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Abstract 

The recent adoption of deep learning-based models for the processing and coding 
of multimedia signals has brought noticeable gains in performance, which have estab-
lished deep learning-based solutions as the uncontested state-of-the-art both for com-
puter vision tasks, targeting machine consumption, as well as, more recently, cod-
ing applications, targeting human visualization. Traditionally, applications requiring 
both coding and computer vision processing require first decoding the bitstream 
and then applying the computer vision methods to the decompressed multimedia sig-
nals. However, the adoption of deep learning-based solutions enables the use of com-
pressed domain computer vision processing, with gains in performance and compu-
tational complexity over the decompressed domain approach. For point clouds (PCs), 
these gains have been demonstrated in the single available compressed domain 
computer vision processing solution, named Compressed Domain PC Classifier, which 
processes JPEG Pleno PC coding (PCC) compressed streams using a PC classifier largely 
compatible with the state-of-the-art spatial domain PointGrid classifier. However, 
the available Compressed Domain PC Classifier presents strong limitations by imposing 
a single, specific input size which is associated to specific JPEG Pleno PCC configura-
tions; this limits the compression performance as these configurations are not ideal 
for all PCs due to their different characteristics, notably density. To overcome these 
limitations, this paper proposes the first Adaptive Compressed Domain PC Classifier 
solution which includes a novel adaptive bridge model that allows to process the JPEG 
Pleno PCC encoded bit streams using different coding configurations, now maximiz-
ing the compression efficiency. Experimental results show that the novel Adaptive 
Compressed Domain PC Classifier allows JPEG PCC to achieve better compression 
performance by not imposing a single, specific coding configuration for all PCs, regard-
less of its different characteristics. Moreover, the added adaptability power can achieve 
slightly better PC classification performance than the previous Compressed Domain 
PC Classifier and largely better PC classification performance (and lower number 
of weights) than the PointGrid PC classifier working in the decompressed domain.

Keywords: Point cloud, Classification, Coding, Compressed domain, Deep learning

1 Introduction
Point clouds (PCs) have emerged as an attractive 3D visual representation model, offer-
ing immersive experiences for humans and providing rich spatial information for com-
puter vision (CV) tasks. A PC consists of a set of points in the 3D space represented by 
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their coordinates (x, y, z), referred to as the PC geometry. Besides geometry, a PC may 
include additional information about the points, the so-called attributes, such as color 
and normal vectors. For realistic and immersive applications, PCs usually have a mas-
sive number of points to model the surfaces. Due to the substantial number of points, 
efficient PCC is crucial for practical applications, notably those involving transmission 
or storage. Recognizing the critical need for efficient PCC in application scenarios where 
interoperability is essential, the Moving Picture Experts Group (MPEG) has already 
established two PCC standards: geometry-based PCC (G-PCC) for static PC coding; 
and video-based PCC (V-PCC) for dynamic PC coding [1]. These coding solutions may 
be classified as ‘conventional’ since they follow the usual hand-crafted design approach 
adopted for decades in multimedia coding solutions.

Following the success of deep learning (DL)-based solutions for multimedia signal 
processing and coding, also the Joint Photographic Experts Group (JPEG) has taken 
the PCC challenge by launching the JPEG Pleno PCC Call for Proposals (CfP) in April 
2021, aiming to specify the first DL-based PCC standard. In contrast with MPEG PCC 
standards which mostly target compression for human visualization, the scope of the 
JPEG Pleno PCC project targets both human visualization and machine consumption 
[2]. Despite its relatively recent development, the current JPEG Pleno PCC Verification 
Model (VM), which specifies the standard under development, referred to from now 
on as JPEG PCC, has achieved state-of-the-art compression results when compared 
with the MPEG PCC standards, notably for geometry-only compression of static and 
dense PCs, showcasing the capabilities of DL-based coding solutions [3]. However, for 
sparse PCs, the JPEG PCC rate-distortion (RD) performance is not so competitive with 
G-PCC Octree still performing better. In parallel, JPEG is also developing a DL-based 
image coding standard, known as JPEG AI [4] which although still under development, 
is already achieving more than a 30% reduction in rate compared to the powerful Versa-
tile Video Coding (VVC) standard in its intra-coding mode [5].

Regarding the coding approach, JPEG PCC is based on the recent advancements in 
DL-based coding and processing for multimedia signals [6, 7]. These DL-based coding 
solutions adopt convolutional DL models that extract features from the spatial–tempo-
ral multimedia signal resulting in a rich latent representation. These convolutional DL 
models are at the core of DL-based solutions used for both multimedia coding and CV 
tasks. For human visualization applications, the latent representation is compressed 
using a DL-based entropy coding scheme (e.g., for JPEG PCC, a hyperprior model is 
used to estimate the probability distribution of the latent representation and improve 
the entropy coding compression efficiency). For CV tasks, the latent representation is 
processed by additional layers which are trained to perform the target task, e.g., segmen-
tation, classification, and recognition, among others.

In PC classification scenarios, existing solutions apply the classification models to the 
original (uncompressed) PC. If compression is applied, due to storage or bandwidth 
resource limitations, the PC classifier is applied to the decompressed version of the PC, 
meaning that the PC content must be first decoded before being processed. This option, 
referred to in this paper as decompressed domain PC classification, has two main dis-
advantages: the first and most serious is the penalty in the classification accuracy due 
to the artifacts that are introduced by coding/decoding the original PC [8]; additionally, 
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the decoding stage computational complexity must be considered on top of the (decom-
pressed domain) classification computational complexity.

An interesting alternative to overcome the decompressed domain CV processing 
drawbacks associated to decompressed domain PC classification, is to perform the 
processing inherent to the CV task in the compressed domain [9–16]. The use of com-
pressed domain approaches with conventional (usually transform-based or hybrid) cod-
ing methods has been unsuccessful, since these methods generate compressed domain 
signal representations which are not powerful enough both for efficient compression 
and CV tasks processing. However, the emergence of DL-based processing and coding 
models have brought a bright new perspective to this field, which has been recognized 
by JPEG while designing the JPEG AI and JPEG PCC scopes.

To validate the JPEG Pleno PCC scope vision for compressed representations target-
ing both man and machines, a so-called Compressed Domain PC Classifier (CD-PCCL) 
solution has been proposed for compressed domain PC classification by the same 
authors of this paper [17]. This solution uses a DL-based classification model which is 
partly coincident/compatible with a highly performing spatial domain geometry-only 
classifier, named PointGrid PC classifier [18], applied to the JPEG PCC geometry latent 
representation. In practice, CD-PCCL re-uses some layers and corresponding weights 
from the PointGrid classifier, referred to as the partial classifier to offer a high degree 
of compatibility between CD-PCCL and the PointGrid classifier. This compatibility 
requirement results from acknowledging that there are application scenarios where both 
compressed and decompressed domain processing may be simultaneously needed and 
thus the memory footprint should be reduced; moreover, it also makes sense to adapt 
very high-performing spatial domain CV processors to also offer this high performance 
in the compressed domain.

The PointGrid PC classifier [18] has been selected for CD-PCCL as the reference spa-
tial domain DL-based PC classifier, due to adopting a voxel-based approach, which is 
a mandatory requirement to match the JPEG PCC voxel-based latent representation; 
moreover, it is a highly performing solution with gains over the alternative voxel-based 
classifiers, like VoxNet [19] and OctNet [20]. The performance results in [17] demon-
strate that CD-PCCL achieves gains in classification performance with a lower number 
of parameters when compared with decompressed domain PC classification using Point-
Grid, most notably for the lower rates. Despite the good classification performance and 
compatibility degree with the original PointGrid classifier, the CD-PCCL model accepts 
a single, specific JPEG PCC latent size (8 × 8 × 8 × 128) which is associated to a spe-
cific JPEG PCC coding configuration, notably regarding the sampling factor (SF) applied 
to the input PC. The SF parameter is the most impactful JPEG PCC coding parameter 
in terms of the compression performance, since it allows to achieve good compression 
efficiency for both dense and sparse PC across a large range of rates. By constraining the 
JPEG PCC coding configuration whatever the PC characteristics, the use of CD-PCCL 
compressed domain classification is achieved at a cost of a reduced compression effi-
ciency, which is a severe limiting factor for practical deployment of compressed domain 
CV processors.

