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Abstract 

Conventional photography can only provide a two-dimensional image of the scene, 
whereas emerging imaging modalities such as light field enable the representation 
of higher dimensional visual information by capturing light rays from different direc-
tions. Light fields provide immersive experiences, a sense of presence in the scene, 
and can enhance different vision tasks. Hence, research into light field process-
ing methods has become increasingly popular. It does, however, come at the cost 
of higher data volume and computational complexity. With the growing deployment 
of machine-learning and deep architectures in image processing applications, a para-
digm shift toward learning-based approaches has also been observed in the design 
of light field processing methods. Various learning-based approaches are developed 
to process the high volume of light field data efficiently for different vision tasks 
while improving performance. Taking into account the diversity of light field vision 
tasks and the deployed learning-based frameworks, it is necessary to survey the scat-
tered learning-based works in the domain to gain insight into the current trends 
and challenges. This paper aims to review the existing learning-based solutions for light 
field imaging and to summarize the most promising frameworks. Moreover, evaluation 
methods and available light field datasets are highlighted. Lastly, the review concludes 
with a brief outlook for future research directions.

Keywords: Light fields, Depth estimation, Image reconstruction, Compression, 
Machine learning, Deep learning

1 Introduction
Light field imaging is one of the most promising three-dimensional (3D) imaging tech-
nologies that can deliver a photo-realistic representation of the viewing environment 
and bring viewers rich and immersive visual experiences. Light fields offer additional 
angular information, compared to conventional two-dimensional (2D) imaging, by gath-
ering light rays from multiple directions. A light field consists of light rays in 3D space 
flowing through every point and in every direction [1].

The light field market is rapidly expanding, with an increased focus on glasses-free 
displays. Pioneering 160◦ horizontal viewing angle displays [2] discretize light field data 
into many spaced views, providing 3D experience for many spectators at the same time. 
Light fields can be captured by an array of monocular cameras (rather than a single 
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camera), by a plenoptic camera [3], or be computer-generated. The addition of angular 
information to the already existing spatial 2D information sets the scene for 6 degrees 
of freedom (DoF) experiences in emerging immersive media applications. The 6 DoF 
immersive media will likely become a key asset in future broadcasting services [4] and 
gaming industry, providing the viewer with a sense of depth and presence in the scene.

Like traditional 2D images, light fields undergo various processing stages from acqui-
sition to visualization; however, their inherent high dimensionality, information redun-
dancy, and inter-view dependency impose new challenges and opportunities in the 
development of light field processing algorithms. Considering the added angular dimen-
sion in light fields, processing tasks such as compression and super-resolution are poten-
tially more complex in light fields than in 2D images. Moreover, with the implicitly 
recorded depth information in light fields, new processing challenges such as depth esti-
mation, view synthesis, and 3D reconstruction have been introduced that require inno-
vative solutions to exploit the inherent inter-view correlation between multiple views.

As plenoptic cameras capture light fields at low spatial resolutions with narrow base-
lines, spatial super-resolution methods are often used as an intermediate processing 
stage to enhance resolution. A camera array enables capturing light fields with a higher 
spatial resolution and a wide field of view (FoV); however, the larger distance between 
neighboring cameras results in sparse views. It is therefore necessary to use methods of 
angular super-resolution and view synthesis to reconstruct dense light fields.  As light 
fields are much larger than 2D images, compression algorithms are vital for efficient data 
storage and transmission. Light fields have inter-view information redundancy, allowing 
data compression to be more efficient by sending only selected views at the encoder and 
reconstructing the missing views at the decoder. Thus, light field compression methods 
often include a view synthesis/reconstruction stage to improve compression efficiency. 
Depth estimation is a fundamental light field processing task that is critical for depth 
sensing and it is serving as an intermediate step in many other vision tasks including 
view synthesis, spatial super-resolution, and compression.

As learning-based approaches offer advantages for solving complex tasks, light field 
processing algorithms are increasingly relying on learning frameworks to enhance effi-
ciency. Considering the diversity of light field processing tasks, content characteristics, 
and learning-based methods, a systematic summary of existing research is essential to 
understanding the main applications and architectures of light field processing, as well 
as identifying limitations and providing a roadmap for future research.

In recent years, several reviews on light field processing have been published. A com-
prehensive review paper by Wu et al. [5] in 2017 covered the theory and different pro-
cessing tasks in light fields, as well as their applications in computer vision. However, 
most of the methods discussed in that paper were based on traditional image processing 
techniques, and since then, there have been significant advances in using learning-based 
methods. Two detailed surveys on light field compression, published in 2020 [6, 7], dis-
cussed different coding schemes as well as future research directions and standardiza-
tion efforts.

In this review paper, a comprehensive overview of the learning-based solutions—
emerged as a promising paradigm in recent years—for light field processing is provided. 
Unlike previous surveys that covered more high-level reviews of light field technology 
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or focused on a specific light field processing task, this paper focuses specifically on the 
applications of learning-based techniques to different stages of light field processing, 
such as depth estimation, reconstruction, rendering, compression, and quality assess-
ment.  We describe the most popular learning-based architectures for light field pro-
cessing, summarize the available benchmarking datasets and evaluation methods, and 
discuss the current challenges and future perspectives. By reviewing the state-of-the-art 
methods and highlighting the key challenges and opportunities in this field, we aim to 
understand the current status quo and to identify the open challenges and future direc-
tions for research in this field, offering a timely and valuable reference for researchers.

The fundamentals of light field imaging, as well as light field acquisition/generation 
and visualization, which are necessary stages to deliver light field data to the viewer, are 
introduced in Sect. . Section  outlines a number of light field processing tasks and elabo-
rates on the main learning-based frameworks deployed in the literature for each task. 
The existing light field datasets and quality assessment methods to evaluate light field 
processing algorithms are described in Sect. . Section  discusses the current challenges 
and future research directions, and finally, Sect.  concludes the paper.

2  Light field imaging background
When acquiring a 3D scene using a light field camera, the scene representation is trans-
formed into 2D encoded light field data, with the captured light rays recorded in 2D 
planes. This process can be exchangeable when a recorded 3D object on 2D planes 
is reconstructed on a light field display, for example. Light field data need to be pro-
cessed to provide an immersive 3D experience with full parallax and wide FoV to the 
viewer.  Many challenges need to be overcome before this can be achieved, such as 
compressing the huge amount of data, rendering the plenoptic scene at different focus 
planes, and exhibiting the light field to single users wearing headsets or to multiple users 
in light field displays. Therefore, acquisition/generation and visualization of light fields 
are key components to meet the functionalities given various use case contexts, such as 
XR-based, industrial, and medical imaging [5, 8] applications.

2.1  Light field fundamentals

To render 3D scenes that look as realistic as possible, a camera system needs to capture 
information from a huge number of viewpoints. A light field consists of light rays in 3D 
space flowing through every point and in every direction  [1]. Light is electromagnetic 
radiation moving along rays in space. A grayscale snapshot of a 3D scene is produced 
when a stationary person, or a pinhole camera, captures the intensity of light from a 
single viewpoint, at a single time, averaged over the wavelengths of the visible spec-
trum, parametrized as P(θ ,φ) . A color snapshot of the same scene is produced when 
the intensity of light is given as a function of wavelength and parametrized as P(θ ,φ, �) . 
The intensity of light captured from a single viewpoint, over time, as a function of wave-
length can be parametrized as P(θ ,φ, �, τ ) , thus corresponding to a sequence of snap-
shots (or a movie). The intensity of light captured from any viewpoint, over time, as a 
function of wavelength can be parametrized as P(θ ,φ, �, τ ,Vx,Vy,Vz) . This 7D structure 
is known as the plenoptic function describing a 7D ray space, with each point in this 
space corresponding to a single light ray [1].
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Capturing the complete plenoptic function for a scene requires densely placing, ide-
ally a huge number of cameras to scan every point and in every direction, which is 
naturally performed by the human visual system (HVS) [1]. A plenoptic image modal-
ity can be represented as a light field, a point cloud, or a hologram, which are sampled 
representations of the plenoptic function in the form of, respectively, a vector func-
tion that represents the radiance of a discretized set of light rays, a collection of points 
with position and attribute information, or a complex wavefront. The first plenoptic 
image modality can be computer-generated or acquired by several capturing devices 
in the form of light field images. The classical work on photometry [9] considered the 
light field as a vector field in 3D space. A plenoptic function [1] parameterizes each 
light ray of a point in space with its 3D location, direction of arrival, and time-varying 
power spectral density. Thus, light field data carry both spatial and angular informa-
tion about the light reaching the sensor, providing different viewpoints of the same 
3D scene.

Considering fixed lighting conditions and a static scene, it is possible to discard the 
wavelength ( � ) and the time ( τ ) information [1] from the 7D plenoptic function which 
becomes a 5D function with 3D position ( Vx,Vy,Vz ) and 2D direction ( θ ,φ ) inputs. 
This 5D function is used to represent scenes as Neural Radiance Fields (NeRF) [10], 
detailed in section . Furthermore, a four-dimensional (4D) light field parametrization 
was simultaneously proposed in [11] and in [12], considering that the intensity of light 
rays remains constant along a straight line. This constraint allows the representation 
of each ray of light using the two angles ( θ and φ ) as the propagation direction from 
viewpoints Vx and Vy . Instead of using the angles and the rays direction to the eye (or 
the camera), one can parameterize the plenoptic function in terms of spatial coor-
dinates (u, v) of plane � (image or focal plane), which is parallel to plane � (camera 
plane) that gives the angular distribution of the light rays indexed by (s, t), as depicted 
in Fig. 1a. This 4D parameterization is known as the two-plane parametrization [11] 
with P(u, v, s, t) defining the 4D light field representation in terms of the spatial and 
view coordinates. Different ways of parameterizing light fields can be found in [13].

