domain) classification computational complexity.

An interesting alternative to overcome the decompressed domain CV processing
drawbacks associated to decompressed domain PC classification, is to perform the
processing inherent to the CV task in the compressed domain [9–16]. The use of com-
pressed domain approaches with conventional (usually transform-based or hybrid) cod-
ing methods has been unsuccessful, since these methods generate compressed domain
signal representations which are not powerful enough both for efficient compression
and CV tasks processing. However, the emergence of DL-based processing and coding
models have brought a bright new perspective to this field, which has been recognized
by JPEG while designing the JPEG AI and JPEG PCC scopes.

To validate the JPEG Pleno PCC scope vision for compressed representations target-
ing both man and machines, a so-called Compressed Domain PC Classifier (CD-PCCL)
solution has been proposed for compressed domain PC classification by the same
authors of this paper [17]. This solution uses a DL-based classification model which is
partly coincident/compatible with a highly performing spatial domain geometry-only
classifier, named PointGrid PC classifier [18], applied to the JPEG PCC geometry latent
representation. In practice, CD-PCCL re-uses some layers and corresponding weights
from the PointGrid classifier, referred to as the partial classifier to offer a high degree
of compatibility between CD-PCCL and the PointGrid classifier. This compatibility
requirement results from acknowledging that there are application scenarios where both
compressed and decompressed domain processing may be simultaneously needed and
thus the memory footprint should be reduced; moreover, it also makes sense to adapt
very high-performing spatial domain CV processors to also offer this high performance
in the compressed domain.

The PointGrid PC classifier [18] has been selected for CD-PCCL as the reference spa-
tial domain DL-based PC classifier, due to adopting a voxel-based approach, which is
a mandatory requirement to match the JPEG PCC voxel-based latent representation;
moreover, it is a highly performing solution with gains over the alternative voxel-based
classifiers, like VoxNet [19] and OctNet [20]. The performance results in [17] demon-
strate that CD-PCCL achieves gains in classification performance with a lower number
of parameters when compared with decompressed domain PC classification using Point-
Grid, most notably for the lower rates. Despite the good classification performance and
compatibility degree with the original PointGrid classifier, the CD-PCCL model accepts
a single, specific JPEG PCC latent size (8 × 8 × 8 × 128) which is associated to a spe-
cific JPEG PCC coding configuration, notably regarding the sampling factor (SF) applied
to the input PC. The SF parameter is the most impactful JPEG PCC coding parameter
in terms of the compression performance, since it allows to achieve good compression
efficiency for both dense and sparse PC across a large range of rates. By constraining the
JPEG PCC coding configuration whatever the PC characteristics, the use of CD-PCCL
compressed domain classification is achieved at a cost of a reduced compression effi-
ciency, which is a severe limiting factor for practical deployment of compressed domain
CV processors.

In this context, this paper proposes a novel Adaptive Compressed Domain PC Classifier
(ACD-PCCL) solution that overcomes the CD-PCCL limitations, while offering the same

Page 4 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

advantages as well as compression and classification gains. The main technical novelty
regards the classification model architecture, now including a novel adaptive bridge which
can accept and automatically adapt to different-size input latent representations, notably
generated by different JPEG PCC coding configurations. The proposed adaptive bridge
model allows ACD-PCCL to process compressed bit streams generated by different encod-
ers or different coding configurations of a given encoder (e.g., JPEG PCC), as well as differ-
ent PC precisions.

It is important to note that the proposed ACD-PCCL solution specifically uses the future
JPEG PCC standard and is intended to offer some degree of compatibility with an exist-
ing spatial domain PC classifier, in this case PointGrid, notably to reduce the memory
footprint. In this context, the novelty of this work is not the design of the PC codec or the
original PC classifier but rather the design of a novel, adaptive compressed domain PC clas-
sifier, compatible with two highly relevant state-of-the-art DL-based solutions for PC cod-
ing and classification, notably the selected JPEG PCC codec and the PointGrid PC classifier.
As a consequence, the ACD-PCCL solution proposed in this paper is aligned with the JPEG
Pleno PCC vision to achieve a unified and efficient learning-based PC representation for
both human visualization and machine consumption.

The experimental results show that ACD-PCCL offers advantages in the two main
aspects of compressed domain PC classification: PC coding/compression and PC classifica-
tion. First, ACD-PCCL allows JPEG PCC to offer PC compression performance gains when
compared with CD-PCCL, since no constraints are imposed on the JPEG PCC coding
configurations and, thus, the best compression configuration for each PC may be selected,
depending on its characteristics. This means that the benefits on compressed domain PC
classification come at no cost in compression performance, which is critical for the deploy-
ment of applications that target both machine vision and human visualization. Second,
ACD-PCCL achieves PC classification performance gains over PointGrid applied to the
decompressed PC, while maintaining good compatibility with the original spatial domain
model, by reusing a relevant number of layers and weights from the original PointGrid
model (82.91%), which has the advantage of reducing the memory footprint. Moreover,
ACD-PPCL also offers slightly better PC classification performance than the previous CD-
PCCL. Finally, ACD-PCCL offers complexity gains over decompressed domain PC classifi-
cation, notably in terms of the total number of weights in comparison with the PointGrid
model, and avoids the additional complexity associated with PC decoding.

This paper is structured as follows: after this introduction, Section 2 briefly reviews the
relevant background work regarding PC geometry-only coding and classification. Section 3
describes the non-adaptive CD-PCCL classification solution, while Sect. 4 proposes the
novel ACD-PCCL classification solution and the design of its adaptive bridge model. Sec-
tion 5 presents the test conditions and experimental setup and Sect. 6 reports and discusses
the experimental results. Finally, Sect. 7 concludes the paper and presents future work.

2 Background work
This section presents a brief review of the relevant background work for this paper, nota-
bly the two key components, i.e., the PC codec and the spatial domain PC classifier. Sec-
tion 2.1 addresses the JPEG PCC VM [21], a DL-based PC codec which will become soon
the future JPEG Pleno PCC standard. Section 2.2 addresses the selected spatial domain

Page 5 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

DL-based PC classifier, i.e., PointGrid [18], which is used as the reference and starting
point for the design of the compatible compressed domain PC classification solutions
discussed in this paper, i.e., the existing CD-PCCL and the novel proposed ACD-PCCL.

2.1 Deep learning‑based point cloud coding: JPEG Pleno PCC verification model

The JPEG Pleno PCC VM [21] is the current coding solution under development which
will soon become the JPEG Pleno PCC standard. JPEG PCC performs the coding of
geometry and attributes using two different DL-based models. To foster a JPEG learn-
ing-based ecosystem, the color attributes are coded with the JPEG AI image codec, after
3D to 2D projection. Since this paper will perform PC classification using only the PC
geometry, the following review will concentrate on JPEG PCC geometry coding.

The JPEG PCC high-level architecture for geometry-only coding is presented in
Fig. 1a. JPEG PCC uses a DL-based model to code 3D blocks of binary voxels from the
input PC, where each voxel may be either occupied (1) or empty (0). When the input PC
is too large for coding with the available resources or random access is a requirement,
JPEG PCC uses a PC block partitioning module to divide the input PC into fixed-size
3D blocks. After, JPEG PCC uses a block down-sampling module, which subsamples the
input PC block by a given SF, which ideally should be dependent on the PC characteris-
tics; if SF = 1, no down-sampling is performed. Down-sampling is especially important
to reach lower rates or to efficiently code sparser PCs. After decoding, JPEG PCC uses a
block up-sampling module, notably when SF is larger than 1, which includes an optional
DL-based super-resolution model, creating the reconstructed version of the input coded
PC block.