In this context, this paper proposes a novel Adaptive Compressed Domain PC Classifier 
(ACD-PCCL) solution that overcomes the CD-PCCL limitations, while offering the same 
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advantages as well as compression and classification gains. The main technical novelty 
regards the classification model architecture, now including a novel adaptive bridge which 
can accept and automatically adapt to different-size input latent representations, notably 
generated by different JPEG PCC coding configurations. The proposed adaptive bridge 
model allows ACD-PCCL to process compressed bit streams generated by different encod-
ers or different coding configurations of a given encoder (e.g., JPEG PCC), as well as differ-
ent PC precisions.

It is important to note that the proposed ACD-PCCL solution specifically uses the future 
JPEG PCC standard and is intended to offer some degree of compatibility with an exist-
ing spatial domain PC classifier, in this case PointGrid, notably to reduce the memory 
footprint. In this context, the novelty of this work is not the design of the PC codec or the 
original PC classifier but rather the design of a novel, adaptive compressed domain PC clas-
sifier, compatible with two highly relevant state-of-the-art DL-based solutions for PC cod-
ing and classification, notably the selected JPEG PCC codec and the PointGrid PC classifier. 
As a consequence, the ACD-PCCL solution proposed in this paper is aligned with the JPEG 
Pleno PCC vision to achieve a unified and efficient learning-based PC representation for 
both human visualization and machine consumption.

The experimental results show that ACD-PCCL offers advantages in the two main 
aspects of compressed domain PC classification: PC coding/compression and PC classifica-
tion. First, ACD-PCCL allows JPEG PCC to offer PC compression performance gains when 
compared with CD-PCCL, since no constraints are imposed on the JPEG PCC coding 
configurations and, thus, the best compression configuration for each PC may be selected, 
depending on its characteristics. This means that the benefits on compressed domain PC 
classification come at no cost in compression performance, which is critical for the deploy-
ment of applications that target both machine vision and human visualization. Second, 
ACD-PCCL achieves PC classification performance gains over PointGrid applied to the 
decompressed PC, while maintaining good compatibility with the original spatial domain 
model, by reusing a relevant number of layers and weights from the original PointGrid 
model (82.91%), which has the advantage of reducing the memory footprint. Moreover, 
ACD-PPCL also offers slightly better PC classification performance than the previous CD-
PCCL. Finally, ACD-PCCL offers complexity gains over decompressed domain PC classifi-
cation, notably in terms of the total number of weights in comparison with the PointGrid 
model, and avoids the additional complexity associated with PC decoding.

This paper is structured as follows: after this introduction, Section 2 briefly reviews the 
relevant background work regarding PC geometry-only coding and classification. Section 3 
describes the non-adaptive CD-PCCL classification solution, while Sect.  4 proposes the 
novel ACD-PCCL classification solution and the design of its adaptive bridge model. Sec-
tion 5 presents the test conditions and experimental setup and Sect. 6 reports and discusses 
the experimental results. Finally, Sect. 7 concludes the paper and presents future work.

2  Background work
This section presents a brief review of the relevant background work for this paper, nota-
bly the two key components, i.e., the PC codec and the spatial domain PC classifier. Sec-
tion 2.1 addresses the JPEG PCC VM [21], a DL-based PC codec which will become soon 
the future JPEG Pleno PCC standard. Section 2.2 addresses the selected spatial domain 
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DL-based PC classifier, i.e., PointGrid [18], which is used as the reference and starting 
point for the design of the compatible compressed domain PC classification solutions 
discussed in this paper, i.e., the existing CD-PCCL and the novel proposed ACD-PCCL.

2.1  Deep learning‑based point cloud coding: JPEG Pleno PCC verification model

The JPEG Pleno PCC VM [21] is the current coding solution under development which 
will soon become the JPEG Pleno PCC standard. JPEG PCC performs the coding of 
geometry and attributes using two different DL-based models. To foster a JPEG learn-
ing-based ecosystem, the color attributes are coded with the JPEG AI image codec, after 
3D to 2D projection. Since this paper will perform PC classification using only the PC 
geometry, the following review will concentrate on JPEG PCC geometry coding.

The JPEG PCC high-level architecture for geometry-only coding is presented in 
Fig. 1a. JPEG PCC uses a DL-based model to code 3D blocks of binary voxels from the 
input PC, where each voxel may be either occupied (1) or empty (0). When the input PC 
is too large for coding with the available resources or random access is a requirement, 
JPEG PCC uses a PC block partitioning module to divide the input PC into fixed-size 
3D blocks. After, JPEG PCC uses a block down-sampling module, which subsamples the 
input PC block by a given SF, which ideally should be dependent on the PC characteris-
tics; if SF = 1, no down-sampling is performed. Down-sampling is especially important 
to reach lower rates or to efficiently code sparser PCs. After decoding, JPEG PCC uses a 
block up-sampling module, notably when SF is larger than 1, which includes an optional 
DL-based super-resolution model, creating the reconstructed version of the input coded 
PC block.

The DL-based block encoding and decoding modules are based on an autoencoder 
architecture, shown in Fig.  1b, which generate the latent representation for a given 
PC block and subsequently transform this latent representation back into the lossy 
reconstructed (decompressed) PC block. For this purpose, the autoencoder model is 
end-to-end trained using a RD-driven loss function, which effectively balances the 
decompressed PC distortion (estimated by the focal loss [22]) and the entropy-estimated 
coding rate required for the latent representation. The latent representation is encoded 
using a DL-based entropy coding model which uses an auxiliary hyperprior model to 
estimate the distribution of the latents generated by the autoencoder, thus reducing the 
rate required for their entropy coding. The JPEG PCC DL models are trained under the 
PCC Common Training and Test Conditions (CTTC) set by JPEG [23]; the JPEG CTTC 
defines a training dataset including 28 static PCs, each with distinctive features, notably 
in terms of resolution and sparsity. A Lagrangian multiplier, denoted as λ, controls the 
trade-off between quality and rate in the training process. By adjusting the λ value, JPEG 
PCC performs training to obtain a different coding model for each target quality/rate 
trade-off, thus defining multiple RD points. In this paper, six trained DL coding models 
are used, each corresponding to one of six different λ values, notably 0.008, 0.004, 0.002, 
0.001, 0.0005 and 0.00025. For a more in-depth description of the JPEG PCC codec, refer 
to [21].

When comparing the geometry compression performance between JPEG PCC and 
the well-known MPEG G-PCC and V-PCC standards [1], the results reveal superior 
performance for JPEG PCC, particularly when coding static, dense PCs [21]. However, 
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for sparse PCs, such as those in the ModelNet40 PC dataset adopted in this paper for 
classification, JPEG PCC offers a worse compression performance, notably compared to 
G-PCC. The previously mentioned down/up-sampling modules are critical to improve 
the compression performance for this type of PCs since using an appropriate SF densi-
fies the input 3D cubic block (with a specific block size (BS) where BS is the edge size, 
i.e., BS × BS × BS) to offer the DL-based coding model a 3D block more similar to those 
used for training which are denser (see Fig. 1a) [24]. Later, at the decoder side, up-sam-
pling is applied to restore the original PC precision using the same SF. The compression 
gains for this flexible down/up-sampling strategy are also associated to the use of smaller 
size latent representations, notably for the higher SF values.

Depending on the PC density/sparsity, the ideal SF to maximize the compression 
efficiency will vary and consequently also the size of the latent representation. The key 
technical novelty of this paper is precisely associated to the design of an adaptive PC 
classification model, notably a so-called bridge, which is able to accept different size 
latent PC representations to perform compressed domain PC classification.