Fig. 1 a Two-plane parametrization; b light field represented as 2D arrays of 2D images and horizontal and 
vertical EPIs
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With the two-plane parametrization, any 4D light field can be conveniently repre-
sented by an array of 2D images, indexed by (u, v), at different points of view, indexed 
by (s,  t), as shown in Fig.  1b. This representation enables the compression of light 
fields using standard codecs designed for 2D sequences, also allowing the employ-
ment of 2D native algorithms to process light field data.

The two-plane parameterization also allows for another way to represent light 
fields. To extract geometric information about the scene, Bolles et al. [14] introduced 
a technique for building a 3D description of a static scene from a dense sequence of 
images. The geometry that relates the cameras, points in 3D, and the correspond-
ing observations is referred to as the epipolar geometry (of a stereo pair). When the 
image planes of cameras are parallel to each other and the baseline (distance between 
the cameras optical centers) [15], the camera centers are at the same height, and the 
focal lengths are equal, then the epipolar lines [15] fall along the horizontal scan lines 
of the images. Therefore, a spatio-temporal (or spatial-view, or spatial–angular, or 
space-view) representation, named epipolar plane image (EPI)  [14] (Fig. 1b), can be 
constructed. The EPI is a 2D spatial–angular slice of the light field containing patterns 
of oriented lines, making it possible to estimate depth maps by analyzing the disparity 
of each line in the EPIs [14]. Light fields represented as 2D arrays of 2D images and 
EPIs are widely used as input data by light field imaging methods.

2.2  Light field acquisition

A light field could be acquired by a single camera, with special lenses (lenslet-based 
cameras), or by an array of monocular cameras distributed on a planar or spheri-
cal surface to simultaneously capture light field samples from different points of 
view [11]. The former type of camera is equipped with an array of microlenses posi-
tioned between the main lens and the camera sensor. This lens arrangement multi-
plexes the light rays from the 3D scene, creating microimages  [16]. The pixels with 
the same coordinates relative to each microlens are grouped, forming a sub-aperture 
image (SAI). Several plenoptic cameras are available in the consumer market, all 
supplied by one of the two leading manufacturers of this type of imaging technol-
ogy, namely Raytrix [17] and Lytro (Lytro ceased operations in late March 2018) [18]. 
This acquisition method provides a dense angular sampling of viewpoints using a sin-
gle camera. Alternatively, light fields can be acquired using arrays of sensors (cam-
eras), where the pixels given by the spatial coordinates (u, v) of the 4D light field are 
determined by the cameras, and the view (angular) coordinates (s, t) are given by the 
number of cameras and their distribution (e.g., planar, spherical) [5]. Light fields can 
also be computer-generated with accurate disparity maps per view, providing bench-
marks for depth and disparity estimation algorithms. Light field acquisition is also 
possible with a hand-held camera  [19], achieving good scene coverage via the pro-
posed “Simultaneous Localization and Mapping” technique. The same work presents 
a rendering algorithm tailored to the unstructured dense captured data. Acquisition 
systems designed to capture an unstructured set of limited viewpoints become ser-
viceable due to efficient learning-based algorithms that are able to efficiently generate 
the missing viewpoints by learning priors on scene geometry, for example.
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In [20], LiDAR (Light Detection And Ranging) sensors and an array of multiple cam-
eras are used by autonomous robotics systems for capturing light fields. Salient surfaces 
given by LiDAR sensors minimize human intervention during the rendering process.

2.3  Light field visualization

The main goal of developing light field visualization techniques is to provide a 3D expe-
rience, which is essential to the successful launch of related use cases. Use cases can 
refer to static light fields, corresponding to a single time sample, where spatial and angu-
lar information of a 3D scene are simultaneously captured, and/or to non-static light 
fields corresponding to multiple time samples. Also, the use cases of light field visuali-
zation may be either passive (no viewer interaction) or active (e.g., the viewer will be 
able to rotate the scene or an object) [21]. In [22], the impact of visualization techniques 
on light field quality of experience is presented. The results indicate that the perceptual 
quality of light field images is highly dependent on the rendering methods.

Time-sensitive use cases, such as medical imaging, demand challenging visualization 
technology to provide view-related interactions for example. For passive use cases, visu-
alization can be accomplished using the simplified 4D representation of a light field. To 
provide immersive experiences, the captured (or CGI-generated) 3D scenes need to be 
presented with a large number of viewing angles. The capture of densely sampled views 
in the real world is a very challenging task, frustrating the experience with 3D light field 
displays. A way to get around this problem is to employ view interpolation techniques to 
synthesize (render) dense virtual views for 3D light field display [23–27].

During the acquisition/generation of light fields, two essential properties are defined: 
the angular (given by the baseline) and the spatial resolution. The former defines the 
maximum distance between the change of perspective within a light field, while the lat-
ter affects visual realism. When recovering 3D from (2D) images, there are cues in the 
image providing 3D information, such as shading, texture, focus, motion, and perspec-
tive [28]. However, existing 2D displays fail to deliver a fully immersive visual experience 
as critical perceptual cues such as vergence and accommodation, associated with real-
istic 3D perception, are not provided. In contrast, specific 3D displays would be able to 
replicate the rays of light (light field), including the directional and color components, to 
simultaneous viewers in a content-related interaction use case, for example.

The challenge of light field displays is to convey/recreate the light rays that come from 
the scene to the viewer’s eyes. Pixels in 2D displays convey the same color light in all 
directions, despite the viewer’s point of view, while 3D displays convey unique color rays 
in each direction in a bundle of rays (3D pixels). To reproduce these directional light rays 
as accurately as possible, the display needs acuity (spatial resolution), several possible 
viewing angles of the light rays, and their associated depth.

Light field displays cannot reproduce an infinite number of light rays while having to 
be able to address the vergence–accommodation conflict  [29]. Considering the two-
plane parametrization (Sect. ), the spatial resolution (2D image size) and the angular res-
olution (2D array view spacing: horizontal and vertical), the display resolution and FoV 
will establish a volume where the scene objects are exhibited. So, the observer will have 
to be at a ‘valid’ point of view to ‘see’ the object  [30, 31]. The visualization techniques 
and output devices may allow an extended depth of field, refocusing, and 3D views. 
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Horizontal-parallax-only and vertical-parallax-only displays limit the practical applica-
tion of 3D display technology and the assessment of the discomfort issue [30–33].

3  Learning‑based light field processing
The previous section discussed two key components of the light field imaging pipeline, 
acquisition/generation, and display/visualization.  Light fields go through several inter-
mediate processing stages between the initial acquisition and the final visualization. 
These processing steps differ from the conventional 2D image processing steps as light 
fields require handling rays in 3D space to represent a 3D scene.  Conventional algo-
rithms are facing their limitation, as realistic applications employing light fields may 
demand higher accuracy and large-scale computational infrastructure. Learning-based 
approaches are very promising to improve image processing tasks and support high 
data-demanding applications as in the light field imaging areas. This section summarizes 
the most prominent light field processing tasks studied in the literature and highlights 
the learning-based imaging techniques deployed for each processing task.

3.1  Depth estimation

Depth estimation targets measuring the distance of each pixel relative to the camera, 
thus inferring 3D information from the images. Depth information can be obtained 
using active sensing, such as structured light projection, time-of-flight (ToF) measure-
ment, and LiDAR to name a few. Passive disparity/depth techniques are detailed in [34]. 
Light field imaging enables capturing a scene from multiple viewpoints so depth infor-
mation is implicitly encoded in the light field representation and can be acquired by 
computing the inter-view pixel disparity information, as is done in stereo-matching 
methods. Scene reconstruction and image-based rendering by depth maps involve the 
ill-posed problem of finding homologous points within the views, which is mitigated by 
the number of viewpoints of the 3D scene given by a light field. Accurate depth estima-
tion from light field images remains a challenging task especially when it comes to occlu-
sions and photo-consistency constraints of non-Lambertian surfaces. Several works 
proposed depth/disparity estimation methods using light fields [35–40], handling diffi-
cult problems such as specular surfaces and occlusions.

In recent years, learning-based approaches for depth estimation have gained signifi-
cant traction due to their remarkable performance gains. One of the first learning-based 
methods for estimating depth was proposed by Johannsen et al. [41], where a light field 
sparse coding and a disparity-based dictionary were employed. Dictionary atoms rep-
resent patches of epipolar plane images (EPIs) constructed from the center view and 
transformed to the 4D domain using a generative model. Three main strategies have 
been identified in the literature for learning-based light field depth estimation: (1) auto-
encoder architectures; (2) stereo matching and refinement; and (3) end-to-end feature 
extraction and disparity regression. Figure 2 illustrates a generic framework of the three 
strategies.

3.1.1  Autoencoders

The first depth estimation method based on deep learning is proposed by Heber and 
Pock [51] in which the horizontal and vertical EPIs were inserted into a five-block 
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convolutional neural network (CNN) architecture to estimate the 2D hyperplane 
orientation. The slope of the line formed by the pixel shifts across the different views 
in EPIs is used to obtain the magnitude of disparity. Finally, a 4D regularization term 
was adopted to compensate for errors in texture-less regions. This method is com-
putationally expensive due to the sliding window processing of EPIs. Later on, the 
authors proposed a U-shaped encoder–decoder CNN to address this problem and 
analyze the entire EPI [43]. The encoder part shrinks the size of the input image 
and represents a low-dimensional form of the image using a set of features. On the 
decoder side, the features are expanded to obtain the disparity information. The 
encoder–decoder network is symmetric and includes some skip connections (called 
pinholes) to preserve high-frequency information. Further, the authors proposed an 
extension to the U-shape CNN in [44] by learning 3D filters and inserting EPI vol-
umes as inputs.