The DL-based block encoding and decoding modules are based on an autoencoder
architecture, shown in Fig. 1b, which generate the latent representation for a given
PC block and subsequently transform this latent representation back into the lossy
reconstructed (decompressed) PC block. For this purpose, the autoencoder model is
end-to-end trained using a RD-driven loss function, which effectively balances the
decompressed PC distortion (estimated by the focal loss [22]) and the entropy-estimated
coding rate required for the latent representation. The latent representation is encoded
using a DL-based entropy coding model which uses an auxiliary hyperprior model to
estimate the distribution of the latents generated by the autoencoder, thus reducing the
rate required for their entropy coding. The JPEG PCC DL models are trained under the
PCC Common Training and Test Conditions (CTTC) set by JPEG [23]; the JPEG CTTC
defines a training dataset including 28 static PCs, each with distinctive features, notably
in terms of resolution and sparsity. A Lagrangian multiplier, denoted as λ, controls the
trade-off between quality and rate in the training process. By adjusting the λ value, JPEG
PCC performs training to obtain a different coding model for each target quality/rate
trade-off, thus defining multiple RD points. In this paper, six trained DL coding models
are used, each corresponding to one of six different λ values, notably 0.008, 0.004, 0.002,
0.001, 0.0005 and 0.00025. For a more in-depth description of the JPEG PCC codec, refer
to [21].

When comparing the geometry compression performance between JPEG PCC and
the well-known MPEG G-PCC and V-PCC standards [1], the results reveal superior
performance for JPEG PCC, particularly when coding static, dense PCs [21]. However,

Page 6 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

for sparse PCs, such as those in the ModelNet40 PC dataset adopted in this paper for
classification, JPEG PCC offers a worse compression performance, notably compared to
G-PCC. The previously mentioned down/up-sampling modules are critical to improve
the compression performance for this type of PCs since using an appropriate SF densi-
fies the input 3D cubic block (with a specific block size (BS) where BS is the edge size,
i.e., BS × BS × BS) to offer the DL-based coding model a 3D block more similar to those
used for training which are denser (see Fig. 1a) [24]. Later, at the decoder side, up-sam-
pling is applied to restore the original PC precision using the same SF. The compression
gains for this flexible down/up-sampling strategy are also associated to the use of smaller
size latent representations, notably for the higher SF values.

Depending on the PC density/sparsity, the ideal SF to maximize the compression
efficiency will vary and consequently also the size of the latent representation. The key
technical novelty of this paper is precisely associated to the design of an adaptive PC
classification model, notably a so-called bridge, which is able to accept different size
latent PC representations to perform compressed domain PC classification.

(a)

(b)
Fig. 1 JPEG PCC geometry codec. a High-level architecture. b DL-based block coding model architecture
[21]

Page 7 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

2.2 Deep learning‑based point cloud classification: PointGrid

DL-based PC classification methods may consider a variety of PC representation
approaches, notably multi-view-based, point-based and voxel-based approaches as
follows:

• Multi-view-based approaches: Use multiple projected 2D views of the PC to extract
features and classify the PC objects (as in [25]). While projection-based approaches
enhance interpretability and maintain compatibility with traditional 2D methods,
they may suffer from information loss and limited spatial information compared to
direct 3D processing approaches.

• Point-based approaches: Operate directly on the raw PC data, extracting features
at the point level (as in [26]). Point-based approaches offer advantages such as the
direct preservation of raw PC data, the ability to extract global features, and a gen-
erally lower computational complexity; however, the unstructured nature of the PC
data makes it difficult to apply regular CNNs to extract local features.

• Voxel-based approaches: Represent the PC data as a binary signal in 3D space using
a uniform volumetric grid (as in [18]). While voxel-based approaches offer a struc-
tured representation enabling the use of regular CNNs, they may consume signifi-
cantly more memory than point-based approaches and lose fine-grained details.

These diverse representation approaches for DL-based methods offer flexibility and
effectiveness in handling PC classification tasks for different use cases with varying con-
straints and requirements. Given the use of the JPEG PCC codec, which adopts a voxel-
based approach, a voxel-based PC classifier was selected. Among the voxel-based PC
classifiers, PointGrid [18] was chosen due to its better classification performance on the
ModelNet40 PC dataset while maintaining low memory consumption when compared
with other voxel-based PC classifiers, like VoxNet [19] and OctNet [20].

The detailed architecture of the PointGrid classifier model is presented in Fig. 2.
It is composed of nine convolutional neural network (CNN) layers, each including a
LeakyReLU activation function, followed by batch normalization, and three fully con-
nected (FC) layers. These layers result in a model using a total of 10,492,072 weights.
The PointGrid classifier model was trained using the ModelNet40 PC training dataset
and the cross-entropy between the ground truth and predicted classes as loss func-
tion. Throughout the training process, all ModelNet40 PCs were resampled from 2048
to 1024 points each. Although PointGrid is a voxel-based classifier, it also integrates a

Fig. 2 PointGrid classifier architecture [18]

Page 8 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

point-based representation by considering multiple points per voxel (cell). A unique
advantage of the PointGrid classifier over other voxel-based PC classifiers is the inte-
gration of the voxel-based and point-based representations, considering larger vox-
els with multiple points per voxel (cell). Since the PointGrid classifier processes a
given PC as a single block of a specific size with multiple points per voxel (cell), it was
reported in [18] that the PointGrid classifier achieves the best classification perfor-
mance for the ModelNet40 PC test dataset using blocks of size 32 × 32 × 32 with 4
points per voxel (cell). Hence, this top performing PointGrid classification configura-
tion will be adopted in this paper.

3 Non‑adaptive compressed domain point cloud classification: CD‑PCCL
This section briefly presents the so-called DL-based Compressed Domain PC Clas-
sifier (CD-PCCL) solution, which has been previously proposed in [17], and will be
used as the reference for the design of the novel ACD-PCCL solution proposed in this
paper.

In [17], the CD-PCCL is proposed as a use case for the proposed taxonomy for
the design of compressed domain CV processors, i.e., operating in the compressed
domain, which are partly compatible with a spatial domain CV processor. This tax-
onomy is designed for a generic scenario corresponding to multiple signal modalities
and DL-based CV processors which perform any CV task. In this context, several CD-
PCCLs with different degrees of compatibility with the selected spatial domain Point-
Grid classifier were designed to demonstrate the guidance of the proposed taxonomy
for the design of compressed domain CV processors. These compressed domain PC
geometry classifiers adopt a two-stage model, represented in Fig. 3a, composed by:

• Partial classifier: Corresponding to a set of layers and associated weights from the
reference spatial domain classifier, in the case PointGrid, thus ensuring some degree
of compatibility between the compressed and decompressed domain PC classifiers.

• Bridge: Corresponding to a set of layers and associated weights which adapt/match
the compressed domain representation, in this case the JPEG PCC latents, received
as input to the partial classifier derived from the reference spatial domain classifier.

It is important to notice that the partial classifier and the bridge have been referred
in the literature using alternative terminologies, such as “CV model back-end” and
“latent space transform”, respectively [15]. The term “‘Bridge”’ has been chosen to
express the fact that this model not only transforms latents (this it is a ‘latent space
transform’), but it also has the specific function of enabling the ‘matching’ connection
between the two latent representations, the one produced by the PC codec and the
one received by the partial classifier. Moreover, the term ‘Partial Classifier’ has been
used in this manuscript to make clear that this model is an unaltered part of the initial
PC spatial domain classifier model, in this case PointGrid. Nevertheless, the terminol-
ogy above used in this paper follows the one previously proposed for CD-PCCL [17].

Using the proposed taxonomy for design guidance, several architectures and design
approaches for partly compatible CD-PCCL solutions based on the reference spatial

Page 9 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

domain PointGrid classifier are proposed in [17]. All the designed and assessed CD-
PCCL solutions share two core design requirements that will also be adopted in this
paper:

• Compatibility: The CD-PCCL model shall have a high degree of compatibility with
the reference spatial domain PointGrid classifier, both in terms of architecture as
well as weights to reduce the memory footprint. This compatibility requirement
results from acknowledging that there are application scenarios where both com-
pressed and decompressed domain processing may be simultaneously needed and
thus the memory footprint should be reduced; moreover, is also makes sense to
adapt very high-performing spatial domain CV processors to also offer this high
performance in the compressed domain.

• Model size: The CD-PCCL model shall have a lower number of weights than the
reference spatial domain PointGrid classifier again to limit the memory footprint.

These requirements are crucial to ensure that the final CD-PCCL solution has prac-
tical relevance, notably that it is possible to achieve memory savings by sharing model
weights with the reference spatial domain PointGrid classifier and the new model has

(a) CD-PCCL. (b) ACD-PCCL.
Fig. 3 a CD-PCCL model architecture [17], which processes only fixed-size latent representations with size
8 × 8 × 8 × 128; and b ACD-PCCL model architecture, which processes different size latent representations
with size d × d × d × 128

Page 10 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

a size, measured in terms of number of weights, that is smaller or equal to the number
in the original model.