(a)

(b)
Fig. 1 JPEG PCC geometry codec. a High-level architecture. b DL-based block coding model architecture 
[21]
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2.2  Deep learning‑based point cloud classification: PointGrid

DL-based PC classification methods may consider a variety of PC representation 
approaches, notably multi-view-based, point-based and voxel-based approaches as 
follows:

• Multi-view-based approaches: Use multiple projected 2D views of the PC to extract 
features and classify the PC objects (as in [25]). While projection-based approaches 
enhance interpretability and maintain compatibility with traditional 2D methods, 
they may suffer from information loss and limited spatial information compared to 
direct 3D processing approaches.

• Point-based approaches: Operate directly on the raw PC data, extracting features 
at the point level (as in [26]). Point-based approaches offer advantages such as the 
direct preservation of raw PC data, the ability to extract global features, and a gen-
erally lower computational complexity; however, the unstructured nature of the PC 
data makes it difficult to apply regular CNNs to extract local features.

• Voxel-based approaches: Represent the PC data as a binary signal in 3D space using 
a uniform volumetric grid (as in [18]). While voxel-based approaches offer a struc-
tured representation enabling the use of regular CNNs, they may consume signifi-
cantly more memory than point-based approaches and lose fine-grained details.

These diverse representation approaches for DL-based methods offer flexibility and 
effectiveness in handling PC classification tasks for different use cases with varying con-
straints and requirements. Given the use of the JPEG PCC codec, which adopts a voxel-
based approach, a voxel-based PC classifier was selected. Among the voxel-based PC 
classifiers, PointGrid [18] was chosen due to its better classification performance on the 
ModelNet40 PC dataset while maintaining low memory consumption when compared 
with other voxel-based PC classifiers, like VoxNet [19] and OctNet [20].

The detailed architecture of the PointGrid classifier model is presented in Fig.  2. 
It is composed of nine convolutional neural network (CNN) layers, each including a 
LeakyReLU activation function, followed by batch normalization, and three fully con-
nected (FC) layers. These layers result in a model using a total of 10,492,072 weights. 
The PointGrid classifier model was trained using the ModelNet40 PC training dataset 
and the cross-entropy between the ground truth and predicted classes as loss func-
tion. Throughout the training process, all ModelNet40 PCs were resampled from 2048 
to 1024 points each. Although PointGrid is a voxel-based classifier, it also integrates a 

Fig. 2 PointGrid classifier architecture [18]
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point-based representation by considering multiple points per voxel (cell). A unique 
advantage of the PointGrid classifier over other voxel-based PC classifiers is the inte-
gration of the voxel-based and point-based representations, considering larger vox-
els with multiple points per voxel (cell). Since the PointGrid classifier processes a 
given PC as a single block of a specific size with multiple points per voxel (cell), it was 
reported in [18] that the PointGrid classifier achieves the best classification perfor-
mance for the ModelNet40 PC test dataset using blocks of size 32 × 32 × 32 with 4 
points per voxel (cell). Hence, this top performing PointGrid classification configura-
tion will be adopted in this paper.

3  Non‑adaptive compressed domain point cloud classification: CD‑PCCL
This section briefly presents the so-called DL-based Compressed Domain PC Clas-
sifier (CD-PCCL) solution, which has been previously proposed in [17], and will be 
used as the reference for the design of the novel ACD-PCCL solution proposed in this 
paper.

In [17], the CD-PCCL is proposed as a use case for the proposed taxonomy for 
the design of compressed domain CV processors, i.e., operating in the compressed 
domain, which are partly compatible with a spatial domain CV processor. This tax-
onomy is designed for a generic scenario corresponding to multiple signal modalities 
and DL-based CV processors which perform any CV task. In this context, several CD-
PCCLs with different degrees of compatibility with the selected spatial domain Point-
Grid classifier were designed to demonstrate the guidance of the proposed taxonomy 
for the design of compressed domain CV processors. These compressed domain PC 
geometry classifiers adopt a two-stage model, represented in Fig. 3a, composed by:

• Partial classifier: Corresponding to a set of layers and associated weights from the 
reference spatial domain classifier, in the case PointGrid, thus ensuring some degree 
of compatibility between the compressed and decompressed domain PC classifiers.

• Bridge: Corresponding to a set of layers and associated weights which adapt/match 
the compressed domain representation, in this case the JPEG PCC latents, received 
as input to the partial classifier derived from the reference spatial domain classifier.

It is important to notice that the partial classifier and the bridge have been referred 
in the literature using alternative terminologies, such as “CV model back-end” and 
“latent space transform”, respectively [15]. The term “‘Bridge”’ has been chosen to 
express the fact that this model not only transforms latents (this it is a ‘latent space 
transform’), but it also has the specific function of enabling the ‘matching’ connection 
between the two latent representations, the one produced by the PC codec and the 
one received by the partial classifier. Moreover, the term ‘Partial Classifier’ has been 
used in this manuscript to make clear that this model is an unaltered part of the initial 
PC spatial domain classifier model, in this case PointGrid. Nevertheless, the terminol-
ogy above used in this paper follows the one previously proposed for CD-PCCL [17].

Using the proposed taxonomy for design guidance, several architectures and design 
approaches for partly compatible CD-PCCL solutions based on the reference spatial 
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domain PointGrid classifier are proposed in [17]. All the designed and assessed CD-
PCCL solutions share two core design requirements that will also be adopted in this 
paper:

• Compatibility: The CD-PCCL model shall have a high degree of compatibility with 
the reference spatial domain PointGrid classifier, both in terms of architecture as 
well as weights to reduce the memory footprint. This compatibility requirement 
results from acknowledging that there are application scenarios where both com-
pressed and decompressed domain processing may be simultaneously needed and 
thus the memory footprint should be reduced; moreover, is also makes sense to 
adapt very high-performing spatial domain CV processors to also offer this high 
performance in the compressed domain.

• Model size: The CD-PCCL model shall have a lower number of weights than the 
reference spatial domain PointGrid classifier again to limit the memory footprint.

These requirements are crucial to ensure that the final CD-PCCL solution has prac-
tical relevance, notably that it is possible to achieve memory savings by sharing model 
weights with the reference spatial domain PointGrid classifier and the new model has 

(a) CD-PCCL.                                                       (b) ACD-PCCL.
Fig. 3 a CD-PCCL model architecture [17], which processes only fixed-size latent representations with size 
8 × 8 × 8 × 128; and b ACD-PCCL model architecture, which processes different size latent representations 
with size d × d × d × 128
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a size, measured in terms of number of weights, that is smaller or equal to the number 
in the original model.

Moreover, a key design constraint, referred to as latent block size adaptation, ensures 
that the dimensions of the JPEG PCC latents block match the dimensions of the CD-
PCCL partial classifier input latent block size. In practice, the bridge which is at the top 
of CD-PCCL is responsible for this adaptation. In [17], this is achieved by limiting the 
JPEG PCC codec to a specific coding configuration, assuring that JPEG PCC always pro-
duces an output stream corresponding to a latent block size of 8×8×8×128, which is the 
only block size that the CD-PCCL solution can process. It is important to notice that all 
the PC classifiers, i.e., PointGrid, CD-PCCL and ACD-PCCL, are geometry-only classi-
fiers, trained using the geometry data of the geometry-only ModelNet40 dataset. As a 
consequence, in this paper, only the geometry coding models of the JPEG PCC codec are 
used.

Based on the previously presented constraint and requirements, the key steps in 
the design of the CD-PCCL solution [17] are: (i) defining the partial classifier; and (ii) 
designing and training the non-adaptive bridge. The next two subsections present these 
two key CD-PCCL classifier components as well as their design process.