Following the success of the deep autoencoders for latent feature extraction and 
depth estimation, Alperovich et  al. [42] developed an autoencoder that encodes 
horizontal and vertical EPI stacks simultaneously using six stages of residual blocks. 
Then, the compressed representation is expanded using three decoder pathways to 
address the disparity, diffusion, and specularity estimation problems.

Fig. 2 Examples of architectures for the three existing learning-based depth estimation frameworks. 
a Autoencoders  [42], b U-shaped encoder–decoder [43, 44], c stereo-matching and depth refinement 
networks [45, 46], d residual learning for coarse estimation and occlusion-aware refinement [47], e EPINET: 
multi-stream feature extraction and disparity regression [48], f Siamese network for feature extraction and 
U-Net architecture for disparity regression [49], and g end-to-end depth estimation incorporating cost 
volume and an attention map [50]
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3.1.2  Stereo matching and refinement

While autoencoder-based approaches typically estimate line orientation in EPIs for 
depth estimation, another group of approaches is based on computing the disparity 
of matching pixels—using conventional or new stereo-matching methods—on sub-
aperture images (SAIs). After a coarse stereo matching depth estimation, these tech-
niques often include a refinement stage to compensate for the large errors, especially in 
occluded areas (schemes (c) and (d) in Fig. 2). The methods in [45, 46] are based on esti-
mating the disparity between a set of anchor views using a fine-tuned encoder–decoder 
network designed for optical flow learning (called FlowNet 2.0). Next, the initial depth 
estimates are combined using an occlusion-aware mask, and finally, a residual learn-
ing network is applied to correct the warping errors and the depth map. Rogge et  al. 
[52] performed a coarse depth estimation based on stereo matching and used a belief 
propagation for regularization. Next, a residual learning network was deployed to refine 
the depth map. In the same context, an encoder–decoder network was designed by Guo 
et al. [47] to estimate coarse depths by concatenating SAIs. An occlusion region detec-
tion is then performed to obtain a guidance map for estimating depth separately on the 
occluded and non-occluded areas. In the final stage, the coarse depth map is fed into a 
refinement network to smooth depth and correct errors.

3.1.3  End‑to‑end feature extraction and disparity regression

Recently, more depth estimation methods have been proposed that include end-to-
end feature extraction followed by disparity regression/classification  (schemes  (e-f-g) 
in Fig.  2). Epinet [48] is a fully end-to-end convolutional network for depth estima-
tion. With Epinet’s multi-stream architecture, features are extracted in local patches of 
SAIs horizontally, vertically, and diagonally. In the next stage, the features from several 
streams are merged by passing them through eight convolutional blocks, and a per-pixel 
depth value is finally obtained using a regression block. As with stereo matching, Epinet 
attempts to find correspondence between sub-aperture views, but the goal is to achieve a 
latent representation instead of a coarse depth estimation and use the features to predict 
disparity. Leistner et al.  [49] deployed a Siamese neural network for feature extraction 
from vertical and horizontal SAI stacks. A U-Net architecture then merges the infor-
mation and generates classification and regression outputs. Based on the classification 
label, a coarse subpixel disparity value is derived, and it is refined using an offset derived 
from the regression output. To train the network for wide baseline light fields, the 
authors applied a virtual shift to the SAI stacks to generate views with different disparity 
ranges. A two-stream CNN architecture is proposed in [53] that receives horizontal and 
vertical EPIs and performs a multi-scale feature extraction in four convolutional stages. 
After concatenating the feature sets from the two streams, the final disparity value is 
calculated using multi-label regression. Zhu et al. [54] employed a hybrid approach that 
combines focal stacks, center view, and EPIs to extract rich feature sets. A pixel-wise 
disparity classification is then performed by combining the features from the three pass-
ways and feeding them into fully connected and softmax layers.

To better estimate the displacements when computing the multi-view feature maps, 
several methods deploy the concept of cost volume [55] where shifts are applied to the 
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input views and the features are merged into a cost volume (Fig. 2g). Tsai et al. [50] pro-
posed to manually shift SAIs at different disparity levels and pass them through residual 
blocks and a spatial pyramid pooling module for feature extraction. The resulting fea-
tures are concatenated into a cost volume. During the learning process, an attention map 
is used in conjunction with the cost volume to determine the importance of different 
views, and finally, the pixel disparity is determined by solving a regression equation. A 
multi-scale feature extraction method is proposed in [56] that uses a cost volume with 
a low memory footprint. SAI feature maps are shifted according to the center view for 
several disparity levels and then concatenated to construct a 4D cost volume.

The three major techniques for depth estimation, summarized in Fig.  2, come with 
some drawbacks. Auto-encoder-based methods are generally early-stage works in 
the domain with significant artifacts, especially in occluded regions, and they are not 
competitive with state-of-the-art approaches. Moreover, as EPIs are 2D slices in both 
spatial–angular dimensions, they are only limited to specific horizontal and vertical 
coordinates for depth estimation, so they do not use the full 4D light field information 
for accurate depth estimation. The application is also limited in wide baseline and more 
complex scenes, where finding the relation between the slope of the EPI line and depth is 
more challenging.

Methods based on coarse depth estimation and refinement can better exploit the 4D 
nature of the light field information by using SAIs at different dimensions and better 
handling wide-baseline scenarios. However, stereo-matching approaches based on opti-
cal flow use heavyweight models and are often vulnerable to errors on non-Lambertian 
surfaces and occluded regions.

End-to-end methods like Epinet use SAIs stacked at multiple directions and can 
achieve better performance than the other two strategies, but they are still computation-
ally expensive and show degraded performance for wide-baseline scenarios. Moreover, 
the performance is highly bound to the training set. Therefore, depth estimation for the 
wide baseline scenario, with an acceptable trade-off between accuracy and computation, 
is still an open research problem.

3.2  Light field reconstruction

Light field acquisition is often limited by the underlying hardware constraints of cam-
eras and the captured data can suffer from low spatial and/or angular resolution. Plenop-
tic cameras enable recording dense light fields though with lower spatial resolution and 
narrow baseline, while bulky camera rigs allow larger baseline and spatial resolution but 
with a sparse set of views. To enable higher spatial and angular resolutions, the develop-
ment of light field reconstruction/super-resolution (SR) methods has gained significant 
attention. Based on the available literature on light field reconstruction, existing works 
on spatial SR, view synthesis (angular SR), and reconstruction (both spatial and angular 
SR) are discussed in separate subsections. Finally, the concept of neural scene represen-
tation is introduced and reviewed.

3.2.1  Spatial super‑resolution

Two popular strategies were identified in the literature for spatial SR of sub-aperture 
views as depicted in Fig. 3a and b:
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3.2.1.1 Single‑view super‑resolution and refinement Following the success of the learn-
ing-based single image SR (SISR) methods, these techniques were deployed to indepen-
dently super-resolve SAIs of light fields. However, SISR cannot exploit the correlation 
between views, and thus, the inter-view consistency is not preserved. Therefore, the qual-
ity of the reconstructed views is often improved via an additional learning-based inter-
view enhancement stage. In one of the early works, Fan et al. [63] developed a two-stage 
method that first super resolves each view separately using a SISR method (called VDSR) 
and then performs a patch-level view alignment using residual learning to compensate 
for the inter-view misalignments. Cheng et al. [64] employed a similar approach to super-
resolve the SAIs individually and warp them to the center view. Afterward, the warped 
view stack was inserted into an enhancement residual block to obtain high-resolution 
(HR) light fields. Yuan et al. [57] used an EPI enhancement network to preserve the geo-
metrical consistency of views. After the initial SR stage of SAIs, the EPIs are extracted 
and passed through feature extraction and reconstruction steps to achieve the final super-
resolved light fields. Farrugia et al. [65] used sparse representation in which warping is 
applied to align the sub-aperture view with the center view, and a low-rank approxima-
tion was used to reduce the light field dimension. Finally, a super-resolved light field is 
recovered and further enhanced by inverse warping and inpainting methods.

3.2.1.2 End‑to‑end residual learning Inspired by the residual learning techniques 
deployed in SISR algorithms, several methods have been developed to restore high-fre-
quency information of light field views using end-to-end deep residual networks. The 
recovered information is finally combined with bicubic-upsampled light fields to achieve 
an HR light field. A residual network is proposed in [58] that exploits stacks of light field 
views in four angular directions for feature extraction and residual information learn-
ing. Yeung et al.  [66] deployed a residual scheme with spatial–angular separable (SAS) 

Fig. 3 Examples of architectures for the spatial, angular, and spatio-angular super-resolution (SR) frameworks. 
a Single-view SR using single image super-resolution (SISR) network and inter-view enhancement [57], 
b end-to-end residual learning [58], c warping and residual learning for refinement [59], d multi-plane image 
generation [60], e residual learning using 4D CNNs and refinement [61], f GAN-based method [62]



Page 12 of 36Mahmoudpour et al. EURASIP Journal on Image and Video Processing         (2024) 2024:12 

convolutions for more computationally efficient feature extraction. Jin et  al.  [67] pro-
posed an all-to-one strategy in which per-view feature extraction is performed in the first 
step, and then the features are combined across views to construct an intermediate HR 
light field. Next, regularization is applied in the enhancement stage to improve the cross-
view structural consistency. More recent work by Wang et al. [68] used the concept of 
deformable convolution to compute residual information for light field SR.

Apart from the two main schemes described above, there are several other innova-
tive methods worth mentioning.  LFNet [69] is an end-to-end deep learning approach 
for light field SR which replaced the conventional warping/registration approach for 
alignment with a multi-scale contextual information extraction scheme. The spatial rela-
tion between views is exploited by fusing the contextual data, and a bidirectional recur-
rent CNN was deployed to super-resolve horizontal and vertical image stacks. Finally, 
a stacked generalization is used to linearly combine the horizontal and vertical image 
stacks.