Moreover, a key design constraint, referred to as latent block size adaptation, ensures
that the dimensions of the JPEG PCC latents block match the dimensions of the CD-
PCCL partial classifier input latent block size. In practice, the bridge which is at the top
of CD-PCCL is responsible for this adaptation. In [17], this is achieved by limiting the
JPEG PCC codec to a specific coding configuration, assuring that JPEG PCC always pro-
duces an output stream corresponding to a latent block size of 8×8×8×128, which is the
only block size that the CD-PCCL solution can process. It is important to notice that all
the PC classifiers, i.e., PointGrid, CD-PCCL and ACD-PCCL, are geometry-only classi-
fiers, trained using the geometry data of the geometry-only ModelNet40 dataset. As a
consequence, in this paper, only the geometry coding models of the JPEG PCC codec are
used.

Based on the previously presented constraint and requirements, the key steps in
the design of the CD-PCCL solution [17] are: (i) defining the partial classifier; and (ii)
designing and training the non-adaptive bridge. The next two subsections present these
two key CD-PCCL classifier components as well as their design process.

3.1 Partial classifier

Given that the PointGrid classifier receives as input a block with the full PC geometry
rather than a PC latent representation, it is essential to prune some initial PointGrid lay-
ers to acknowledge that feature/latents are now received at the classifier (and not a spa-
tial domain PC). The PointGrid layers resulting from this pruning process are referred to
as the partial classifier. In fact, the partial classifier corresponds to the part of CD-PCCL
that is common with the reference spatial domain PointGrid classifier, thus the part that
may offer some degree of compatibility between the spatial and compressed domains,
see Fig. 3a. For CD-PCCL, the partial classifier was defined as corresponding to the bot-
tom 7 layers from the spatial domain PointGrid classifier, i.e., the first top 5 layers are
pruned. In summary, the partial classifier model key characteristics are:

• Input latent size: 8 × 8 × 8 × 128.
• Number of layers: 7, corresponding to the 7 bottom layers of the PointGrid classifier.
• Type of layers

4 convolutional layers.
3 FC layers.

• Activation function: LeakyReLU.
• Number of weights: 8 699 176.
• Training: No retraining, i.e., weights are initialized from the reference spatial domain

PointGrid classifier; this maximizes the inter-compatibility between compressed and
decompressed domains.

To ensure high compatibility between CD-PCCL and the reference spatial domain
PointGrid classifier, the partial classifier not only uses the same architecture for the

Page 11 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

bottom 7 layers of the PointGrid classifier, but also inherits the associated weights
from the reference model, meaning that no retraining is performed. Although
the defined partial classifier can accept a latent representation with the same size
(8 × 8 × 8 × 128) of the JPEG PCC latent representation, when JPEG PCC uses a
fixed configuration with SF = 4 and BS = 64, using the partial classifier directly (with-
out a bridge) and no retraining for compressed domain classification would offer ter-
rible classification performance since the JPEG PCC latents ‘semantics’ would not
match the partial classifier trained ‘semantics’. Therefore, fine-tuning the partial clas-
sifier becomes essential when no bridge is integrated. Furthermore, as demonstrated
in [17], the use of a bridge in CD-PCCL to adapt the JPEG PCC latent representation
to a non-retrained partial classifier (thus with more compatibility) offers better classi-
fication performance compared to CD-PCCL without the bridge and a retrained par-
tial classifier (thus with less compatibility).

3.2 Non‑adaptive bridge design

After the definition of the partial classifier, the next step was to design and train the
bridge model to be part of CD-PCCL. The non-adaptive bridge, shown in Fig. 3a, is
designed and trained to adapt the JPEG PCC fixed-size latent representation to the
selected partial classifier. Note that here the bridge is referred to as non-adaptive to
express the fact that this bridge can process only specific JPEG PCC fixed-size latent
representation blocks, in this case 8×8×8×128. This fact implies major constraints
on the JPEG PCC coding configurations that may be used to code all PCs, obliged
to generate this latent representation size, rather than using PC specific coding con-
figurations which would result in maximizing the compression efficiency (as will be
seen later in Subection 5.2). Since the JPEG PCC latent dimension which is passed to
the non-adaptive bridge matches exactly the input dimension to the partial classifier
(what does not always have to be the case), the non-adaptive bridge layers design uses
stride 1 and 128 filters, meaning that, in this case, the bridge adaptation task is only
in terms of latent ‘semantics’ and not in terms of the latents size. The non-adaptive
bridge model key characteristics are:

• Input latent size: 8 × 8 × 8 × 128.
• Number of layers: 2, to minimize the compressed domain classifier model size.
• Type of layers: 2 convolutional layers.
• Activation function: LeakyReLU.
• Number of weights: 884 992.
• Output latent size: 8 × 8 × 8 × 128.
• Training: Training with random initialization.

The full CD-PCCL is trained by training only the two CNN layers in the non-adap-
tive bridge with frozen partial classifier layers (to maximize the mutual compatibility).
Despite the apparent simplicity of the non-adaptive bridge architecture, which uses
only 2 CNN layers, this CD-PCCL solution offers a classification performance that
is better than the reference spatial domain PointGrid classification, notably for lower

Page 12 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

coding rates in the decompressed domain. Moreover, since this bridge model has a
lower number of weights than the layers pruned from the PointGrid classifier (884
992 versus 1,792,896 weights), the total number of CD-PCCL weights [17] is lower
than for the original PointGrid classifier (9 584 168 versus 10 492 072 weights).

Despite the good PC classification results reported in [17], the non-adaptive CD-
PCCL is limited to a specific JPEG PCC coding configuration (SF = 4 BS = 64), resulting
into an 8 × 8 × 8 × 128 latent size. Naturally, this coding configuration may not be the
most suitable coding configuration for all PCs, thus leading to a compression penalty
regarding the optimal coding configuration. However, simply changing the JPEG PCC
coding configurations would result in generating latent representations with different
latent sizes which could not be processed by the existing CD-PCCL. This CD-PCCL lim-
itation led to the development of an adaptive ACD-PCCL classification solution, which
is the key technical novelty of this paper.

4 Adaptive compressed domain point cloud classification: ACD‑PCCL
This section presents the proposed Adaptive Compressed Domain PC Classifier (ACD-
PCCL) solution, which architecture is shown in Fig. 3b. The ACD-PCCL solution uses a
novel adaptive bridge that is able to process different size latent representations gener-
ated by the JPEG PCC encoder. This is critical since it allows to use different JPEG PCC
coding configurations, notably SF parameter values, thus offering: (i) an enlargement on
the range of target bitrates/qualities allowed for encoding a PC by using multiple coding
configurations; and (ii) better RD performance, especially when considering PCs with
different levels of sparsity, by using multiple coding configurations. While higher values
of SF have been shown to increase the codec RD performance for sparse PCs (such as
those in the ModelNet40 PC dataset), especially at low rates, also denser PCs and higher
coding rates benefit from the use of lower SF values, commonly SF = 1, i.e., no down-
sampling at all [27].

4.1 Adaptive bridge design

The design of the proposed ACD-PCCL solution will be based on the same constraints
and requirements that guided the CD-PCCL design, notably: (i) a high degree of com-
patibility with the reference PointGrid PC classifier; and (ii) an overall number of
weights lower or equal than that of PointGrid. To create synergies and compatibility also
between the available (non-adaptive) CD-PCCL solution and the novel (adaptive) ACD-
PCCL solution, the same partial classifier used in CD-PCCL is adopted for ACD-PCCL,
i.e., the 7 bottom layers of the PointGrid classifier, represented in green in Fig. 3b. Using
the same partial classifier architecture and weights guarantees a high degree of compat-
ibility between CD-PPCL, ACD-PCCL and the reference PointGrid classifier.