3.1  Partial classifier

Given that the PointGrid classifier receives as input a block with the full PC geometry 
rather than a PC latent representation, it is essential to prune some initial PointGrid lay-
ers to acknowledge that feature/latents are now received at the classifier (and not a spa-
tial domain PC). The PointGrid layers resulting from this pruning process are referred to 
as the partial classifier. In fact, the partial classifier corresponds to the part of CD-PCCL 
that is common with the reference spatial domain PointGrid classifier, thus the part that 
may offer some degree of compatibility between the spatial and compressed domains, 
see Fig. 3a. For CD-PCCL, the partial classifier was defined as corresponding to the bot-
tom 7 layers from the spatial domain PointGrid classifier, i.e., the first top 5 layers are 
pruned. In summary, the partial classifier model key characteristics are:

• Input latent size: 8 × 8 × 8 × 128.
• Number of layers: 7, corresponding to the 7 bottom layers of the PointGrid classifier.
• Type of layers

4 convolutional layers.
3 FC layers.

• Activation function: LeakyReLU.
• Number of weights: 8 699 176.
• Training: No retraining, i.e., weights are initialized from the reference spatial domain 

PointGrid classifier; this maximizes the inter-compatibility between compressed and 
decompressed domains.

To ensure high compatibility between CD-PCCL and the reference spatial domain 
PointGrid classifier, the partial classifier not only uses the same architecture for the 
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bottom 7 layers of the PointGrid classifier, but also inherits the associated weights 
from the reference model, meaning that no retraining is performed. Although 
the defined partial classifier can accept a latent representation with the same size 
(8 ×  8 ×  8 ×  128) of the JPEG PCC latent representation, when JPEG PCC uses a 
fixed configuration with SF = 4 and BS = 64, using the partial classifier directly (with-
out a bridge) and no retraining for compressed domain classification would offer ter-
rible classification performance since the JPEG PCC latents ‘semantics’ would not 
match the partial classifier trained ‘semantics’. Therefore, fine-tuning the partial clas-
sifier becomes essential when no bridge is integrated. Furthermore, as demonstrated 
in [17], the use of a bridge in CD-PCCL to adapt the JPEG PCC latent representation 
to a non-retrained partial classifier (thus with more compatibility) offers better classi-
fication performance compared to CD-PCCL without the bridge and a retrained par-
tial classifier (thus with less compatibility).

3.2  Non‑adaptive bridge design

After the definition of the partial classifier, the next step was to design and train the 
bridge model to be part of CD-PCCL. The non-adaptive bridge, shown in Fig. 3a, is 
designed and trained to adapt the JPEG PCC fixed-size latent representation to the 
selected partial classifier. Note that here the bridge is referred to as non-adaptive to 
express the fact that this bridge can process only specific JPEG PCC fixed-size latent 
representation blocks, in this case 8×8×8×128. This fact implies major constraints 
on the JPEG PCC coding configurations that may be used to code all PCs, obliged 
to generate this latent representation size, rather than using PC specific coding con-
figurations which would result in maximizing the compression efficiency (as will be 
seen later in Subection 5.2). Since the JPEG PCC latent dimension which is passed to 
the non-adaptive bridge matches exactly the input dimension to the partial classifier 
(what does not always have to be the case), the non-adaptive bridge layers design uses 
stride 1 and 128 filters, meaning that, in this case, the bridge adaptation task is only 
in terms of latent ‘semantics’ and not in terms of the latents size. The non-adaptive 
bridge model key characteristics are:

• Input latent size: 8 × 8 × 8 × 128.
• Number of layers: 2, to minimize the compressed domain classifier model size.
• Type of layers: 2 convolutional layers.
• Activation function: LeakyReLU.
• Number of weights: 884 992.
• Output latent size: 8 × 8 × 8 × 128.
• Training: Training with random initialization.

The full CD-PCCL is trained by training only the two CNN layers in the non-adap-
tive bridge with frozen partial classifier layers (to maximize the mutual compatibility). 
Despite the apparent simplicity of the non-adaptive bridge architecture, which uses 
only 2 CNN layers, this CD-PCCL solution offers a classification performance that 
is better than the reference spatial domain PointGrid classification, notably for lower 



Page 12 of 27Seleem et al. EURASIP Journal on Image and Video Processing         (2024) 2024:13 

coding rates in the decompressed domain. Moreover, since this bridge model has a 
lower number of weights than the layers pruned from the PointGrid classifier (884 
992 versus 1,792,896 weights), the total number of CD-PCCL weights [17] is lower 
than for the original PointGrid classifier (9 584 168 versus 10 492 072 weights).

Despite the good PC classification results reported in [17], the non-adaptive CD-
PCCL is limited to a specific JPEG PCC coding configuration (SF = 4 BS = 64), resulting 
into an 8 × 8 × 8 × 128 latent size. Naturally, this coding configuration may not be the 
most suitable coding configuration for all PCs, thus leading to a compression penalty 
regarding the optimal coding configuration. However, simply changing the JPEG PCC 
coding configurations would result in generating latent representations with different 
latent sizes which could not be processed by the existing CD-PCCL. This CD-PCCL lim-
itation led to the development of an adaptive ACD-PCCL classification solution, which 
is the key technical novelty of this paper.

4  Adaptive compressed domain point cloud classification: ACD‑PCCL
This section presents the proposed Adaptive Compressed Domain PC Classifier (ACD-
PCCL) solution, which architecture is shown in Fig. 3b. The ACD-PCCL solution uses a 
novel adaptive bridge that is able to process different size latent representations gener-
ated by the JPEG PCC encoder. This is critical since it allows to use different JPEG PCC 
coding configurations, notably SF parameter values, thus offering: (i) an enlargement on 
the range of target bitrates/qualities allowed for encoding a PC by using multiple coding 
configurations; and (ii) better RD performance, especially when considering PCs with 
different levels of sparsity, by using multiple coding configurations. While higher values 
of SF have been shown to increase the codec RD performance for sparse PCs (such as 
those in the ModelNet40 PC dataset), especially at low rates, also denser PCs and higher 
coding rates benefit from the use of lower SF values, commonly SF = 1, i.e., no down-
sampling at all [27].

4.1  Adaptive bridge design

The design of the proposed ACD-PCCL solution will be based on the same constraints 
and requirements that guided the CD-PCCL design, notably: (i) a high degree of com-
patibility with the reference PointGrid PC classifier; and (ii) an overall number of 
weights lower or equal than that of PointGrid. To create synergies and compatibility also 
between the available (non-adaptive) CD-PCCL solution and the novel (adaptive) ACD-
PCCL solution, the same partial classifier used in CD-PCCL is adopted for ACD-PCCL, 
i.e., the 7 bottom layers of the PointGrid classifier, represented in green in Fig. 3b. Using 
the same partial classifier architecture and weights guarantees a high degree of compat-
ibility between CD-PPCL, ACD-PCCL and the reference PointGrid classifier.

Given the JPEG PCC codec architecture, the latent block size dimensions for any given 
coding configuration can be represented as a function of the latent spatial dimension d, 
resulting in block with size d × d × d × 128 where the ‘128’ means that the JPEG PCC 
latent blocks consistently comprise 128 feature channels. Considering the possible JPEG 
PCC configurations, the possible values for d are the powers of 2 which are greater than 
or equal to 4. Since the CD-PCCL solution is designed for d = 8, the novel ACD-PCCL 
solution will be designed using d = 8 as reference in the sense that the CD-PCCL bridge 
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is included in ACD-PCCL and latents with size 8 × 8 × 8 × 128 (as in CD-PCCL) will 
go straight to the previous CD-PPCL model; on the contrary, latents with different sizes 
need further processing to be transformed into 8 × 8 × 8 × 128 latents before they may 
again be fed to the previous CD-PPCL model.