Some techniques adopt a hybrid capturing system where a single HR image is recorded 
using a standard 2D camera, and low-resolution (LR) light field views are recorded by a 
plenoptic camera. The high-frequency information provided by the HR image is used as a 
reference and propagated to the adjacent LR views for super-resolution. Zheng et al. [70, 
71] deploy a patch matching scheme to find the corresponding patches between an HR 
reference and LR views and then adopt a view synthesis network to build an HR light 
field. In another hybrid approach, Jin et al. [72] proposed two parallel pipelines to make 
intermediate super-resolved light fields. One model is based on deep feature extraction 
from multiple views, and the other transforms the HR components to LR views using a 
warping network. The two intermediate HR light fields are subsequently combined using 
the learned attention maps to build the final super-resolved light field.

3.2.2  Angular super‑resolution

Light field views captured using camera arrays are often sparsely sampled, and signifi-
cant efforts have been made to synthesize the intermediate views between the captured 
SAIs to increase the angular resolution and obtain dense light fields. Real-world scenery 
often introduces occlusions, specularities, and non-Lambertian surfaces that challenge 
the view synthesis task. Three main image-based schemes have been devised in the lit-
erature for light field view synthesis including: (a) EPI super-resolution, (b) depth esti-
mation and warping, and (c) multi-plane image rendering and blending. In addition to 
the three main approaches, we provide an introduction to neural scene representation, 
which has recently become a hot topic.

3.2.2.1 EPI super‑resolution Angular SR can be done using similar approaches deployed 
for the spatial SR (as in Fig. 3a, b) while using EPIs instead of SAIs as inputs to the net-
works. Several view synthesis approaches follow a similar scheme of residual learning 
deployed in spatial SR in which EPIs were used as inputs to the networks for angular 
SR and synthesizing novel views. Wu et al. [73, 74] applied a blur kernel to extract low-
frequency information of light fields and then performed a bicubic-upsampling on EPIs. 
Next, high-frequency information is restored using a residual network and an HR EPI is 
generated after an EPI deblurring step. Guo et al. [75] used five convolutional stages, each 
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with three residual blocks to restore high-frequency information on EPIs. The work in [76] 
first transformed the EPI to the shearlet domain and then used an encoder–decoder gen-
erative adversarial network (GAN) to estimate the residual information and reconstruct 
the shearlet coefficients. Finally, the coefficient is transformed back to the image domain. 
Wang et al. [77] deployed 3D convolutions operated on EPI stacks to apply an upsampling 
followed by a high-frequency detail reconstruction based on residual learning.

The method in  [78] manually shears the EPIs for certain shift values and upsamples 
them. By evaluating the similarity between the sheared EPI and the original EPI, an eval-
uation CNN determines whether the EPI was correctly sheared. The evaluation CNN is 
composed of an encoder–decoder structure that delivers a similarity score map (instead 
of the disparity) for fusing a set of sheared EPIs. Finally, a pyramid decomposition-recon-
struction framework was used to reconstruct the high-resolution EPI. Liu et al. [79] con-
structed EPI images in four (vertical, horizontal, and two diagonal) directions to better 
explore the rich LF information for angular reconstruction. The four EPIs were fed into 
a deep learning framework that includes a feature extraction step followed by residual 
learning and coarse reconstruction. Further enhancement of the reconstructed EPIs was 
carried out based on an additional residual network. Using a learned filter bank, Fang 
et  al.  [80] proposed a sparse regularization scheme to obtain an intermediate recon-
structed light field that was further enhanced through an encoder-like deep architecture 
for inpainting EPIs on the occluded and non-Lambertian regions.

3.2.2.2 Depth estimation and  warping Several methods break down the angular SR 
task into depth estimation and warping components, as shown in the flow diagram of 
Fig. 3c. An additional enhancement step is often added at the end of the pipeline for qual-
ity enhancement of the reconstruction. Kalantari et  al. [81] used two sequential CNN 
architectures for disparity estimation and color prediction of warped views. Sparse light 
fields are subjected to feature extraction and a learning-based disparity estimation pro-
cess. The disparity data are then used to warp images, which are then fed into the second 
CNN for dense light field reconstruction. Gao et al. [82] deployed a learning-based opti-
cal flow estimation method to compute the disparity between the sub-aperture views, and 
an intermediate dense reconstruction is obtained using warping. In the next step, EPIs 
are extracted and inserted into an interactive enhancement process that uses a mask-
accelerated shearlet transform to correct the errors on the EPIs.

The authors in [59] proposed depth estimation and blending networks for view syn-
thesis in which novel views are initially generated through a warping module and by 
using the estimated depth map. In the next step, the blending module further refines 
the novel views by exploiting the spatio-temporal relationship using a residual network. 
Shi et al. [83] developed an end-to-end learning architecture that first computes dispar-
ity using an optical flow estimation network and then uses the disparity-guided warped 
images to obtain two reconstructions in pixel and feature domains. The feature-domain 
reconstruction uses a VGG network for feature extraction and a multi-scale feature 
warping to construct the views. Finally, the two reconstructions are combined to achieve 
the final reconstructed views. Meng et al.  [84] adopted two dense neural networks for 
disparity estimation and warping. A disparity map is first obtained by computing the 
pixel shift between two corner views. This intermediate disparity map and the input 



Page 14 of 36Mahmoudpour et al. EURASIP Journal on Image and Video Processing         (2024) 2024:12 

views were then inserted into a second residual network to estimate a confidence map 
for warping. Finally, a refinement network based on alternating spatial–angular convo-
lutional filters was adopted that exploits the 4D light field and cross-view dependencies. 
Liu et al. [85] used a similar depth estimation, warping, and refinement strategy but pro-
posed a new loss function that computes the error of refocused views instead of SAI or 
EPI. The image quality is optimized in the refocused domain by minimizing the loss in 
the pixel and frequency domains.

3.2.2.3 Multi‑plane image generation In addition to the previously reviewed articles 
that use EPI and SAIs for view synthesis, an innovative scheme has recently been devel-
oped based on rendering LFs in the form of multiplane images (MPI) (Fig. 3d). Sampled 
light field views are first projected to several depth planes using warping to form plane 
sweep volumes (PSVs). Next, a 3D CNN network is adopted to convert PSVs to MPI, 
and each layer is characterized by color, depth, and transparency information. The novel 
views are reconstructed by blending renders from multiple nearby MPIs [60, 86, 87].

3.2.3  Spatio‑angular reconstruction

Multiple methods have been developed to deliver a joint spatial and angular super-reso-
lution for an input light field. Early learning-based solutions for spatio-angular light field 
reconstruction are based on sparse representation and compressive sensing theory. In 
2013, Marwah et al. [88] developed an over-complete dictionary for sparse representa-
tion of the light fields and their reconstruction. The idea is that a light field can be mod-
eled using a set of atoms due to information redundancy. Later on, Farrugia et al.  [89] 
deployed dictionaries of LR and HR patches in which the patch volumes were projected 
to sparse subspaces with the lower dimension using principle component analysis. As a 
final step, a linear mapping function is learned from LR to HR subspace.

Deep learning methods have become dominant for the simultaneous spatial and angu-
lar reconstruction of light fields in recent years. The first deep learning methods often 
deployed separate architectures for spatial and angular SR. In [90, 91], a deep learning-
based approach is used to first increase the spatial resolution of light field views, which 
was followed by a second CNN for novel view synthesis. Gul et al. [92] deployed a recon-
struction scheme with two successive CNNs to perform an angular followed by a spatial 
SR on stacks of lenslet images. However, using such a pixel-level reconstruction strategy 
can lead to jagged and lattice artifacts near the edges, which can significantly affect the 
quality of the results.

Gupta et al.  [93] deployed an autoencoder and 4D CNNs in two branches to recon-
struct light fields. The autoencoder branch consists of a series of fully connected layers 
followed by a 4D convolution to compress the information and exploit the parallax. The 
second branch has five 4D CNN blocks. The reconstructions from the two branches are 
combined to obtain the final spatial–angular super-resolved light field. The use of com-
pressed sensing for light field reconstruction is further expanded using deep learning; 
In [94], 4D tensors were generated from patches of light field views, and a deep learn-
ing scheme embedding 3D convolutions was adopted to build a sparse representation of 
light fields. Finally, reconstruction is performed by passing the features through a set of 
fully connected layers and reshaping them into the 4D tensor.
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Modern deep learning architectures aim to exploit rich features from light fields for 
an integrated spatial and angular SR [95–97] (see Fig. 3e). A U-shaped encoder–decoder 
reconstruction scheme is proposed in  [98] that embeds convolutional long short-term 
memory (LSTM) for simultaneous spatial and angular SR. Meng et  al.  [61] used 4D 
CNN layers to exploit both the spatial characteristics as well as the cross-view relation-
ships. The method consists of an intermediate 4D light field reconstruction step based 
on residual learning followed by an enhancement step to refine the spatial information. 
Moreover, a perceptual loss function based on VGG19 network features was added to 
the angular loss function for better reconstruction. The authors further extended their 
work in [99] by using GANs for light field reconstruction (Fig. 3f ). A GAN architecture 
is proposed in [62] for light field reconstruction, wherein the generator module, EPIs are 
fed to an encoder–decoder network for angular SR and then go through a spatial upscal-
ing block based on the residual block. The discriminator module aims to distinguish the 
reconstructed light field from the ground-truth ones by comparing pixels as well as the 
high-frequency information. Chandramouli et  al.  [100] deployed a generative model 
based on a variational autoencoder that encodes light fields to a latent space and learns 
to generate them from the latent code. The model includes an additional CNN to extract 
features from central views to be used as auxiliary information in the encoder.