Given the JPEG PCC codec architecture, the latent block size dimensions for any given
coding configuration can be represented as a function of the latent spatial dimension d,
resulting in block with size d × d × d × 128 where the ‘128’ means that the JPEG PCC
latent blocks consistently comprise 128 feature channels. Considering the possible JPEG
PCC configurations, the possible values for d are the powers of 2 which are greater than
or equal to 4. Since the CD-PCCL solution is designed for d = 8, the novel ACD-PCCL
solution will be designed using d = 8 as reference in the sense that the CD-PCCL bridge

Page 13 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

is included in ACD-PCCL and latents with size 8 × 8 × 8 × 128 (as in CD-PCCL) will
go straight to the previous CD-PPCL model; on the contrary, latents with different sizes
need further processing to be transformed into 8 × 8 × 8 × 128 latents before they may
again be fed to the previous CD-PPCL model.

In summary, to be able to process input latent blocks with varying sizes and produce
the target output block size required as partial classifier input (which corresponds to
d = 8), the novel adaptive bridge architecture is designed in two-stages:

(A) d × d × d × 128 to 8 × 8 × 8 × 128 block size adaptation: The first stage processes
the JPEG PCC latent representation to change its d × d × d × 128 size into the pre-
vious CD-PCCL target block size (8 × 8 × 8 × 128) size. This first bridge stage, rep-
resented at the top of Fig. 3b, considers three different branches:

• Bypass branch: To be used if the input latents have already an 8 × 8 × 8 × 128
block size which matches the target block size expected by the previous CD-PCCL
bridge, i.e., the network simply bypasses this adaptation stage without altering the
latents in any way;

• Up-sampling branch: To be used if d < 8 (latents block size smaller than
8 × 8 × 8 × 128), including iterative CNN-based layers with strided convolutions.
In this branch, a transposed convolutional layer is iteratively used to up-sample
the input latent block, until it matches the target block size expected by the previ-
ous CD-PCCL bridge, i.e., 8 × 8 × 8 × 128. This layer uses stride 2, so that each
iteration can double the value of the spatial dimension d. Iterations are repeated
until d reaches 8.

• Down-sampling branch: To be used if d > 8 (latents size bigger than 8 × 8 × 8 × 128)
including iterative CNN-based layers with strided convolutions In this branch, a
CNN-based layer with stride 2 is iteratively used to down-sample the input latent
block, until it matches the target block size expected by the previous CD-PCCL
bridge, i.e., 8 × 8 × 8 × 128. This layer uses stride 2, so that each iteration can
reduce the spatial dimension, d, by half. Iterations are repeated until d reaches 8.

(B) 8 × 8 × 8 × 128 to partial classifier adaptation: The second stage adapts the
8 × 8 × 8 × 128 size to the partial classifier as already done in CD-PCCL; for this
reason, this second-stage bridge is composed by two CNN layers, which are com-
mon to the previous CD-PCCL bridge since the same type of adaptation has to be
performed; these layers are represented in Fig. 3b in red.

The ACD-PCCL design above ensures that the final number of weights is lower than
the reference spatial domain PointGrid classifier, i.e., 10 469 160 versus 10 492 072
weights.

4.2 Training process

The ACD-PCCL training process has a strong influence on the final classification perfor-
mance and thus must be also carefully defined. In this paper, two training strategies are
defined and will be assessed in Sect. 5, which can be summarized as follows:

Page 14 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

(A) Freezing the second-stage bridge layers, i.e., the legacy CD-PPCL bridge layers: In
this training strategy, referred from now on as “Freezing”, the available pre-trained
CD-PCCL bridge solution (comprising the two CNN layers inherited from the
non-adaptive bridge) and the partial classifier are used without additional retrain-
ing. Consequently, the training process focuses exclusively on the first-stage bridge
performing up-sampling and down-sampling adaptation in its branches. A large
degree of compatibility between ACD-PCCL and CD-PCCL is offered.

(B) Retraining the second-stage bridge layers, i.e., the legacy CD-PCCL bridge layers:
In this training strategy, referred from now on as “Retraining”, all bridge layers,
i.e., first and second stages, including those inherited from CD-PPCL, are trained
from scratch using random initialization; the partial classified is still frozen. A
lower degree of compatibility between ACD-PCCL and CD-PCCL is offered, now
reduced to the partial classifier.

The “Freezing” training strategy is naturally faster than the “Retraining” one, as it
requires the training of only part of the adaptive bridge layers. However, the “Retraining”
training strategy is more flexible since it is able to train all layers jointly. To maintain a
consistent degree of compatibility with the reference spatial domain PointGrid classifier,
the partial classifier layers always use the original PointGrid model weights, so no addi-
tional training is applied.

The training of the six CD-PCCL non-adaptive bridge models (for six different
rates/qualities) followed a sequential training approach. The same sequential training
approach is followed for training the new six ACD-PPCL adaptive bridge models based
on the defined training strategies, i.e., freezing and retraining. In the sequential training
approach, the bridge model for the highest rate (lowest λ value) is trained first, using
random weight initialization. Then, for each subsequent rate (next λ value), the bridge
model is initialized with the weights from the previously trained bridge model. This
sequential training approach significantly reduces the training time and tends to yield
better performance. It is worth noting that the existing pre-trained JPEG PCC models
were also trained using sequential training.

5 Test conditions and experimental setup
This section describes the test conditions and experimental setup used for compression
and classification performance assessment, notably:

(A) PC classification pipelines: In practical scenarios, PC classification can occur at var-
ious domains, specifically before or after lossy coding. For each domain, an inde-
pendent PC classification pipeline is adopted in this paper as follows:

• Original domain PC classification pipeline: In this pipeline, the original PC clas-
sification performance is assessed using the selected reference spatial domain
PC classifier with the selected original PC dataset, i.e., no coding or additional
processing is applied. In this paper, the original PC classification performance is
assessed using the PointGrid PC classifier and the original ModelNet40 PC test
dataset [28].

Page 15 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

• Voxelized domain PC classification pipeline: In this pipeline, the voxelized domain
PC classification performance is assessed using the selected reference spatial
domain PC classifier after voxelizing the original PC dataset used in the original
domain PC classification pipeline to a predefined precision, i.e., converting the
original PC dataset from floating point representation to an integer representa-
tion. In this paper, the voxelized PC classification performance is assessed using
the PointGrid PC classifier and the voxelized ModelNet40 PC test dataset with
8-bit precision. Since the selected PC codecs in this paper, G-PCC Octree and
JPEG PCC, code voxelized PCs, it is important to assess the impact of the voxeli-
zation process on the PointGrid classification performance.

• Decompressed domain PC classification pipeline: In this pipeline, the decom-
pressed domain PC classification performance is assessed using the selected refer-
ence spatial domain PC classifier after coding the voxelized version of the selected
original dataset. In this paper, the decompressed PC classification performance
is assessed after coding the voxelized ModelNet40 PC test dataset with both the
conventional G-PCC Octree and DL-based JPEG PCC codecs. For JPEG PCC,
different coding models and configurations are used to code the ModelNet40 PC
test dataset. Again, the reference PointGrid PC classifier is used, now with lossy
decoded PCs.

• Compressed domain PC classification pipeline: In this pipeline, the compressed
domain PC classification performance is assessed directly using a compressed
domain PC classifier with the latent representations of the voxelized version of the
selected dataset for the selected PC codec. In this paper, the PC classification per-
formance is assessed directly using the ModelNet40 latent test dataset from JPEG
PCC using both CD-PCCL and ACD-PCCL. The voxelized ModelNet40 PC test
dataset is coded with JPEG PCC, notably with specific and different coding con-
figurations to generate fixed sizes and different block sizes latent representations
for CD-PCCL and ACD-PCCL, respectively.

(B) PC datasets: The dataset adopted in this paper is the most used dataset for PC clas-
sification, namely the ModelNet40 PC dataset [28]. This PC dataset contains a total
of 12,308 PCs with only geometry, and is organized into 40 classes, further divided
into training, validation, and test sub-datasets with 9840, 2048, and 420 PCs,
respectively. All the PCs in the ModelNet40 dataset have a total of 2 048 points,
represented using floating-point precision coordinates, with values ranging from
− 1 to 1. In the spatial domain (original, voxelized and decompressed domains) sce-
narios, PC resampling is performed using the Farthest Point Sampling (FPS) algo-
rithm [29] to bring the ModelNet40 PCs to 1 024 points as needed to use the same
size for which PointGrid classifier has been trained.