In summary, to be able to process input latent blocks with varying sizes and produce 
the target output block size required as partial classifier input (which corresponds to 
d = 8), the novel adaptive bridge architecture is designed in two-stages:

(A) d × d × d × 128 to 8 × 8 × 8 × 128 block size adaptation: The first stage processes 
the JPEG PCC latent representation to change its d × d × d × 128 size into the pre-
vious CD-PCCL target block size (8 × 8 × 8 × 128) size. This first bridge stage, rep-
resented at the top of Fig. 3b, considers three different branches:

• Bypass branch: To be used if the input latents have already an 8 × 8 × 8 × 128 
block size which matches the target block size expected by the previous CD-PCCL 
bridge, i.e., the network simply bypasses this adaptation stage without altering the 
latents in any way;

• Up-sampling branch: To be used if d < 8 (latents block size smaller than 
8 × 8 × 8 × 128), including iterative CNN-based layers with strided convolutions. 
In this branch, a transposed convolutional layer is iteratively used to up-sample 
the input latent block, until it matches the target block size expected by the previ-
ous CD-PCCL bridge, i.e., 8 × 8 × 8 × 128. This layer uses stride 2, so that each 
iteration can double the value of the spatial dimension d. Iterations are repeated 
until d reaches 8.

• Down-sampling branch: To be used if d > 8 (latents size bigger than 8 × 8 × 8 × 128) 
including iterative CNN-based layers with strided convolutions In this branch, a 
CNN-based layer with stride 2 is iteratively used to down-sample the input latent 
block, until it matches the target block size expected by the previous CD-PCCL 
bridge, i.e., 8 × 8 × 8 × 128. This layer uses stride 2, so that each iteration can 
reduce the spatial dimension, d, by half. Iterations are repeated until d reaches 8.

(B) 8 × 8 × 8 × 128 to partial classifier adaptation: The second stage adapts the 
8 × 8 × 8 × 128 size to the partial classifier as already done in CD-PCCL; for this 
reason, this second-stage bridge is composed by two CNN layers, which are com-
mon to the previous CD-PCCL bridge since the same type of adaptation has to be 
performed; these layers are represented in Fig. 3b in red.

The ACD-PCCL design above ensures that the final number of weights is lower than 
the reference spatial domain PointGrid classifier, i.e., 10 469 160 versus 10 492 072 
weights.

4.2  Training process

The ACD-PCCL training process has a strong influence on the final classification perfor-
mance and thus must be also carefully defined. In this paper, two training strategies are 
defined and will be assessed in Sect. 5, which can be summarized as follows:
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(A) Freezing the second-stage bridge layers, i.e., the legacy CD-PPCL bridge layers: In 
this training strategy, referred from now on as “Freezing”, the available pre-trained 
CD-PCCL bridge solution (comprising the two CNN layers inherited from the 
non-adaptive bridge) and the partial classifier are used without additional retrain-
ing. Consequently, the training process focuses exclusively on the first-stage bridge 
performing up-sampling and down-sampling adaptation in its branches. A large 
degree of compatibility between ACD-PCCL and CD-PCCL is offered.

(B) Retraining the second-stage bridge layers, i.e., the legacy CD-PCCL bridge layers: 
In this training strategy, referred from now on as “Retraining”, all bridge layers, 
i.e., first and second stages, including those inherited from CD-PPCL, are trained 
from scratch using random initialization; the partial classified is still frozen. A 
lower degree of compatibility between ACD-PCCL and CD-PCCL is offered, now 
reduced to the partial classifier.

The “Freezing” training strategy is naturally faster than the “Retraining” one, as it 
requires the training of only part of the adaptive bridge layers. However, the “Retraining” 
training strategy is more flexible since it is able to train all layers jointly. To maintain a 
consistent degree of compatibility with the reference spatial domain PointGrid classifier, 
the partial classifier layers always use the original PointGrid model weights, so no addi-
tional training is applied.

The training of the six CD-PCCL non-adaptive bridge models (for six different 
rates/qualities) followed a sequential training approach. The same sequential training 
approach is followed for training the new six ACD-PPCL adaptive bridge models based 
on the defined training strategies, i.e., freezing and retraining. In the sequential training 
approach, the bridge model for the highest rate (lowest λ value) is trained first, using 
random weight initialization. Then, for each subsequent rate (next λ value), the bridge 
model is initialized with the weights from the previously trained bridge model. This 
sequential training approach significantly reduces the training time and tends to yield 
better performance. It is worth noting that the existing pre-trained JPEG PCC models 
were also trained using sequential training.

5  Test conditions and experimental setup
This section describes the test conditions and experimental setup used for compression 
and classification performance assessment, notably:

(A) PC classification pipelines: In practical scenarios, PC classification can occur at var-
ious domains, specifically before or after lossy coding. For each domain, an inde-
pendent PC classification pipeline is adopted in this paper as follows:

• Original domain PC classification pipeline: In this pipeline, the original PC clas-
sification performance is assessed using the selected reference spatial domain 
PC classifier with the selected original PC dataset, i.e., no coding or additional 
processing is applied. In this paper, the original PC classification performance is 
assessed using the PointGrid PC classifier and the original ModelNet40 PC test 
dataset [28].
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• Voxelized domain PC classification pipeline: In this pipeline, the voxelized domain 
PC classification performance is assessed using the selected reference spatial 
domain PC classifier after voxelizing the original PC dataset used in the original 
domain PC classification pipeline to a predefined precision, i.e., converting the 
original PC dataset from floating point representation to an integer representa-
tion. In this paper, the voxelized PC classification performance is assessed using 
the PointGrid PC classifier and the voxelized ModelNet40 PC test dataset with 
8-bit precision. Since the selected PC codecs in this paper, G-PCC Octree and 
JPEG PCC, code voxelized PCs, it is important to assess the impact of the voxeli-
zation process on the PointGrid classification performance.

• Decompressed domain PC classification pipeline: In this pipeline, the decom-
pressed domain PC classification performance is assessed using the selected refer-
ence spatial domain PC classifier after coding the voxelized version of the selected 
original dataset. In this paper, the decompressed PC classification performance 
is assessed after coding the voxelized ModelNet40 PC test dataset with both the 
conventional G-PCC Octree and DL-based JPEG PCC codecs. For JPEG PCC, 
different coding models and configurations are used to code the ModelNet40 PC 
test dataset. Again, the reference PointGrid PC classifier is used, now with lossy 
decoded PCs.

• Compressed domain PC classification pipeline: In this pipeline, the compressed 
domain PC classification performance is assessed directly using a compressed 
domain PC classifier with the latent representations of the voxelized version of the 
selected dataset for the selected PC codec. In this paper, the PC classification per-
formance is assessed directly using the ModelNet40 latent test dataset from JPEG 
PCC using both CD-PCCL and ACD-PCCL. The voxelized ModelNet40 PC test 
dataset is coded with JPEG PCC, notably with specific and different coding con-
figurations to generate fixed sizes and different block sizes latent representations 
for CD-PCCL and ACD-PCCL, respectively.

(B) PC datasets: The dataset adopted in this paper is the most used dataset for PC clas-
sification, namely the ModelNet40 PC dataset [28]. This PC dataset contains a total 
of 12,308 PCs with only geometry, and is organized into 40 classes, further divided 
into training, validation, and test sub-datasets with 9840, 2048, and 420 PCs, 
respectively. All the PCs in the ModelNet40 dataset have a total of 2 048 points, 
represented using floating-point precision coordinates, with values ranging from 
− 1 to 1. In the spatial domain (original, voxelized and decompressed domains) sce-
narios, PC resampling is performed using the Farthest Point Sampling (FPS) algo-
rithm [29] to bring the ModelNet40 PCs to 1 024 points as needed to use the same 
size for which PointGrid classifier has been trained.

(C) Training latent datasets: When training the DL-based compressed domain clas-
sifiers used in this paper, notably the existing CD-PCCL and the proposed ACD-
PCCL, it is important to highlight the following:

• The CD-PCCL DL models (one model for each λ value) were trained using the 
fixed-size (8 × 8 × 8 × 128) latent representations from the ModelNet40 PC 
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training dataset encoded with JPEG PCC. In practice, this means that each PC 
was compressed using the JPEG PCC model trained for the corresponding RD 
trade-off, associated to a specific λ value. The JPEG PCC coding configuration 
was always set to SF = 4 with BS = 64 to generate the fixed-size 8 × 8 × 8 × 128 
latents, thus building the ModelNet40 latent training dataset, as described in 
[17].