The reconstruction techniques summarized in Fig. 3 have some limitations inherent 
to their design. Early reconstruction techniques, such as [81], are slow and trained based 
on a predefined sampling pattern of the views, which reduces their applicability to dif-
ferent scenarios. Techniques based on single-view super-resolution (Fig. 3a) suffer from 
geometrical inconsistency as each view is super-resolved independently without exploit-
ing the information between the SAIs. Angular SR methods based on depth estimation 
and warping (Fig. 3c), such as [59], are more suitable for wide-baseline applications, but 
the quality of view synthesis heavily depends on the accuracy of the estimated depth 
information, which is naturally error-prone, inducing artifacts such as tearing and ghost-
ing in occluded regions and depth errors in non-Lambertian surfaces. MPI-based meth-
ods (Fig. 3(d)), like [86], are memory-intensive and complex to train, taking several days 
on multiple GPUs. Moreover, the number of depth planes depends on the maximum 
disparity, which can increase the model size significantly with the depth budget. A major 
drawback of this method is that the MPI network may assign high opacity to the wrong 
layers, resulting in blurry output rendering. Other advanced techniques that use 4D 
CNNs (Fig. 3e) showed higher reconstruction quality but at higher computational costs 
due to the 4D convolution operation. GAN-based methods (Fig. 3f ) also have potential 
issues, such as the need for large training datasets and the challenge of avoiding prob-
lems such as mode collapse.

3.2.4  Neural scene representation

Apart from the previous works that follow an image-based rendering scheme (i.e., using 
neighboring views for novel view synthesis), the use of neural networks for scene rep-
resentation and rendering has gained significant attention in recent years [101]. A 3D 
representation of a scene may be generated by explicit methods such as meshes [102], 
voxels [103], or point clouds [104]. Alternatively, 3D scene representation networks uti-
lize differentiable ray marching algorithms along with continuous functions that map 
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coordinates to features. Henzler et al. [105] and Sitzmann et al. [103] used deep-learning 
techniques and volumetric ray-marching to synthesize novel views from a continuous 
differentiable density field. However, these approaches were computationally expensive 
as they required many samples to query the volume. Neural radiance field (NeRF) [10] 
is a recent technique with significant influence in the computer vision community, and 
new NeRF variants are constantly emerging in the literature [106–108].

Using NeRF, volumetric representations of scenes can be generated as the weights of 
a non-convolutional multi-layer perceptron (MLP) with few samples. The weights are 
obtained by training on images with the known poses. The network produces a volume 
density and a view-dependent emitted radiance by inputting 5D coordinates (spatial 
and viewing directions).  Through the use of volume rendering techniques, the output 
colors and densities of a view can be simulated by querying 5D coordinates along cam-
era rays. A coarse sampling MLP in NeRF learns to estimate the density at a particu-
lar spatial location to estimate a coarse shape for an object. The coarsely sampled data 
are then used in a second fine network to obtain a denser sampling along the viewing 
ray. Although NeRF has shown promising results, it still suffers from long training time 
and quality issues. As a result, methods have been proposed to improve the quality and 
speed, despite the fact that faster methods often compromise quality for speed.

Methods focused on improving NeRF speed often rely on using different encod-
ings  [109] or deploying representations where the continuous NeRF representation is 
obtained by interpolating values stored in variants of spatial discretizations, such as vox-
els [110], 4D tensors [111], octrees [112], etc. Fridovich et al. [110] used a sparse voxel 
grid to store opacity and spherical harmonic coefficients, which are then interpolated 
to model the full plenoptic function. The method is improved by removing empty vox-
els and using a coarse-to-fine optimization. TensoRF  [111] leverages the power of 4D 
tensors to represent the radiance field of a scene. This representation factorizes the 
scene into a combination of several low-rank tensor components that are more com-
pact and efficient. This also enables the use of powerful tensor decomposition methods 
for modeling radiance fields. Another representation called a sparse neural radiance grid 
(SNeRG), is proposed in [113]. It stores a trained NeRF model as a sparse 3D voxel grid 
data structure, where each SNeRG voxel contains opacity, diffuse color, and a learned 
feature vector that captures view-dependent effects. Yu et al. [112] achieved faster ren-
dering by an octree representation where the continuous plenoptic function is pre-sam-
pled on a sparse voxel-based octree volume. However, this representation has a higher 
memory footprint than the original NeRF and may not be suitable for large-scale scenes.

NeX [114] is a scene representation that models view-dependent effects by performing 
basis expansion on the pixel representation of a multiplane image (MPI). Unlike tradi-
tional MPI, which stores static RGBα values, NeX represents each color as a function of 
the viewing angle and approximates this function using a linear combination of learn-
able spherical basis functions. Attal et al. [115] proposed a memory-efficient representa-
tion that uses a ray-space embedding network to transform 4D ray-space coordinates 
into a latent space that can be interpolated. The embedding network enables a nonlinear, 
many-to-one mapping from different ray coordinates to shared latent features, resulting 
in better feature embedding and a reduced representation size. To handle sparse input, 
a spatial subdivision with a voxel grid of local light fields is deployed, which enhances 
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quality at the cost of increased rendering time. KiloNeRF [116] speeds up NeRF render-
ing by shrinking a single large MLP into thousands of tiny MLPs, each representing parts 
of the scene. Each small network encodes features for a single cell on a regular grid that 
covers the scene. This allows one to take advantage of the spatial structure of the scene 
and skip computations for empty or occluded regions. A more recent approach is pro-
posed in [117] that represents scenes using 3D Gaussians and shows promising real-time 
rendering at reasonable quality. This representation can maintain the characteristics of 
continuous volumetric radiance fields and skip the computation in empty space.

Müller et al. [109] proposed using a new encoding approach based on a hash table that 
allows a more compact network architecture. The model consists of a small neural net-
work that maps the input features to a low-dimensional hash code and a hash table that 
stores a trainable feature vector for each hash bucket. The feature vectors are updated 
by stochastic gradient descent. The method can handle hash collisions by exploiting the 
multiresolution structure of the network, which allows it to learn different embeddings 
for similar inputs at different levels of granularity. This results in a simple and efficient 
architecture that can be easily parallelized on modern GPUs.

Several research papers have proposed quality improvements to the NeRF framework. 
Mip-NeRF [118] is a multi-scale extension of NeRF that uses conical frustums for anti-
aliased rendering. Mip-NeRF can handle different resolutions of scene content more 
robustly than NeRF. Unlike NeRF, which uses rays to sample the scene and trains sepa-
rate neural networks for each scale, Mip-NeRF uses cones to sample the scene and trains 
a single neural network that can model multiple scales. This way, Mip-NeRF can encode 
the position and size of each cone segment and render the scene at a variable scale. This 
reduces the aliasing and blurring artifacts that NeRF suffers from when the scene con-
tent varies in resolution across training or testing images.

The original NeRF framework uses 3D Cartesian coordinates to model scenes that 
represent all-angle captures of objects with transparent backgrounds. However, for 
front-facing scenes where all images have similar orientations, NeRF uses projective 
coordinates instead. When rendering scenes that are unbounded in all directions, a dif-
ferent parameterization is required. This idea was explored by NeRF++  [119], which 
used an additional network to model distant objects. The method divides the scene into 
two inner and outer volumes modeled using two NeRFs. The outer volume network 
learns a spherical representation of the scene that can handle large variations in depth 
and viewing angle. The outer network is combined with the inner volume network, 
which models the foreground objects, to produce high-quality novel views of complex 
scenes. Mip-NeRF 360 [120] is an extension of Mip-NeRF for synthesizing novel views 
of unbounded scenes. It leverages a nonlinear scene parameterization, online distilla-
tion, and a distortion-based regularizer to achieve high-quality results. The method 
consists of a NeRF MLP to predict color and opacity, and a second proposal MLP that 
predicts density and weights.

The latest NeRF methods, such as Mip-NeRF 360 [120], can produce high-quality vis-
ual results, but they require a long training time. On the other hand, methods that use 
explicit volumetric representations can achieve fast training, but they have some limi-
tations. First, they cannot match the visual quality of the implicit NeRF methods, and 
second, they cannot use gradient-based optimization directly on their methods, because 
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they rely on complex data structures or lack prior knowledge. Therefore, they still need 
to convert a trained implicit model (e.g., NeRF) to their final representation that sup-
ports real-time rendering. This conversion step adds to their training time and complex-
ity. Thus, real-time high-quality rendering is still an open research question.

3.3  Compression

As mentioned earlier, the original 7D plenoptic function can be reduced to a 4D one [11], 
yet representing a huge amount of raw data compared to 2D images. Therefore, com-
pression schemes are essential to enable efficient light field storage and transmission.

An efficient codec should be able to explore not only the spatial and angular redun-
dancies independently (as two-dimensional data), but also the combined spatial–angu-
lar redundancy (4D data). As the light field imaging modality carries a huge amount of 
data, efficient compression algorithms are paramount, and light field coding has been 
extensively researched in the last few years [6, 7]. A wide range of light field compres-
sion schemes have been proposed, from well-known, off-the-shelf standard codecs, such 
as H.264  [121], HEVC [122], and VVC [123] to those specially designed for light field 
data  [124–126]. These compression methods can be based on the 2D images (views) 
(a.k.a as the SAIs in the case of lenslet-based cameras), on microimages, on EPIs [6], or 
on other alternative representation  [10]. The joint photographic experts group (JPEG) 
committee (ISO/IEC JTC1/SC29/WG1) developed a plenoptic coding standard  [124, 
127–130] triggered by this new technology. In [124], two independent coding modes are 
defined: one exploiting the redundancy using a 4D prediction process, the other exploit-
ing the redundancy in 4D light field data by utilizing a 4D transform technique  [125, 
131].