(C) Training latent datasets: When training the DL-based compressed domain clas-
sifiers used in this paper, notably the existing CD-PCCL and the proposed ACD-
PCCL, it is important to highlight the following:

• The CD-PCCL DL models (one model for each λ value) were trained using the
fixed-size (8 × 8 × 8 × 128) latent representations from the ModelNet40 PC

Page 16 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

training dataset encoded with JPEG PCC. In practice, this means that each PC
was compressed using the JPEG PCC model trained for the corresponding RD
trade-off, associated to a specific λ value. The JPEG PCC coding configuration
was always set to SF = 4 with BS = 64 to generate the fixed-size 8 × 8 × 8 × 128
latents, thus building the ModelNet40 latent training dataset, as described in
[17].

• The ACD-PCCL DL models (one model for each λ value) were trained as
described for CD-PCCL, but now using latent representations with different
block sizes. These different size latents are associated with the coding of the
ModelNet40 PC training dataset using JPEG PCC with different coding con-
figurations, namely:

• SF = 8 (corresponding to BS = 32 for a full PC size of 256 × 256 × 256), which
generates latent blocks with size 4 × 4 × 4 × 128;

• SF = 4 (corresponding to BS = 64 for a full PC size of 256 × 256 × 256), which
generates latent blocks with size 8 × 8 × 8 × 128, as for CD-PCCL;

• SF = 2 (corresponding to BS = 128 for a full PC size of 256 × 256 × 256), which
generates latent blocks with size 16 × 16 × 16 × 128.

 The selection of the ‘best’ coding configuration for each PC is based on a spe-
cific criterion presented in the next section.

(D) Training hyperparameters: The Adam optimizer was used to train the ACD-PCCL
solution, with a batch size of 32. The cross-entropy loss function between the pre-
dicted and ground truth classes was used. Early stopping was set using a patience
value of 50 epochs, meaning that if there is no improvement in classification accu-
racy over the ModelNet40 latent validation dataset (comprising 2048 latents) after
50 epochs, the training process is halted, and the current model is considered final.
The learning rate was set to 10–4, halving it whenever the classification accuracy
over the ModelNet40 latent validation dataset stopped improving for 10 epochs.
These training hyperparameters are the same as those used for CD-PCCL training.

(E) PC geometry codecs: Two geometry-only static PC codecs were used in this paper
to code the PCs from the selected ModelNet40 test dataset:

• Conventional MPEG G-PCC Octree codec: The G-PCC reference software,
TMC13, version v14, in Octree mode, was used under the configurations defined
in the MPEG Common Test Conditions (CTC) [30]. The G-PCC Octree decom-
pressed PCs will only be used for the decompressed domain PC classification
pipeline since there are no G-PCC compressed domain classifiers available.

• DL-based JPEG PCC codec: The JPEG PCC reference software, version v2 [21]
was used in both the decompressed and compressed domains PC classification
pipelines to generate decompressed PCs and the corresponding latent represen-
tations, respectively.

(F) Compression performance metrics: The RD performance was evaluated using the
PSNR D1 metric since this is the main PC geometry fidelity quality metric recom-

Page 17 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

mended by both MPEG CTC [30] and JPEG CTTC [23]. The coding rate was meas-
ured in bits per input point (bpp).

(G) Classification performance metrics: The evaluation of the classification perfor-
mance for all tested PC classification pipelines was measured using the Top-1 and
Top-5 metrics, which are the most widely adopted classification metrics in the lit-
erature. Top-1 corresponds to the percentage of test examples in which the class
with the highest probability precisely matches the ground truth. Top-5 corresponds
to the percentage of test examples for which the ground truth is included in the 5
classes with the highest probabilities as output by the classifier. Naturally, Top-5 is
always equal to or higher than Top-1.

Table 1 provides a summary of the key characteristics associated to each PC classifi-
cation pipeline. The next section will report and discuss the performance assessment
for the defined PC classification pipelines.

6 Performance assessment
This section presents the performance assessment for the proposed ACD-PCCL solu-
tion. Subsection 6.1 reports and discusses the PC compression performance for two
relevant PC geometry codecs, notably G-PCC Octree and JPEG PCC. After, Subsec-
tion 6.2 reports and analyzes the spatial domain PC classification performance for
the original, voxelized and decompressed PC classification pipelines. Later, Subsec-
tion 6.3 reports and discusses the PC classification performance for compressed
domain classifiers (CD-PCCL and ACD-PCCL), considering the two defined ACD-
PCCL training strategies, in comparison with the reference spatial domain classifica-
tion performance.

Table 1 Summary of characteristics for each PC classification pipeline

PC classification
pipeline

ModelNet40
test dataset

Data
representation

PC coding PC classification Observations

G‑PCC
Octree

JPEG
PCC

PointGrid CD‑PCCL ACD‑
PCCL

Spatial
domain

Original • Subset SF 2
• Subset SF 4
• Subset SF 8

Floating point
coordinates

✖ ✖ ✔ ✖ ✖ Values range is
in [− 1, 1]

Voxelized Integer coordi-
nates

✖ ✖ ✔ ✖ ✖ Voxelized to
8-bit precision
with scaling
(values range is
in [0, 255])

Decom-
pressed

✔ ✔ ✔ ✖ ✖ JPEG PCC with
recommended
and non-recom-
mended coding
configurations

Compressed Latent represen-
tation

✖ ✔ ✖ ✔ ✔ • Specific coding
configurations
for CD-PCCL
• Recommended
coding con-
figurations for
ACD-PCCL

Page 18 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

6.1 Compression performance

This subsection reports and analyzes the compression performance for the selected
ModelNet40 PC test dataset with the selected codecs, notably G-PCC Octree and JPEG
PCC.

Since the ModelNet40 PC test dataset is very sparse, it is very suitable for coding with
G-PCC Octree. Conversely, the DL-based JPEG PCC codec has been shown to perform
better than the MPEG standards, G-PCC and V-PCC Intra, when coding dense PCs [21].
To mitigate the negative impact of sparsity on the JPEG PCC compression performance,
the JPEG PCC architecture includes a subsampling module which uses a tunable SF cod-
ing parameter to adjust the sparsity of the input PC blocks to the JPEG PCC DL coding
model.

To determine a suitable SF to a given PC (X), in terms of compression efficiency, the
mean Euclidean distances (dx) between each point (x ∈ X) and its five nearest neighbors
are first computed, and then the median across all these mean distances is obtained to
define the sparsity index (SI):

Finally, SF is defined as the closest, previous power of 2 from SI:

where ⌊⌋ denotes the mathematical floor operation. In practice, Eq. (2) defines the most
suitable JPEG PCC SF coding parameter for a PC as the highest power of 2 below the
median across the neighbor distance means. For example, if the median is 2.7 or 3.5, SF
becomes 2; for a sparser PC with a median above 4, SF becomes 4; if the median is just
above 1, SF becomes 1, meaning that no subsampling is needed since the PC is already
dense enough for the trained DL coding model.

For the ModelNet40 PC test dataset, Eq. (2) only provides three different results for
the SF value, notably 2, 4 or 8; this means that this dataset is so sparse that SF = 1, mean-
ing no subsampling before coding, is never a result. The SF values resulting from Eq. (2)
allow dividing the ModelNet40 PC test dataset into three distinct subsets, depending
on which SF value each PC prefers to maximize its RD performance, as summarized in
Table 2. This table shows that, according to Eq. (2), most PCs in the ModelNet40 PC test
dataset should benefit from using for compression SF = 4 or 8 and only very few PCs
benefit from SF = 2 (none for SF = 1).

(1)SI = median dx|dx =
1
5

5
k=1 �x − xk�

2, ∀x ∈ X .

(2)SF = 2log2 ⌊SI⌋,

Table 2 Splitting the ModelNet40 PC test dataset based on the SF values defined by Eq. (2)

Subset name Number of PCs JPEG PCC coding configurations Latent representation size

Recommended SF BS

Subset SF 2 25 2 128 16 × 16 × 16 × 128

Subset SF 4 217 4 64 8 × 8 × 8 × 128

Subset SF 8 178 8 32 4 × 4 × 4 × 128

Page 19 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

To assess the impact on JPEG PCC RD performance of using or not, for each PC,
the SF value recommended by Eq. (2), the compression performance will be evaluated
separately for the three subsets defined in Table 2 using SF = 2, 4 and 8; for example,
for subset SF 2, which PCs should prefer being coded using SF = 2, it should be pos-
sible to see the compression penalty of using another SF value and not the recom-
mended one.