• The ACD-PCCL DL models (one model for each λ value) were trained as 
described for CD-PCCL, but now using latent representations with different 
block sizes. These different size latents are associated with the coding of the 
ModelNet40 PC training dataset using JPEG PCC with different coding con-
figurations, namely:

• SF = 8 (corresponding to BS = 32 for a full PC size of 256 × 256 × 256), which 
generates latent blocks with size 4 × 4 × 4 × 128;

• SF = 4 (corresponding to BS = 64 for a full PC size of 256 × 256 × 256), which 
generates latent blocks with size 8 × 8 × 8 × 128, as for CD-PCCL;

• SF = 2 (corresponding to BS = 128 for a full PC size of 256 × 256 × 256), which 
generates latent blocks with size 16 × 16 × 16 × 128.

 The selection of the ‘best’ coding configuration for each PC is based on a spe-
cific criterion presented in the next section.

(D) Training hyperparameters: The Adam optimizer was used to train the ACD-PCCL 
solution, with a batch size of 32. The cross-entropy loss function between the pre-
dicted and ground truth classes was used. Early stopping was set using a patience 
value of 50 epochs, meaning that if there is no improvement in classification accu-
racy over the ModelNet40 latent validation dataset (comprising 2048 latents) after 
50 epochs, the training process is halted, and the current model is considered final. 
The learning rate was set to  10–4, halving it whenever the classification accuracy 
over the ModelNet40 latent validation dataset stopped improving for 10 epochs. 
These training hyperparameters are the same as those used for CD-PCCL training.

(E) PC geometry codecs: Two geometry-only static PC codecs were used in this paper 
to code the PCs from the selected ModelNet40 test dataset:

• Conventional MPEG G-PCC Octree codec: The G-PCC reference software, 
TMC13, version v14, in Octree mode, was used under the configurations defined 
in the MPEG Common Test Conditions (CTC) [30]. The G-PCC Octree decom-
pressed PCs will only be used for the decompressed domain PC classification 
pipeline since there are no G-PCC compressed domain classifiers available.

• DL-based JPEG PCC codec: The JPEG PCC reference software, version v2 [21] 
was used in both the decompressed and compressed domains PC classification 
pipelines to generate decompressed PCs and the corresponding latent represen-
tations, respectively.

(F) Compression performance metrics: The RD performance was evaluated using the 
PSNR D1 metric since this is the main PC geometry fidelity quality metric recom-
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mended by both MPEG CTC [30] and JPEG CTTC [23]. The coding rate was meas-
ured in bits per input point (bpp).

(G) Classification performance metrics: The evaluation of the classification perfor-
mance for all tested PC classification pipelines was measured using the Top-1 and 
Top-5 metrics, which are the most widely adopted classification metrics in the lit-
erature. Top-1 corresponds to the percentage of test examples in which the class 
with the highest probability precisely matches the ground truth. Top-5 corresponds 
to the percentage of test examples for which the ground truth is included in the 5 
classes with the highest probabilities as output by the classifier. Naturally, Top-5 is 
always equal to or higher than Top-1.

Table 1 provides a summary of the key characteristics associated to each PC classifi-
cation pipeline. The next section will report and discuss the performance assessment 
for the defined PC classification pipelines.

6  Performance assessment
This section presents the performance assessment for the proposed ACD-PCCL solu-
tion. Subsection 6.1 reports and discusses the PC compression performance for two 
relevant PC geometry codecs, notably G-PCC Octree and JPEG PCC. After, Subsec-
tion  6.2 reports and analyzes the spatial domain PC classification performance for 
the original, voxelized and decompressed PC classification pipelines. Later, Subsec-
tion  6.3 reports and discusses the PC classification performance for compressed 
domain classifiers (CD-PCCL and ACD-PCCL), considering the two defined ACD-
PCCL training strategies, in comparison with the reference spatial domain classifica-
tion performance.

Table 1 Summary of characteristics for each PC classification pipeline

PC classification 
pipeline

ModelNet40 
test dataset

Data 
representation

PC coding PC classification Observations

G‑PCC 
Octree

JPEG 
PCC

PointGrid CD‑PCCL ACD‑
PCCL

Spatial 
domain

Original • Subset SF 2
• Subset SF 4
• Subset SF 8

Floating point 
coordinates

✖ ✖ ✔ ✖ ✖ Values range is 
in [− 1, 1]

Voxelized Integer coordi-
nates

✖ ✖ ✔ ✖ ✖ Voxelized to 
8-bit precision 
with scaling 
(values range is 
in [0, 255])

Decom-
pressed

✔ ✔ ✔ ✖ ✖ JPEG PCC with 
recommended 
and non-recom-
mended coding 
configurations

Compressed Latent represen-
tation

✖ ✔ ✖ ✔ ✔ • Specific coding 
configurations 
for CD-PCCL
• Recommended 
coding con-
figurations for 
ACD-PCCL
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6.1  Compression performance

This subsection reports and analyzes the compression performance for the selected 
ModelNet40 PC test dataset with the selected codecs, notably G-PCC Octree and JPEG 
PCC.

Since the ModelNet40 PC test dataset is very sparse, it is very suitable for coding with 
G-PCC Octree. Conversely, the DL-based JPEG PCC codec has been shown to perform 
better than the MPEG standards, G-PCC and V-PCC Intra, when coding dense PCs [21]. 
To mitigate the negative impact of sparsity on the JPEG PCC compression performance, 
the JPEG PCC architecture includes a subsampling module which uses a tunable SF cod-
ing parameter to adjust the sparsity of the input PC blocks to the JPEG PCC DL coding 
model.

To determine a suitable SF to a given PC ( X ), in terms of compression efficiency, the 
mean Euclidean distances ( dx ) between each point ( x ∈ X ) and its five nearest neighbors 
are first computed, and then the median across all these mean distances is obtained to 
define the sparsity index (SI):

Finally, SF is defined as the closest, previous power of 2 from SI:

where ⌊⌋ denotes the mathematical floor operation. In practice, Eq. (2) defines the most 
suitable JPEG PCC SF coding parameter for a PC as the highest power of 2 below the 
median across the neighbor distance means. For example, if the median is 2.7 or 3.5, SF 
becomes 2; for a sparser PC with a median above 4, SF becomes 4; if the median is just 
above 1, SF becomes 1, meaning that no subsampling is needed since the PC is already 
dense enough for the trained DL coding model.

For the ModelNet40 PC test dataset, Eq. (2) only provides three different results for 
the SF value, notably 2, 4 or 8; this means that this dataset is so sparse that SF = 1, mean-
ing no subsampling before coding, is never a result. The SF values resulting from Eq. (2) 
allow dividing the ModelNet40 PC test dataset into three distinct subsets, depending 
on which SF value each PC prefers to maximize its RD performance, as summarized in 
Table 2. This table shows that, according to Eq. (2), most PCs in the ModelNet40 PC test 
dataset should benefit from using for compression SF = 4 or 8 and only very few PCs 
benefit from SF = 2 (none for SF = 1).

(1)SI = median dx|dx =
1
5

5
k=1 �x − xk�

2, ∀x ∈ X .

(2)SF = 2log2 ⌊SI⌋,

Table 2 Splitting the ModelNet40 PC test dataset based on the SF values defined by Eq. (2)

Subset name Number of PCs JPEG PCC coding configurations Latent representation size

Recommended SF BS

Subset SF 2 25 2 128 16 × 16 × 16 × 128

Subset SF 4 217 4 64 8 × 8 × 8 × 128

Subset SF 8 178 8 32 4 × 4 × 4 × 128
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To assess the impact on JPEG PCC RD performance of using or not, for each PC, 
the SF value recommended by Eq. (2), the compression performance will be evaluated 
separately for the three subsets defined in Table 2 using SF = 2, 4 and 8; for example, 
for subset SF 2, which PCs should prefer being coded using SF = 2, it should be pos-
sible to see the compression penalty of using another SF value and not the recom-
mended one.