Several works propose learning-based compression methods to code light field data, 
including light field videos. Three main strategies have been identified in the literature 
for learning-based light field compression: 1) Light field compression using learning-
based view synthesis on the decoder side; and 2) Light field compression using learning-
based view synthesis on the encoder and decoder sides, and 3) End-to-end light field 
compression architecture; The learning-based view synthesis methods used in the first 
two compression schemes closely follow the frameworks discussed in Section  3.2.2 
(Angular SR). Figure 4 illustrates the generic frameworks of these three strategies.

3.3.1  Learning‑based view synthesis on the decoder side

The key idea of this compression architecture is bitrate saving by sparsely encoding 
the views, with the remaining views being reconstructed from the encoded views on 
the decoder side. This type of strategy is highly dependent on the quality of available 
decoded views and on the learning-based reconstruction method. The method in [132] 
employs a sampling strategy to select key views to be encoded by the multiview exten-
sion of HEVC [133]. A disparity-based view warping method is used to synthesize the 
missing views at the decoder side, with the reconstruction accuracy improved by a CNN.

A sparse light field compression method is presented in [134]. An initial set of sparse 
views is encoded using the joint exploration model (JEM), while another set of sparse 
views is estimated using a linear approximation. Deep learning is used to reconstruct 
the remaining missing views. Another deep learning-based light field compression 



Page 19 of 36Mahmoudpour et al. EURASIP Journal on Image and Video Processing         (2024) 2024:12  

method is proposed in  [135] in which the missing views are reconstructed from the 
encoded neighboring views and a multi-view joint enhancement network is introduced 
to improve the coding performance. The light field compression scheme proposed 
in [136] super resolves the EPI via CNNs. Twenty-five percent of views of the light field 
are compressed on the encoder side, and these encoded views are used to reconstruct 
the entire light field by taking advantage of the special structure of EPI on the decoder 
end. As low-resolution EPIs are generated from the 25% selected views, they are super-
resolved using a deep residual network. The high-resolution EPIs and the decoded views 
are used to reconstruct the whole light field. In [136], compression distortions suppres-
sion and super-resolution of the EPIs are performed by the same network, thus increas-
ing the network’s learning burden. In addition, compression distortions produced by the 
encoded view are hard to remove in the form of EPI. In  [137], the learning burden is 
reduced by assigning quality enhancement and super-resolution to two different net-
works. The training data production process is also different from the previous scheme, 

Fig. 4 Light field compression architectures using: a learning-based view synthesis on the decoder side; 
b learning-based view synthesis on the encoder and decoder sides, and c end-to-end scheme
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taking the decoded sparse views as input images and the uncompressed views in the 
same position as their labels to train the decoder-side quality enhancement CNN.

3.3.2  Learning‑based view synthesis on the encoder and decoder sides

Hou et  al.  [138] proposed a bi-level view compensation method to exploit angular 
redundancies, separating the light field data into key and non-key views. Aiming to 
exploit the 4D redundancy inherent to light field geometry, a CNN-based angular SR 
approach is used to synthesize super-resolved non-key views using the small number 
of key views. The residue between the key and non-key views is calculated and those 
super-resolved non-key views are arranged as a pseudo-sequence to be encoded by the 
HEVC video standard [122]. The efficient HEVC video encoder performs block-wise 
motion compensation to further exploit the inter-view (angular) correlation. The key 
views are also encoded by HEVC for the reconstruction of non-key views to obtain the 
whole light field. On the decoder side, both residual and key views are decoded and the 
CNN-based angular SR approach is applied to the decoded key view to be combined 
with the decoded residues to reconstruct the non-key views. This hybrid scheme uses a 
specific approach to explore the geometrical light field inter-view redundancy and the 
block-based motion estimation to further reduce redundancy is very efficient. A similar 
design is proposed in  [139] using a GAN-based approach instead of a CNN. Another 
light field compression method using GAN-based view synthesis is proposed in  [140]. 
Unlike the scheme in [139], it divides the generative model into disparity estimation and 
non-key view prediction components. Also, a perceptual quality-based loss function is 
introduced to supervise the GAN and preserve the quality of the synthesized views.

For the compression of densely-sampled light fields, Su et al. [141] used a CNN-based 
view synthesis as an initial prediction stage to exploit inter-view correlation. This com-
pression solution employs the concept of super-rays, which is a grouping of rays within 
and across views taking into account disparity information. Super-rays are computed 
on synthesized residues, produced in the first prediction stage, to increase the correla-
tion with the residues to be encoded. Then, neighboring super-rays are merged into a 
larger super-ray according to a rate-distortion cost. A 4D shape adaptive discrete cosine 
transform is applied per super-ray on the prediction residues in both the spatial and 
angular dimensions, followed by quantization and entropy coding on the transformed 
coefficients.

3.3.3  End‑to‑end light field compression architecture

Schemes of end-to-end learning for light field compression are gaining traction. In the 
recent  [142], a dynamic adaptive light field video transmission scheme is proposed. 
The work introduces a description scheduling algorithm for unstable network condi-
tions, which is capable of decoding the light field video with the highest possible quality 
even if partial data cannot be received completely and/or timely. A multiple description 
coding (MDC) based solution, employing the HEVC [122] video coding standard, was 
designed to transport the light field video compressed by a graph neural network (GNN) 
model. The proposed scheme separates the light field data with multi-level descriptions, 
with a GNN-based light field compression method as the basic encoder, enabling each 
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description to be independently decoded aiming to increase robustness against eventual 
packet loss.

A hybrid coding scheme that combines a learning-based compression approach with a 
traditional video coding scheme is presented in [143]. An end-to-end trained compres-
sion scheme is used as a base layer in this hybrid compression solution to provide high 
gains at low/mid bitrates. To circumvent quality saturation at high bitrates, the proposed 
method uses standard-based HEVC coding in its enhancement layer.

An end-to-end spatial–angular-decorrelated network light field image compression is 
detailed in  [144]. This method decouples the angular and spatial information by dila-
tion convolution and stride convolution in spatial–angular interaction. Feature fusion is 
employed to jointly compress spatial and angular information.

The framework proposed in [145] uses neural representations to represent light fields 
aiming at efficiently randomly accessing any compressed view. As neural representations 
map positional information into color values, a multi-layer perceptron (MLP) is trained 
for each light field to map positional information to color information. The random 
access is facilitated by this direct mapping. The results show that the proposed method 
outperforms HEVC inter-coding in terms of compression efficiency. A more recent 
work [146] learns an MLP-based NeRF from the light field input views. The rate-distor-
tion results show that the NeRF scene representation efficiently compresses light fields, 
outperforming coding standards and other learning-based methods.

No computational complexity is reported, nor subjective assessment results are pro-
vided by the methods reviewed in this subsection. The methods used densely angular 
sampled light fields, easing inter-view correlation.

Among the three techniques summarized in Fig.  4, end-to-end schemes are gaining 
more attention due to their effectiveness in image compression. This technique also 
enables computer vision tasks to be performed in the compressed domain without full 
decoding, offering greater flexibility and speed in machine applications. The perfor-
mance of the first 2 techniques is highly dependent on the quality of the view synthesis 
task, which is defective under occlusion and when encoding non-Lambertian surfaces. 
The quality can be improved by sending the residues, as proposed in the second tech-
nique (Fig. 4b), but this does not significantly mitigate the problem, especially in the case 
of wide baselines and sparse light fields. Despite its exorbitant inference time, the NeRF 
technique proved its efficiency in compressing light field data. View synthesis drawbacks 
can be circumvented by neural representations that achieve a level of detail that is chal-
lenging for traditional methods.

3.4  Other light field imaging applications

Compared to conventional 2D images, light fields enable the acquisition of depth data, 
focus cues, and parallax, thereby improving accuracy for fundamental computer vision 
tasks. In addition to the applications described earlier in this section, learning-based 
light field solutions have been developed for other vision tasks such as saliency detec-
tion  [147, 148], face recognition  [149–151], image classification  [152], low-light imag-
ing [153] and light field microscopy [154–157]. Light field microscopy is able to capture 
3D spatial information in a single camera frame, allowing almost instantaneous 3D 
imaging. This high-speed capability promoted the realistic applications of light field 
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microscopy in biology and neurobiology providing the visualization of cardiovascular 
dynamics, the reduction of image reconstruction artifacts, and the recording of brain 
neuronal activity, for example [158].

Saliency object detection (SOD) aims to mimic the HVS to detect objects or areas that 
attract human attention. A comprehensive review of light field SOD methods is provided 
in  [159] where the authors benchmark several learning-based models and compare 
them with RGB-D models of saliency detection. Moreover, the most notable architec-
tures and existing light field datasets for SOD are extensively discussed and summarized. 
Encoder–decoder two-stream networks are commonly used for light field SOD that 
combine features from all-in-focused or center images in one stream with a focal stack 
or multi-view features in the other stream.

Face recognition using light fields can take advantage of both inter- and intra-view 
information for better accuracy. VGG network features were inserted into LSTM cell 
architectures in [150] to improve face recognition by exploiting spatio-angular informa-
tion. A capsule network is developed in [151] that uses a pose matrix to capture view-
point shifts and share knowledge across different object parts and locations. Moreover, 
the authors introduced two datasets of light field faces in the wild (LFFW) and light field 
face constrained (LFFC) for benchmarking the light field learning-based models.

light field microscopy makes use of deep learning models to improve the speed and 
quality of the image reconstructions, allowing the formation of volumetric dynamics in 
real-time. Encoder–decoder networks can be trained to transform raw light field micros-
copy data into 3D image stacks. Wang et al. [155] deployed a view-channel-depth (VCD) 
network with U-net architecture to convert the 2D light field views into 3D depth data. 
Wagner et  al.  [156] designed a deep architecture with 2D and 3D residual blocks for 
3D reconstruction of light field microscopy data. A convolutional sparse coding (CSC) 
model is deployed in [157] for fast 3D localization of neurons in tissues from light fields. 
The network uses EPIs as inputs and generates sparse codes, representing depth data, as 
outputs.