Figure 4 shows the average RD performance for coding the three ModelNet40 PC
test subsets (subset SF 2, subset SF 4 and subset SF 8) using the G-PCC Octree and
JPEG PCC codecs. For JPEG PCC, three different configurations were tested, using
different SF values, notably 2, 4, and 8. It is important to notice that these different
JPEG PCC coding configurations produce latent representations with different sizes
as shown in Table 2. The results in Fig. 4 allow concluding:

• On average, G-PCC Octree offers better RD performance than JPEG PCC, notably
for the higher rates, which is due to the very high sparsity of the ModelNet40 PCs.

• Using different JPEG PCC coding configurations, notably in terms of SF parameter,
has a clear impact on both the reconstruction quality and coding rate. Higher SF val-
ues allow to achieve better RD performance for very low rates, while lower SF values
allow improving the RD performance for higher rates.

• On average, JPEG PCC with the recommended SF values offers better compression
performance than using other SF values for coding each ModelNet40 PC test subset.
As an example, one can observe that the JPEG PCC performance for subset SF 4
is much better using SF = 4 than using SF = 2 or SF = 8; a similar behavior happens
for the other subsets, thus implying that each PC should be coded with its recom-
mended SF value and not all with the same SF (notably SF = 4 as in CD-PCCL) since

.4FStesbuS)b(.2FStesbuS)a(

Fig. 4 RD performance for G-PCC Octree and JPEG PCC using three relevant coding configurations defined
in terms of SF

Page 20 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

this brings a compression penalty. This also validates Eq. (2) for defining the most
suitable SF parameter value for each PC depending on its sparsity characteristics but
also, more importantly, demonstrates the importance of being able to use different
SF values when coding PCs with JPEG PCC.

By allowing the use of adaptive JPEG PCC coding configurations, particularly in terms
of the SF parameter value, JPEG PCC can achieve its best RD performance for each of
the sparse PCs in the ModelNet40 PC test dataset. This involves selecting the best SF
parameter for each PC. However, as highlighted in Fig. 4, the JPEG PCC RD perfor-
mance still falls below that of G-PCC Octree for the very sparse PCs in the ModelNet40
PC dataset. This contrasts with the results for denser, more natural PCs, where JPEG
PCC outperforms G-PCC in terms of the RD performance for PC geometry [21].

Furthermore, it is important to emphasize that JPEG PCC was not trained using the
same dataset used for training the PointGrid classifier. The JPEG PCC coding model
was trained according to the CTTC [23] defined by the JPEG committee, which define a
training dataset and a loss function primarily intended for human visualization applica-
tions due to the importance of the performance for these applications for the deploy-
ment of the JPEG PCC standard. While it would be possible to train JPEG PCC using the
same ModelNet40 PC dataset and a different loss function, e.g., considering the classifi-
cation performance, with possible gains in RD performance for this dataset, and possibly
also some compressed domain classification performance gains, this would likely have a
negative impact on the RD performance for real-world PC content, as shown in previ-
ous studies in the literature [31]; thus, the original JPEG PCC model was used. However,
this would imply losing compatibility with the JPEG PCC standard since the decoder is
normative.

After defining the subsets from the selected ModelNet40 PC test dataset and analyz-
ing the related RD performance with the recommended and non-recommended coding
configurations in terms of SF value, the next subsections will present the classification
performance for the three defined ModelNet40 test subsets, considering the Model-
Net40 PC test subsets and the corresponding ModelNet40 latent test subsets for the spa-
tial domain pipelines (original, voxelized, and decompressed) as well as the compressed
domain pipeline, respectively.

6.2 Spatial domain classification performance

This subsection reports and analyzes the PC classification performance for the three spa-
tial domain classification pipelines, i.e., original, voxelized and decompressed domains,
as previously defined. Fig. 5 presents the average classification accuracy as a function of
the rate (in bits per point, bpp), for the Top-1 and Top-5 classification metrics, for the
three test subsets, i.e., subset SF 2, subset SF 4, and subset SF 8. The results in Fig. 5,
organized by subsets, allow concluding:

• For the original and voxelized domains, PointGrid offers similar PC classification
performance for both Top-1 and Top-5, for all three PC test subsets. This suggests
that the voxelization of the input PCs (to 8-bit) has no major impact on the Point-
Grid classification performance.

Page 21 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

• For decompressed domain classification, when PCs are G-PCC Octree encoded,
the PC classification performance follows closely the relative performance behav-
ior observed for the G-PCC Octree RD performance, for the three test PC subsets.
This indicates that, similar to the RD performance, the classification performance
improves with an increasing rate. Additionally, at the highest rate points where
G-PCC Octree approximates lossless quality, the classification performance for both
Top-1 and Top-5 reaches the classification performance of the original and voxelized
classification pipelines.

• For decompressed domain classification, when PCs are JPEG PCC encoded, the
decompressed domain classification performance depends significantly on the used
coding configurations, notably the SF parameter. Since coding each test subset with
the recommended SF value offers better RD performance (fewer coding artifacts),
see Fig. 4, than using non-recommended SF values, better classification performance
is also obtained under these conditions.

(a) Subset SF 2.

(b) Subset SF 4.

(c) Subset SF 8.
Fig. 5 Spatial domain (original, voxelized and decompressed domains) PC classification performance, Top-1
(left) and Top-5 (right), for the three ModelNet40 PC test subsets: a subset SF 2; b subset SF 4; and c subset SF 8

Page 22 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

• For decompressed domain classification, using JPEG PCC coded PCs generally
offers better classification performance than G-PCC Octree, notably when using
the recommended SF, for both Top-1 and Top-5 classification metrics. This rela-
tive classification performance does not follow the same behavior as for the cor-
responding RD performance, presented in Fig. 4, where G-PCC Octree generally
outperforms JPEG PCC. This suggests that the compression artifacts introduced
by JPEG PCC do not seem to have an impact on PC classification performance as
negative as those introduced by G-PCC Octree.

• Given the smaller size of subset SF 2, including only 25 PCs, a single incorrect
prediction has a noticeable impact on the final classification performance across
various rate models. This phenomenon, which may be observed for both G-PCC
Octree and JPEG PCC, makes it harder to have clear conclusions in terms of the
classification performance for this subset.

An important but expected conclusion of this analysis regards the impact of lossy
coding on the decompressed domain PC classification. The coding artifacts present in
the reconstructed PCs significantly reduce the classification performance, especially
for the lower rates. As it will be shown in the next subsection, one way to reduce this
impact is by performing PC classification directly on the latent representation which
has been directly obtained from the original PCs.

6.3 Compressed domain classification performance

This subsection reports and analyzes the compressed domain PC classification per-
formance for both the CD-PCCL and ACD-PCCL compressed domain solutions
described in Sects. 3 and 4, respectively. For CD-PCCL, the JPEG PCC latent repre-
sentations of all PC subsets use SF = 4 and BS = 64 since this coding configuration
is imposed to generate specific fixed-size latent representations (8 × 8 × 8 × 128)
for all three subsets. For ACD-PCCL, the classification performance will be pre-
sented for the two defined training strategies, i.e., freezing and retraining. Since the
motivation for the development of ACD-PCCL is to allow JPEG PCC coding with
a suitable SF parameter value for a given input PC, the recommended JPEG PCC
coding configurations, as presented in Table 2, are used for creating the latent rep-
resentations for each PC subset. As a result, the obtained JPEG PCC latent rep-
resentations for each PC subset have different sizes, which means that the three
ACD-PCCL model branches proposed in Sect. 4, have to be used for ACD-PCCL
classification.

Figure 6 presents the Top-1 and Top-5 PC classification results for the CD-PCCL
and ACD-PCCL compressed domain classifiers as a function of the bpp rate. It is
important to remind that subset SF X, includes the PCs from the test dataset which
offer the ‘best’ RD performance for SF=X according to Eq. (2) summarized in Table 2.
The results in Fig. 6 allow concluding:

Page 23 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

(A) Compressed versus spatial domains

 In general, for all PC subsets, the compressed domain classification performance, i.e.,
using latents, offers better classification performance than the spatial domain per-
formance, notably:

• Both CD-PCCL and ACD-PCCL outperform the decompressed domain PC
classification, for both Top-1 and Top-5 classification metrics, and for all test
subsets. The compressed domain classification gains are clearly observable in
the low-rate points for both Top-1 and Top-5 classification metrics.