Figure 4 shows the average RD performance for coding the three ModelNet40 PC 
test subsets (subset SF 2, subset SF 4 and subset SF 8) using the G-PCC Octree and 
JPEG PCC codecs. For JPEG PCC, three different configurations were tested, using 
different SF values, notably 2, 4, and 8. It is important to notice that these different 
JPEG PCC coding configurations produce latent representations with different sizes 
as shown in Table 2. The results in Fig. 4 allow concluding:

• On average, G-PCC Octree offers better RD performance than JPEG PCC, notably 
for the higher rates, which is due to the very high sparsity of the ModelNet40 PCs.

• Using different JPEG PCC coding configurations, notably in terms of SF parameter, 
has a clear impact on both the reconstruction quality and coding rate. Higher SF val-
ues allow to achieve better RD performance for very low rates, while lower SF values 
allow improving the RD performance for higher rates.

• On average, JPEG PCC with the recommended SF values offers better compression 
performance than using other SF values for coding each ModelNet40 PC test subset. 
As an example, one can observe that the JPEG PCC performance for subset SF 4 
is much better using SF = 4 than using SF = 2 or SF = 8; a similar behavior happens 
for the other subsets, thus implying that each PC should be coded with its recom-
mended SF value and not all with the same SF (notably SF = 4 as in CD-PCCL) since 

.4FStesbuS)b(.2FStesbuS)a(

Fig. 4 RD performance for G-PCC Octree and JPEG PCC using three relevant coding configurations defined 
in terms of SF
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this brings a compression penalty. This also validates Eq.  (2) for defining the most 
suitable SF parameter value for each PC depending on its sparsity characteristics but 
also, more importantly, demonstrates the importance of being able to use different 
SF values when coding PCs with JPEG PCC.

By allowing the use of adaptive JPEG PCC coding configurations, particularly in terms 
of the SF parameter value, JPEG PCC can achieve its best RD performance for each of 
the sparse PCs in the ModelNet40 PC test dataset. This involves selecting the best SF 
parameter for each PC. However, as highlighted in Fig.  4, the JPEG PCC RD perfor-
mance still falls below that of G-PCC Octree for the very sparse PCs in the ModelNet40 
PC dataset. This contrasts with the results for denser, more natural PCs, where JPEG 
PCC outperforms G-PCC in terms of the RD performance for PC geometry [21].

Furthermore, it is important to emphasize that JPEG PCC was not trained using the 
same dataset used for training the PointGrid classifier. The JPEG PCC coding model 
was trained according to the CTTC [23] defined by the JPEG committee, which define a 
training dataset and a loss function primarily intended for human visualization applica-
tions due to the importance of the performance for these applications for the deploy-
ment of the JPEG PCC standard. While it would be possible to train JPEG PCC using the 
same ModelNet40 PC dataset and a different loss function, e.g., considering the classifi-
cation performance, with possible gains in RD performance for this dataset, and possibly 
also some compressed domain classification performance gains, this would likely have a 
negative impact on the RD performance for real-world PC content, as shown in previ-
ous studies in the literature [31]; thus, the original JPEG PCC model was used. However, 
this would imply losing compatibility with the JPEG PCC standard since the decoder is 
normative.

After defining the subsets from the selected ModelNet40 PC test dataset and analyz-
ing the related RD performance with the recommended and non-recommended coding 
configurations in terms of SF value, the next subsections will present the classification 
performance for the three defined ModelNet40 test subsets, considering the Model-
Net40 PC test subsets and the corresponding ModelNet40 latent test subsets for the spa-
tial domain pipelines (original, voxelized, and decompressed) as well as the compressed 
domain pipeline, respectively.

6.2  Spatial domain classification performance

This subsection reports and analyzes the PC classification performance for the three spa-
tial domain classification pipelines, i.e., original, voxelized and decompressed domains, 
as previously defined. Fig. 5 presents the average classification accuracy as a function of 
the rate (in bits per point, bpp), for the Top-1 and Top-5 classification metrics, for the 
three test subsets, i.e., subset SF 2, subset SF 4, and subset SF 8. The results in Fig. 5, 
organized by subsets, allow concluding:

• For the original and voxelized domains, PointGrid offers similar PC classification 
performance for both Top-1 and Top-5, for all three PC test subsets. This suggests 
that the voxelization of the input PCs (to 8-bit) has no major impact on the Point-
Grid classification performance.
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• For decompressed domain classification, when PCs are G-PCC Octree encoded, 
the PC classification performance follows closely the relative performance behav-
ior observed for the G-PCC Octree RD performance, for the three test PC subsets. 
This indicates that, similar to the RD performance, the classification performance 
improves with an increasing rate. Additionally, at the highest rate points where 
G-PCC Octree approximates lossless quality, the classification performance for both 
Top-1 and Top-5 reaches the classification performance of the original and voxelized 
classification pipelines.

• For decompressed domain classification, when PCs are JPEG PCC encoded, the 
decompressed domain classification performance depends significantly on the used 
coding configurations, notably the SF parameter. Since coding each test subset with 
the recommended SF value offers better RD performance (fewer coding artifacts), 
see Fig. 4, than using non-recommended SF values, better classification performance 
is also obtained under these conditions.

(a) Subset SF 2.

(b) Subset SF 4.

(c) Subset SF 8.
Fig. 5 Spatial domain (original, voxelized and decompressed domains) PC classification performance, Top-1 
(left) and Top-5 (right), for the three ModelNet40 PC test subsets: a subset SF 2; b subset SF 4; and c subset SF 8
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• For decompressed domain classification, using JPEG PCC coded PCs generally 
offers better classification performance than G-PCC Octree, notably when using 
the recommended SF, for both Top-1 and Top-5 classification metrics. This rela-
tive classification performance does not follow the same behavior as for the cor-
responding RD performance, presented in Fig. 4, where G-PCC Octree generally 
outperforms JPEG PCC. This suggests that the compression artifacts introduced 
by JPEG PCC do not seem to have an impact on PC classification performance as 
negative as those introduced by G-PCC Octree.

• Given the smaller size of subset SF 2, including only 25 PCs, a single incorrect 
prediction has a noticeable impact on the final classification performance across 
various rate models. This phenomenon, which may be observed for both G-PCC 
Octree and JPEG PCC, makes it harder to have clear conclusions in terms of the 
classification performance for this subset.

An important but expected conclusion of this analysis regards the impact of lossy 
coding on the decompressed domain PC classification. The coding artifacts present in 
the reconstructed PCs significantly reduce the classification performance, especially 
for the lower rates. As it will be shown in the next subsection, one way to reduce this 
impact is by performing PC classification directly on the latent representation which 
has been directly obtained from the original PCs.

6.3  Compressed domain classification performance

This subsection reports and analyzes the compressed domain PC classification per-
formance for both the CD-PCCL and ACD-PCCL compressed domain solutions 
described in Sects. 3 and 4, respectively. For CD-PCCL, the JPEG PCC latent repre-
sentations of all PC subsets use SF = 4 and BS = 64 since this coding configuration 
is imposed to generate specific fixed-size latent representations (8 × 8 × 8 × 128) 
for all three subsets. For ACD-PCCL, the classification performance will be pre-
sented for the two defined training strategies, i.e., freezing and retraining. Since the 
motivation for the development of ACD-PCCL is to allow JPEG PCC coding with 
a suitable SF parameter value for a given input PC, the recommended JPEG PCC 
coding configurations, as presented in Table 2, are used for creating the latent rep-
resentations for each PC subset. As a result, the obtained JPEG PCC latent rep-
resentations for each PC subset have different sizes, which means that the three 
ACD-PCCL model branches proposed in Sect.  4, have to be used for ACD-PCCL 
classification.