4  Datasets and quality assessment
Light field datasets with diverse content characteristics are essential for the development 
and benchmarking of light field processing systems. Real-world light field data can be 
captured by plenoptic cameras such as lenslets, by an array of single-lens or plenoptic 
cameras, or using a single-lens moving camera, capturing the scene from different view-
points. Synthetic light field data can be generated using computer simulation and view 
rendering. Content characteristics such as angular resolution and view sparsity, spa-
tial resolution, scene complexity, specularity, and transparency can challenge light field 
imaging algorithms. Shafiee et al. [160] provided a detailed comparison of 33 light field 
datasets ranging from content-only datasets to specific task-based and quality assess-
ment datasets. Although many datasets have been introduced in the literature, only a 
few of them have been widely adopted by the research community to evaluate light field 
imaging algorithms. Table 1 summarizes all the public datasets with their characteristics 
that have been used in the literature for benchmarking the learning-based compression, 
depth estimation, and reconstruction algorithms.
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The first public datasets in the domain such as Kalantari et al.  [161] and EPFL [162] 
consist of realistic light fields captured using plenoptic Lytro Illum cameras. The 4D light 
field also known as HCI  [163] includes 24 densely sampled synthetic light fields with 
accurate disparity information. In the Fraunhofer IIS dataset  [164], Sony Alpha 7RII 
camera rigs were used to acquire density-sampled high-resolution light field images with 
wide baseline. The Stanford multiview light field dataset  [165] consists of single Lytro 
shots as well as triple shots of three Lytro Illum cameras mounted together. More than 
7000 light fields are collected in this dataset covering challenges such as non-Lamber-
tian surfaces, occlusions, and specularity. INRIA  [45] and WLF  [56] are other recent 
synthetic datasets deployed in assessing light field algorithms for depth estimation and 
reconstruction.

The aforementioned datasets contain light fields with regular grids of sampled views. 
The dataset named Spaces [86] contains 100 scenes captured by 16 cameras with an arbi-
trary camera rig structure and 10 cm spacing between the cameras. The Spaces dataset 
was used for view synthesis using the MPI approach discussed in section 3.2.2. Table 1 
also summarizes widely used datasets (Real Forward Facing of NeRF [10], Shiny [114], 
and NeRF 360 [120]) that represent smartphone captures of scenes on an irregular grid 
and have been used for the purpose of reconstruction using neural scene representa-
tion. Other related datasets used for NeRF benchmarking include BlendedMVS  [166], 
Synthetic-NSVF [167], Tanks &Temples [168], and DeepVoxels [103].

Light field imaging algorithms are typically evaluated using quantitative methods by 
comparing generated data to a ground-truth. Peak signal-to-noise ratio (PSNR) and 
Structural SIMilarity index (SSIM) are the most widely used objective metrics for eval-
uating imaging algorithms. However, these two metrics tend to be less accurate when 
dealing with light field data. A comprehensive benchmark of 24 objective metrics on 
three public light field datasets revealed that PSNR and SSIM are only ranked 13th and 
14th, respectively, in terms of their consistency with human quality preferences  [169]. 
Moreover, CNN-induced artifacts and GAN reconstruction errors are different from 
conventional artifacts, and the existing metrics perform poorly on these emerging arti-
facts. Therefore, more reliable objective metrics are required to benchmark the imaging 

Table 1 Characteristics of the light field datasets used to benchmark the light field imaging systems

Dataset Capturing device No. scenes (u×v×s×t) Year

Kalantari et al. [161] Lytro lenslet camera 100 (625×434×15×15) 2016

EPFL  [162] Lytro lenslet camera 118 2016

4D light field (HCI) [163] Synthetic 24 (512×512×9×9) 2016

Fraunhofer IIS [164] Sony Alpha 7RII camera array 9 (7952×5304×21×99) and (7952×5304×21×101) 2017

Stanford Multiview [165] Single Lytro lenslet camera
3 Lytro lenslet cameras

4211
3042

2019

INRIA [45] Synthetic 53 Sparse and 39 Dense (512×512×9×9) 2019

WLF [56] Synthetic 381 (1920×1080×9× 9) and (512×512×9×9) 2021

Spaces [86] GoPro Hero4 100 (5-10 camera rig positions, spatial res. 2k 
and 800×480)

2019

Real Forward-Facing [10] Smartphone captures 8 (spatial res. 1008× 756 ) 20-62 views 2021

Shiny [114] Smartphone captures 8 (spatial res. 1008× 567 ) 35-307 views 2021

NeRF 360 [120] Smartphone captures 9 indoor/outdoor scenes 125-311 views 2022
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algorithms. Due to the diversity of light field acquisition procedures, distortions, and 
rendering processes, light field quality assessment remains a challenging task. To this 
end, subjectively annotated light field datasets are required to be used as ground-truth 
for developing new metrics. A summary of publicly available light field datasets with 
subjective scores can be found in Table 2. These datasets are characterized by the stimu-
lus type for the subjective experiment (double or single stimulus), light field visualization 
method (passive in the form of pseudo videos or active), display type used in the subjec-
tive experiment, and the distortion types available in the dataset.

Given the multi-dimensional nature of light field data and the presence of distor-
tions in both spatial and angular dimensions, a recent focus has been on developing 
more accurate objective algorithms that extract features from both spatial and angular 
domains for light field quality assessment. Metrics can be classified into three catego-
ries based on the availability of the reference image: full-reference (FR), reduced-refer-
ence (RR), and no-reference (NR). Table 3 summarizes the proposed metrics with their 
specifications. Learning-based approaches—especially for developing NR metrics—are 
gaining more attention due to their success in improving accuracy, and more deep-learn-
ing-based approaches have emerged recently. Although significant work has been done 
in this domain and more reliable metrics have been proposed, current learning-based 
light field algorithms are still only evaluated using conventional PSNR and SSIM meth-
ods. Therefore, a shift toward using more recent metrics is desirable. In this context, the 
IEEE established a new standard called ’IEEE P3333.1.4’ [170], which defines metrics and 
provides recommended practices for light field quality assessment. A standardization 
activity, namely ’JPEG Pleno Quality Assessment’ [171], was recently initiated within the 
JPEG committee aiming to explore the most promising subjective quality assessment 
practices as well as the objective methodologies for plenoptic modalities in the context 
of multiple use cases. The first phase of this effort will address the light field modality.

Table 2 Subjectively annotated light field datasets

Dataset Stimulus Visualization Display Distortion types

Single Double Passive Active 2D 3D

Tian et al. (2020) [172] � � � JPEG, Gaussian noise, Gaussian blur

SMART (2017) [173] � � � JPEG, JPEG2000, HEVC, SSDC

MPI-Lightfield (2017) [174] � � � 3D-HEVC, Display crosstalk, Quan-
tized depth map Interpolation 
(linear, nearest neighbor, optical 
flow)

SHU (2017) [175] � � � JPEG, JPEG2000, Gaussian blur, 
white noise

VALID (2018) [176] � � � � HEVC, VP9, and 3 light field codecs

Win5-LID (2018) [177] � � � HEVC, JPEG2000, Interpolation 
(linear, nearest neighbor, and 2 CNN 
methods)

NBU-LF1.0 (2019) [178] � � � � Interpolation (nearest neighbor, 
bicubic, CNN-based) disparity-
based reconstruction, spatial super-
resolution (VDSR)

LFDD (2020) [179] � � � Gaussian and impulse noise, Pin-
cushion distortion, JPEG, JPEG 2000, 
HEVC, VP9, AV1, H.264, BPG
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Table 3 Summary of the objective quality assessment methods for light fields

Authors Type Feature extraction Learning method

Shi et al. [180], 2019 NR Features based on cyclopean image 
naturalness, Gradient direction distribu-
tion, and weighted local binary pattern 
(LBP).

Support vector regression (SVR)

Tian et al. [181], 2020 FR Using radial symmetry transform and 
Depth features

N/A

Tian et al. [182], 2020 FR Multi-scale log-Gabor features N/A

Min et al. [183], 2020 FR Global and local spatial quality based on 
view structure matching, and near-edge 
MSE, multi-view quality for angular 
distortions

N/A

Meng et al. [184], 2020 FR Texture features using Difference of 
Gaussian (DoG), and SSIM on refocused 
images for angular quality assessment

N/A

Zhou et al. [185], 2020 NR Regarding LFs as 4D tensors to exploit 
global naturalness and local frequency 
properties

SVR

Liu et al. [186], 2021 NR Making pseudo-reference quality assess-
ment. Singular value decomposition 
(SVD) and DCT applied to micropixel 
blocks

SVR

Xiang et al. [187], 2021 NR 4D DCT features PCA and SVR

Qu et al. [188], 2021 NR Using separable convolutions to extract 
spatial and angular features

Deep auxiliary learning

Zhao et al. [189], 2021 NR Three deep residual blocks for feature 
extraction from EPI

Deep learning

Pan et al. [190], 2021 NR Spatial feature extraction (sharpness, 
slice distribution) on tensor slices. Angu-
lar features extraction using SVD

SVR

Meng et al. [191], 2021 FR Gradient and phase congruency of key 
refocused views + chrominance fea-
tures. Visual saliency map for pooling