(a) Subset SF 2.

(b) Subset SF 4.

(c) Subset SF 8.
Fig. 6 PC classification performance comparison, Top-1 (left) and Top-5 (right), between the proposed
ACD-PCCL and the CD-PCCL solutions for the ModelNet40 PC test dataset: a subset SF 2; b subset SF 4; and c
subset SF 8

Page 24 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

• Although CD-PCCL imposes constraints on encoding subset SF 2 and subset
SF 8 with JPEG PCC using SF = 4, it still offers better classification performance
than decompressed domain classification performance with recommended SF
parameter values.

• Occasionally, the compressed domain PC classification performance even
surpasses the PC classification performance for the original and voxelized
domains; this may be due to some noise filtering associated to compression.

(B) ACD-PCCL versus CD-PCCL
 Regarding the ACD-PCCL to CD-PCCL comparison, it is important to remind that

the CD-PCCL and ACD-PCCL results were obtained using JPEG PCC with a fixed
SF=4 value and different SFs depending on the PC, respectively. The results in
Fig. 6 allow concluding:

• For subset SF 2, the CD-PCCL (using always SF = 4) achieves similar or slightly
better classification performance with lower rates than ACD-PCCL. Further-
more, the classification results shown in Fig. 6a are clearly more erratic and
with larger variations than the ACD-PCCL results for SF = 4 and SF = 8 cases.
This is associated to the fact that the number of PCs composing the subset SF 2
is much smaller than for the other subsets (25 PCs versus 217 and 178 PCs for
subset SF 4 and subset SF 8, respectively). This implies that, as shown in Fig. 6a,
the impact produced by wrongly classifying just one PC belonging to subset SF
2 (while it effectively belongs to another subset) leads to a significant variation
in accuracy, with a drop from 100 to 96%. On top of this, it is also important to
notice that the gains in RD performance for the CD-PCCL model (using always
SF = 4), notably when compared with the ACD-PCCL model using the Retrain-
ing strategy for subset SF 2, are only observed for a very narrow low-rate range.
For this subset, ACD-PCCL using the Retraining strategy offers better classifi-
cation performance than the Freezing strategy.

• For subset SF 4, ACD-PCCL using the Freezing strategy is, as expected, equiva-
lent to CD-PCCL solution since the non-adaptive bridge weights are re-used
without retraining.

• For subset SF 8, once again there is a difference in coding rates between CD-
PCCL and ACD-PCCL, this time with ACD-PCCL using lower rates due to the
smaller block sizes. Here, ACD-PCCL tends to outperform CD-PCCL in terms
of classification performance, for the same rates, though only when using the
Retraining strategy.

(C) ACD-PCCL versus training strategies
 For all latent subsets, the ACD-PCCL classification performance varies noticeably

depending on the training strategy:

• For subsets SF 2 and SF 8, ACD-PCCL with the Retraining strategy outperforms
ACD-PCCL with the Freezing strategy, for both the Top-1 and Top-5 classifica-
tion metrics. This improvement is explained by the fact that with the Retrain-

Page 25 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

ing strategy all layers for all branches in the adaptive bridge are trained jointly
and thus better optimized; on the contrary, with the Freezing strategy, the new
bridge layers are conditioned to the non-adaptive bridge weights, reused from
CD-PCCL without retraining.

• For subset SF 4, ACD-PCCL with the freezing and retraining strategies offer,
naturally, similar performance: in fact, for this specific case, the Freezing strategy
bridge only corresponds to the two CNN layers from the non-adaptive bridge,
trained only with latent representations with the same size (8 × 8 × 8 × 128).

From the previous results, it may be concluded that the proposed ACD-PCCL solu-
tion is able to efficiently adapt to latents of different block sizes, while offering the same
or better classification performance, when compared with CD-PCCL and decom-
pressed domain PC classification. By using an adaptive bridge model, ACD-PCCL is
able to process JPEG PCC latent representations from different coding configurations,
which enables the elimination of the compression efficiency penalties associated with
the imposition of a specific and sub-optimal coding configuration, as for CD-PCCL. The
ACD-PPCL classification performance is better for the Retraining strategy, due to the
joint optimization of all layers in the three adaptive bridge branches used in the com-
pressed domain PC classification. The ACD-PCCL classification performance gains
(notably versus decompressed domain) are particularly impressive when considering
that the model complexity, measured in terms of the total number of weights, is below
the reference spatial domain PointGrid classifier (10,469,160 versus 10,492,072 weights).

7 Conclusions and future work
This paper proposes the first coding stream adaptive compressed domain PC classifica-
tion solution based on learning-based tools. This solution is targeted to coding streams
compliant with the emerging JPEG PCC standard and the spatial domain PointGrid
PC classifier and offers some degree of compatibility between spatial and compressed
domains solutions. The adaptation capabilities regard the JPEG PCC latent representa-
tion block size which may vary depending on the coding configuration, notably the sam-
pling factor (and consequent 3D block size). Since it is essential to vary the JPEG PCC
coding configuration to reach the best compression performance for each specific PC,
thus generating varying size latent representations, it is also essential to have an adap-
tive compressed domain classification solution that processes PC coding streams for the
most relevant coding configurations. The codec-classifier adaptation is performed with
a novel bridge DL-based model placed between the codec output and the so-called par-
tial classifier. The partial classifier is designed to be largely compatible with the refer-
ence spatial domain classifier, in this case PointGrid. Experimental results show a clear
compression performance advantage for the proposed ACD-PCCL solution over exist-
ing non-adaptive compressed domain classifiers, which only accept a specific latent
size, meaning that some PC would have to be coded with a ‘non-ideal’ JPEG PCC con-
figuration. Moreover, by improving the RD performance using the best recommended
sampling factor for each PC, i.e., reaching better quality for a target rate, also the classi-
fication performance may slightly improve, increasing even more the advantage in terms
of PC classification performance over traditional decompressed domain PC classifiers.

Page 26 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

Regarding PointGrid, the ACD-PCCL classification performance gains are substantial
while using a model with less weights.

While the presented results showcase positive outcomes for PC coding and classi-
fication, it is important to acknowledge that the selected JPEG PCC codec, PointGrid
classifier, CD-PCCL and ACD-PCCL do have certain limitations, notably related to the
adoption of a voxel-based representation which is computationally expensive, and the
use of a latent representation that is optimized solely for human visualization purposes.
For JPEG PCC, adopting a sparse tensor representation can overcome the complexity
limitation, since only the occupied voxels and their coordinates are represented; this
makes it significantly lighter in terms of computational complexity and allows the use
of point-based classifiers as well as voxel-based classifiers. Future work will consider the
use of alternative PC latent representations, and the use of the JPEG PCC latent repre-
sentation for other compressed domain PC CV tasks, which will require adequate train-
ing datasets and CV task-dependent design strategies for the bridge.

Abbreviations
ACD-PCCL Adaptive compressed domain PC classifier
BS Block size
CD-PCCL Compressed domain PC classifier
CNN Convolutional neural network
CTTC Common training and test conditions
CV Computer vision
CfP Call for proposals
DL Deep learning
FC Fully connected
FPS Farthest point sampling
G-PCC Geometry-based PCC
JPEG Joint Photographic Experts Group
MPEG Moving Picture Experts Group
PC Point cloud
PCC Point cloud coding
RD Rate-distortion
SF Sampling factor
V-PCC Video-based PCC
VM Verification model
VVC Versatile video coding

Acknowledgements
No additional acknowledgements.

Author contributions
All authors designed the overall idea and proposed an experimental plan for verification. AS collected the used dataset,
conducted the experiment, collecting the results and completed the writing of the first draft. AFRG, NMMR and FP
conducted overall supervision of the work and determined the final version. All authors take part in the discussion of the
work described in this paper. All authors read and approved the final manuscript.