Figure 6 presents the Top-1 and Top-5 PC classification results for the CD-PCCL 
and ACD-PCCL compressed domain classifiers as a function of the bpp rate. It is 
important to remind that subset SF X, includes the PCs from the test dataset which 
offer the ‘best’ RD performance for SF=X according to Eq. (2) summarized in Table 2. 
The results in Fig. 6 allow concluding:
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(A) Compressed versus spatial domains

 In general, for all PC subsets, the compressed domain classification performance, i.e., 
using latents, offers better classification performance than the spatial domain per-
formance, notably:

• Both CD-PCCL and ACD-PCCL outperform the decompressed domain PC 
classification, for both Top-1 and Top-5 classification metrics, and for all test 
subsets. The compressed domain classification gains are clearly observable in 
the low-rate points for both Top-1 and Top-5 classification metrics.

(a) Subset SF 2.

(b) Subset SF 4.

(c) Subset SF 8.
Fig. 6 PC classification performance comparison, Top-1 (left) and Top-5 (right), between the proposed 
ACD-PCCL and the CD-PCCL solutions for the ModelNet40 PC test dataset: a subset SF 2; b subset SF 4; and c 
subset SF 8
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• Although CD-PCCL imposes constraints on encoding subset SF 2 and subset 
SF 8 with JPEG PCC using SF = 4, it still offers better classification performance 
than decompressed domain classification performance with recommended SF 
parameter values.

• Occasionally, the compressed domain PC classification performance even 
surpasses the PC classification performance for the original and voxelized 
domains; this may be due to some noise filtering associated to compression.

(B) ACD-PCCL versus CD-PCCL
 Regarding the ACD-PCCL to CD-PCCL comparison, it is important to remind that 

the CD-PCCL and ACD-PCCL results were obtained using JPEG PCC with a fixed 
SF=4 value and different SFs depending on the PC, respectively. The results in 
Fig. 6 allow concluding:

• For subset SF 2, the CD-PCCL (using always SF = 4) achieves similar or slightly 
better classification performance with lower rates than ACD-PCCL. Further-
more, the classification results shown in Fig.  6a are clearly more erratic and 
with larger variations than the ACD-PCCL results for SF = 4 and SF = 8 cases. 
This is associated to the fact that the number of PCs composing the subset SF 2 
is much smaller than for the other subsets (25 PCs versus 217 and 178 PCs for 
subset SF 4 and subset SF 8, respectively). This implies that, as shown in Fig. 6a, 
the impact produced by wrongly classifying just one PC belonging to subset SF 
2 (while it effectively belongs to another subset) leads to a significant variation 
in accuracy, with a drop from 100 to 96%. On top of this, it is also important to 
notice that the gains in RD performance for the CD-PCCL model (using always 
SF = 4), notably when compared with the ACD-PCCL model using the Retrain-
ing strategy for subset SF 2, are only observed for a very narrow low-rate range. 
For this subset, ACD-PCCL using the Retraining strategy offers better classifi-
cation performance than the Freezing strategy.

• For subset SF 4, ACD-PCCL using the Freezing strategy is, as expected, equiva-
lent to CD-PCCL solution since the non-adaptive bridge weights are re-used 
without retraining.

• For subset SF 8, once again there is a difference in coding rates between CD-
PCCL and ACD-PCCL, this time with ACD-PCCL using lower rates due to the 
smaller block sizes. Here, ACD-PCCL tends to outperform CD-PCCL in terms 
of classification performance, for the same rates, though only when using the 
Retraining strategy.

(C) ACD-PCCL versus training strategies
 For all latent subsets, the ACD-PCCL classification performance varies noticeably 

depending on the training strategy:

• For subsets SF 2 and SF 8, ACD-PCCL with the Retraining strategy outperforms 
ACD-PCCL with the Freezing strategy, for both the Top-1 and Top-5 classifica-
tion metrics. This improvement is explained by the fact that with the Retrain-
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ing strategy all layers for all branches in the adaptive bridge are trained jointly 
and thus better optimized; on the contrary, with the Freezing strategy, the new 
bridge layers are conditioned to the non-adaptive bridge weights, reused from 
CD-PCCL without retraining.

• For subset SF 4, ACD-PCCL with the freezing and retraining strategies offer, 
naturally, similar performance: in fact, for this specific case, the Freezing strategy 
bridge only corresponds to the two CNN layers from the non-adaptive bridge, 
trained only with latent representations with the same size (8 × 8 × 8 × 128).

From the previous results, it may be concluded that the proposed ACD-PCCL solu-
tion is able to efficiently adapt to latents of different block sizes, while offering the same 
or better classification performance, when compared with CD-PCCL and decom-
pressed domain PC classification. By using an adaptive bridge model, ACD-PCCL is 
able to process JPEG PCC latent representations from different coding configurations, 
which enables the elimination of the compression efficiency penalties associated with 
the imposition of a specific and sub-optimal coding configuration, as for CD-PCCL. The 
ACD-PPCL classification performance is better for the Retraining strategy, due to the 
joint optimization of all layers in the three adaptive bridge branches used in the com-
pressed domain PC classification. The ACD-PCCL classification performance gains 
(notably versus decompressed domain) are particularly impressive when considering 
that the model complexity, measured in terms of the total number of weights, is below 
the reference spatial domain PointGrid classifier (10,469,160 versus 10,492,072 weights).

7  Conclusions and future work
This paper proposes the first coding stream adaptive compressed domain PC classifica-
tion solution based on learning-based tools. This solution is targeted to coding streams 
compliant with the emerging JPEG PCC standard and the spatial domain PointGrid 
PC classifier and offers some degree of compatibility between spatial and compressed 
domains solutions. The adaptation capabilities regard the JPEG PCC latent representa-
tion block size which may vary depending on the coding configuration, notably the sam-
pling factor (and consequent 3D block size). Since it is essential to vary the JPEG PCC 
coding configuration to reach the best compression performance for each specific PC, 
thus generating varying size latent representations, it is also essential to have an adap-
tive compressed domain classification solution that processes PC coding streams for the 
most relevant coding configurations. The codec-classifier adaptation is performed with 
a novel bridge DL-based model placed between the codec output and the so-called par-
tial classifier. The partial classifier is designed to be largely compatible with the refer-
ence spatial domain classifier, in this case PointGrid. Experimental results show a clear 
compression performance advantage for the proposed ACD-PCCL solution over exist-
ing non-adaptive compressed domain classifiers, which only accept a specific latent 
size, meaning that some PC would have to be coded with a ‘non-ideal’ JPEG PCC con-
figuration. Moreover, by improving the RD performance using the best recommended 
sampling factor for each PC, i.e., reaching better quality for a target rate, also the classi-
fication performance may slightly improve, increasing even more the advantage in terms 
of PC classification performance over traditional decompressed domain PC classifiers. 
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Regarding PointGrid, the ACD-PCCL classification performance gains are substantial 
while using a model with less weights.

While the presented results showcase positive outcomes for PC coding and classi-
fication, it is important to acknowledge that the selected JPEG PCC codec, PointGrid 
classifier, CD-PCCL and ACD-PCCL do have certain limitations, notably related to the 
adoption of a voxel-based representation which is computationally expensive, and the 
use of a latent representation that is optimized solely for human visualization purposes. 
For JPEG PCC, adopting a sparse tensor representation can overcome the complexity 
limitation, since only the occupied voxels and their coordinates are represented; this 
makes it significantly lighter in terms of computational complexity and allows the use 
of point-based classifiers as well as voxel-based classifiers. Future work will consider the 
use of alternative PC latent representations, and the use of the JPEG PCC latent repre-
sentation for other compressed domain PC CV tasks, which will require adequate train-
ing datasets and CV task-dependent design strategies for the bridge.
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