N/A

Huang et al. [192], 2022 NR Contourlet transform for spatial, and 
3D-Gabor filter for geometry feature 
extraction

N/A

Alamgeer et al. [193], 2022 NR Two-stream CNN and Atrous blocks for 
feature extraction

Deep learning

Alamgeer et al. [194], 2022 NR Two-stream Long Short-Term Memory 
(LSTM) blocks for feature extraction from 
EPI and micro-lens images

Deep learning (LSTM)

Alamgeer et al. [195], 2022 NR Use GANs to generate distortion maps 
and feature extraction using isometric 
mapping of the GAN-generated maps

GANs and random forest regressor

Zhang et al. [196], 2022 NR Two-stream CNN feature extraction on 
spatio-angular patches

Deep learning

Zhang et al. [197], 2023 FR Hierarchical discrepancy feature extrac-
tion using CNNs

Deep learning

Zhang et al. [198], 2023 NR Two-stream CNNs for features extraction 
from Pseudo video blocks. Saliency- and 
variance-guided pooling

Deep learning

Ma et al. [199], 2023 NR Spatial–angular feature extraction using 
self-attention

Deep learning (Swin Transformer)

Ma et al. [200], 2023 NR Feature extraction using LBP, and NSS 
features on spatial-domain MSCN coef-
ficient and in curvelet domain

SVR

Qu et al. [201], 2023 NR Angular-wise attention using three 
new attention kernels: anglewise self-, 
anglewise grid-, and anglewise central-
attention

Deep learning (Tranformers)
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5  Discussion, challenges and perspectives
Research in light field imaging has been active in recent years, and machine-learning 
frameworks have been widely deployed in this domain to enhance various light field pro-
cessing stages. While parallel to light fields, other plenoptic modalities like point cloud 
and holography have also been developed, there is no indication yet as to which will 
gain more dominance in the future. The three modalities offer unique advantages and 
they are interchangeable so for instance, one could obtain light fields from point clouds 
or vice versa. Even though point clouds and holographic content processing and com-
pression have advanced significantly in recent years, these content types may eventually 
need to be converted to light field views for visualization on the display. This assump-
tion of course depends on the types of displays to be introduced to the market in the 
future. Light fields provide more comprehensive information when it comes to capturing 
scenes. The Lidar can be used to create 3D point clouds by measuring precise distance 
to objects. However, light fields capture not only the 3D objects but also the entire scene 
information, which can be essential in many applications like autonomous driving, that 
require accurate 3D recreation of the vehicle surroundings.

The widely known plenoptic modeling methods proposed in [11] and [12] require the 
acquisition system (e.g., the camera grid) to be densely and regularly sampled, or the tar-
get viewing ray being a linear combination of the source views [205]. However, the num-
ber of required samples differs for scenes with different spatial complexity, occlusions, 
depth range, and non-Lambertian surfaces. Recent advances in using deep learning for 
spatio-angular reconstruction and the emergence of the NeRF-based approaches have 
demonstrated the potential of 3D rendering from a limited number of views, but they 
also face several challenges, as discussed in this paper. Some of these challenges are the 
long training times required for the models, the aliasing artifacts that occur at different 
resolutions, and the quality degradation that happens when dealing with scenes that are 
not bounded by a finite volume.

The reduction of the number of views might be efficient for use cases that do not 
demand real-time interaction, such as industrial visualization (e.g., prototype review) 
and digital signage (e.g., advertising). Faster radiance field methods, discussed in sec-
tion , can achieve interactive rendering times on GPU depending on the complexity of 
the scene. However, they fall short of achieving true real-time rendering at high resolu-
tions. More recent methods, such as 3D Gaussian splatting [117], show improvements in 
the quality–speed trade-off, whereas the quality achieved might not yet be optimal for 
applications that require high-fidelity 3D reconstructions. Enhancing the quality–speed 

Table 3 (continued)

Authors Type Feature extraction Learning method

Lamichhane [202], 2023 NR Spatial feature extraction on saliency and 
cyclopean maps. Angular features using 
global luminance distribution and the 
weighted LBP on EPIs

SVR

Xiang et al. [203], 2023 RR 4D wavelet transform SVR

Chai et al. [204], 2023 NR SVD, LBP, 3D and 2D Log-Gabor for 
spatio-angular features

SVR
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trade-off could enable new use cases such as real-time telepresence and robotic tasks 
with fewer views for reconstruction.

The advent of different neural scene representations of light fields will bring discus-
sions about which representation is most useful in the light field domain. In contrast 
to an explicit representation based on multiple SAIs (or micro-lens images), an implicit 
neural representation encodes light fields as parameters of an MLP. Therefore, the evo-
lution of these two representations in the future may change the direction of research 
in light field processing, coding, and quality assessment. In light field compression, for 
example, image/video coding methods can be applied to encode the explicit representa-
tions, but implicit representation might require network data coding or a more compact 
neural representation with fewer parameters to achieve better storage and streaming 
performance [206].

Advances in deep learning frameworks are expected to significantly improve the 
performance of light field processing algorithms and solve the existing challenges. For 
example, the current depth estimation methods are not flawless and always come with 
the cost of artifacts, especially for occluded regions and in the presence of specularities. 
The imperfect depth data directly impacts the performance of the light field processing 
algorithms (such as view synthesis) that use depth information as an intermediate step. 
Therefore, better depth estimation or depth-free approaches are critical. Moreover, the 
success of the light field reconstruction algorithms is highly dependent on the number of 
available views and the baseline, and many algorithms used on narrow baseline will fail 
when deployed in wide baseline light fields.

When it comes to light field coding, advanced methods are needed to efficiently 
exploit the huge amount of redundant information about the light rays in the same scene 
that conveys angular and spatial information. End-to-end learning-based approaches 
have proved their effectiveness for 2D image coding. However, several challenges arise 
when coding 4D data including: (a) How to efficiently exploit the inherent 4D geometry 
using learning-based approaches? (b) What is the quality impact of the artifacts pro-
duced by learning-based compression methods which are different, in nature, from the 
ones produced by other light field codecs? and (c) How to deal with the increased com-
plexity of the learning-based codecs that may result in impractical decoding runtimes. 
The JPEG committee has started the JPEG Pleno light field learning-based coding activ-
ity, targeting the creation of a learning-based coding standard to provide competitive 
compression efficiency compared to state-of-the-art light field coding solutions. To this 
end, two workshops have been promoted to discuss challenges and current solutions 
in learning-based coding solutions for light field data, to explore relevant use cases and 
requirements, and to provide a forum for researchers to discuss the latest findings in this 
area [207].

The evaluation of light field imaging systems has several shortfalls related to the con-
tent and assessment approaches available. The current datasets used in evaluations are 
often captured by Lytro cameras, which provide a very narrow baseline for comparison. 
Some synthetic or naturalistic light field datasets presented a slightly wider baseline, and 
there are very few wide baseline datasets that are used for evaluations in the literature. 
The development of advanced light field imaging systems for real-world applications 
requires additional datasets with diverse content properties. Among these properties 
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are spatial resolution, scene complexity, wide color gamut, wide baselines and paral-
lax, sparse and dense view sampling, specularity, and transparency of objects. It is also 
necessary for deep learning methods to be trained on large-scale datasets, however, the 
existing data are often small and deep frameworks are mostly trained using limited data. 
It is therefore essential to provide more comprehensive light field datasets from both the 
quantitative and content diversity perspectives.

The assessment of plenoptic image quality also faces various challenges because of the 
variety of quality aspects and complexity of the content when compared to the assess-
ment of 2D images. In the context of the JPEG Pleno standardization process with regard 
to light field coding, a variety of subjective visual quality assessment procedures have 
been designed and significant knowledge has been built regarding challenges and good 
practices. For further improvement in this area, JPEG has begun developing a light field 
quality assessment standard, defining a framework with subjective quality assessment 
protocols and objective quality assessment procedures for lossy decoding of light field 
data within the context of multiple use cases and requirements outlined in  [208]. The 
IEEE is also developing a standard called “P3333.1.4—Recommended Practice for the 
Quality Assessment of light field Imaging” that targets to establish methods of quality 
assessment of light field imaging based on psychophysical studies [209].

6  Conclusions
This paper provided an overview of the prominent learning-based paradigms for the 
most popular light field processing tasks. Depth estimation, compression, super-reso-
lution and reconstruction are among the most important processing tasks while other 
vision tasks such as light field microscopy, saliency estimation, face recognition, refocus-
ing and relighting have also been studied in the literature.

This review demonstrates the broad integration of learning-based frameworks for light 
field processing which is expected to be further expedited with the advances in light field 
capturing and visualization devices and the establishment of larger light field datasets. 
However, researchers still face many challenges, and there are many more to come. The 
advent of NeRF and its variants has paved the way for more innovative and efficient light 
field representation models requiring specific light field processing techniques and pos-
ing their own challenges. Despite the advances in developing super-resolution and view 
synthesis methods to improve the spatial and angular resolution of the light field, the 
existing content is still limited in FoV and DoF and far from offering a real 6 DoF expe-
rience where users can freely explore a scene from different viewports. Therefore, sig-
nificant efforts are expected to increase in the coming years towards capturing larger 
datasets with wider baselines. Larger datasets will lead to further computational com-
plexity and lower processing efficiency, bringing new challenges for learning-based solu-
tions and deep learning models, in particular.

A number of deep learning frameworks have been developed for light field microscopy 
reconstruction, and 3D imaging using light field is expected to gain more attention in 
biology and neurobiology.

The existing image-based representation of light fields and implicit data-driven rep-
resentations pose their own coding challenges, and further advancements in light field 
compression can broaden the application of these representations. Learning-based 
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image compression solutions have gained momentum recently and this is expected to 
make a significant impact on the development of light field compression techniques.
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