Funding
This research was funded in whole or in part by the Fundação para a Ciência e a Tecnologia, I.P. (FCT, Funder
ID = 50110000187) under Grant PTDC/EEI-COM/1125/2021. For the purpose of Open Access, the authors have applied a
CC-BY public copyright license to any Author’s Accepted Manuscript (AAM) version arising from this submission.

Availability of data and materials
The mesh sampled ModelNet40 PC dataset used for the experiments is available at the link: https:// shape net. cs. stanf ord.
edu/ media/ model net40_ ply_ hdf5_ 2048. zip.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 8 December 2023 Accepted: 29 May 2024

https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip
https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip

Page 27 of 27Seleem et al. EURASIP Journal on Image and Video Processing (2024) 2024:13

References
 1. D. Graziosi et al., An overview of ongoing point cloud compression standardization activities: video-based (V-PCC)

and geometry-based (G-PCC). APSIPA Trans. Signal Inf. Process. 9, 1–17 (2020). https:// doi. org/ 10. 1017/ ATSIP. 2020. 12
 2. ISO/IEC JTC 1/SC29/WG1 N100097, Final call for proposals on JPEG Pleno point cloud coding. 94th JPEG Meeting,

Online, Jan. 2022
 3. A.F.R. Guarda, N.M.M. Rodrigues, F. Pereira, Point cloud geometry and color coding in a learning-based ecosystem for

JPEG coding standards. IEEE Int. Conf. on Image Process. (ICIP), Kuala Lumpur, Malaysia, Oct. 2023
 4. ISO/IEC JTC 1/SC29/WG1 N100332, JPEG AI verification model 1.0 description. 97th JPEG Meeting, Online, Oct. 2022
 5. ISO/IEC JTC 1/SC29/WG1 N100250, Report on the JPEG AI call for proposals results, 96th JPEG Meeting, Online, July

2022
 6. J. Ballé, D. Minnen, S. Singh, S. J. Hwang, N. Johnston, Variational image compression with a scale hyperprior, in Int.

Conf. Learning Representations, Vancouver, Canada, Apr. 2018
 7. D. Minnen, J. Ballé, G. Toderici, Joint autoregressive and hierarchical priors for learned image compression, Advances

in Neural Inf. Process. Syst., Montreal, Canada, Dec. 2018
 8. A. Seleem, A. F. R. Guarda, N. M. M. Rodrigues, F. Pereira, Impact of conventional and deep learning-based point

cloud geometry coding on deep learning-based classification performance. IEEE Int. Symp. Multimedia, Naples, Italy,
Dec. 2022

 9. Y. Deng, L.J. Karam, Learning-based compression for material and texture recognition. arXiv: 2104. 10065 [cs.CV]
(2021)

 10. J. Liu, H. Sun, J. Katto, Learning in compressed domain for faster machine vision tasks. Int. Conf. Vision Commun.
Image Process, Munich, Germany, Dec. 2021

 11. Z. Wang, M. Qin, Y.-K. Chen, Learning from the CNN-based compressed domain. IEEE/CVF Winter Conf. Appl. Comput.
Vision, Waikoloa, HI, USA, Jan. 2022

 12. Liu, H. Sun, J. Katto, Improving multiple machine vision tasks in the compressed domain. Int. Conf. Pattern Recogni-
tion, Montreal, QC, Canada, Aug. 2022

 13. L. Liu et al., 2C-Net: integrate image compression and classification via deep neural network. Multimed. Syst. 29,
945–959 (2022). https:// doi. org/ 10. 1007/ s00530- 022- 01026-1

 14. Z. Duan, Z. Ma, F. Zhu, Unified architecture adaptation for compressed domain semantic inference. IEEE Trans.
Circuits Syst. Video Technol. 33(8), 4108–4121 (2023). https:// doi. org/ 10. 1109/ TCSVT. 2023. 32403 91

 15. H. Choi, I.V. Bajić, Latent-space scalability for multi-task collaborative intelligence, IEEE Int. Conf. on Image Process.
(ICIP), Anchorage, AK, USA, Sep. 2021

 16. M. Ulhaq, I.V. Bajić, Learned point cloud compression for classification, IEEE 25th Int. Workshop on Multimedia Signal
Process. (MMSP), Poitiers, France, Sep. 2023

 17. A. Seleem, A.F.R. Guarda, N.M.M. Rodrigues, F. Pereira, Deep learning-based compressed domain multimedia for
man and machine: a taxonomy and application to point cloud classification. IEEE Access 11, 128979–128997 (2023).
https:// doi. org/ 10. 1109/ ACCESS. 2023. 33325 99

 18. T. Le, Y. Duan, PointGrid: a deep network for 3D shape understanding, IEEE Conf. Comput. Vision Pattern Recognition,
Salt Lake City, UT, USA, June 2018

 19. D. Maturana, S. Scherer, VoxNet: a 3D convolutional neural network for real-time object recognition. IEEE/RSJ Int.
Conf. Intell. Robot. Syst. (IROS), Hamburg, Germany, Sep. 2015

 20. G. Riegler, A.O. Ulusoy, A. Geiger, OctNet: learning deep 3D representations at high resolutions, IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, July 2017

 21. ISO/IEC JTC 1/SC29/WG1 N100367, Verification model description for JPEG Pleno learning-based point cloud coding
v1. 97th JPEG Meeting, Online, Oct. 2022

 22. T.-Y. Lin et al., Focal loss for dense object detection. IEEE Int. Conf. Comput. Vision, Venice, Italy, Oct. 2017
 23. ISO/IEC JTC 1/SC29/WG1 N100112, JPEG Pleno point cloud coding common training and test conditions v1.1. 94th

JPEG Meeting, Online, Jan. 2022
 24. A.F.R. Guarda et al., Deep learning-based point cloud coding and super-resolution: a joint geometry and color

approach. IEEE Trans. Multimedia (2023). https:// doi. org/ 10. 1109/ TMM. 2023. 33380 81
 25. H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolutional neural networks for 3D shape recognition,

IEEE Int. Conf. Comput. Vision, Santiago, Chile (2015)
 26. C. R. Qi, H. Su, K. Mo, L. J. Guibas, PointNet: deep learning on point sets for 3d classification and segmentation, IEEE

Conf. Comput. Vision Pattern Recognition, Honolulu, HI, USA (2017)
 27. M. Ruivo, A.F.R. Guarda, F. Pereira, Double-deep learning-based point cloud geometry coding with adaptive super-

resolution. Eur. Workshop Vis. Inf. Process., Lisbon, Portugal, Sep. 2022
 28. Z. Wu et al., 3D shapenets: a deep representation for volumetric shapes. IEEE Conf. Comput. Vis. Pattern Recognition,

Boston, MA, USA, June 2015
 29. Y. Zhang et al., Not all points are equal: learning highly efficient point-based detectors for 3D lidar point clouds IEEE/

CVF Conf. Comput. Vis. Pattern Recognition, New Orleans, LA, USA, Jun. 2022.
 30. ISO/IEC JTC1/SC29/WG11 N19084, Common test conditions for point cloud compression. Brussels, Belgium, Jan.

2020
 31. E. Alexiou, K. Tung, T. Ebrahimi, Towards neural network approaches for point cloud compression. Appl. Digit. Image

Process. XLIII,11510, Bellingham, WA, USA, Aug. 2020

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1017/ATSIP.2020.12
http://arxiv.org/abs/hep-th/2104.10065
https://doi.org/10.1007/s00530-022-01026-1
https://doi.org/10.1109/TCSVT.2023.3240391
https://doi.org/10.1109/ACCESS.2023.3332599
https://doi.org/10.1109/TMM.2023.3338081

	Adaptive bridge model for compressed domain point cloud classification
	Abstract
	1 Introduction
	2 Background work
	2.1 Deep learning-based point cloud coding: JPEG Pleno PCC verification model
	2.2 Deep learning-based point cloud classification: PointGrid

	3 Non-adaptive compressed domain point cloud classification: CD-PCCL
	3.1 Partial classifier
	3.2 Non-adaptive bridge design

	4 Adaptive compressed domain point cloud classification: ACD-PCCL
	4.1 Adaptive bridge design
	4.2 Training process

	5 Test conditions and experimental setup
	6 Performance assessment
	6.1 Compression performance
	6.2 Spatial domain classification performance
	6.3 Compressed domain classification performance

	7 Conclusions and future work
	Acknowledgements
	References

