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Abstract 

Plant diseases have a significant impact on leaves, with each disease exhibiting specific 
spots characterized by unique colors and locations. Therefore, it is crucial to develop 
a method for detecting these diseases based on spot shape, color, and location 
within the leaves. While Convolutional Neural Networks (CNNs) have been widely used 
in deep learning applications, they suffer from limitations in capturing relative spatial 
and orientation relationships. This paper presents a computer vision methodology 
that utilizes an optimized capsule neural network (CapsNet) to detect and classify ten 
tomato leaf diseases using standard dataset images. To mitigate overfitting, data aug-
mentation, and preprocessing techniques were employed during the training phase. 
CapsNet was chosen over CNNs due to its superior ability to capture spatial positioning 
within the image. The proposed CapsNet approach achieved an accuracy of 96.39% 
with minimal loss, relying on a 0.00001 Adam optimizer. By comparing the results 
with existing state-of-the-art approaches, the study demonstrates the effectiveness 
of CapsNet in accurately identifying and classifying tomato leaf diseases based on spot 
shape, color, and location. The findings highlight the potential of CapsNet as an alter-
native to CNNs for improving disease detection and classification in plant pathology 
research.

Highlights 

• This paper is interested in tracking plant diseases such as leaf disease in Tomatoes, 
based on optimized Deep Learning Capsule Net.

• Early detection of the most common diseases based on leaf images can help us 
track and enhance food quality.

• Capsule Networks is an optimized alternative method more efficient than tradi-
tional CNN for detecting all leaf images and determining all locations. However, it 
tackles the shortage of conventional CNN.
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1 Introduction
The detection of plant diseases using machine learning techniques has gained signifi-
cant attention due to the limitations and biases associated with human observation [1]. 
Unmanned aerial vehicles (UAVs) have been widely employed in precision agriculture for 
crop monitoring and disease surveillance, leveraging their ability to capture extensive data 
and information. In particular, the tomato crop holds strategic importance, necessitating 
early detection and control of diseases. Leaves play a crucial role in detecting plant dis-
eases, as each disease manifests in specific spots characterized by unique colors and ori-
entations. Therefore, there is a need to develop a robust method that can detect diseases 
by analyzing the shape, color, and spatial positioning of these spots within the tomato 
plant leaves [2–4]. Crop monitoring, biomass estimate, field mapping, plant population 
counts, weed management, and spraying have all been proven to benefit from the use of 
unmanned aerial vehicles (UAVs) for thorough surveys in precision agriculture. Disease 
detection and surveillance with a UAV is becoming more common as cameras, sensors, 
motors, rotors, controllers, and other components collaborate to capture a vast amount 
of data and information to improve agricultural techniques [5]. Capturing images is one 
of the most basic functions of a UAV [6, 7]. In recent years, researchers have increasingly 
employed a combination of image processing, denoising, and deep learning techniques to 
extract valuable information from collected plant leaf image [3, 8, 9].

The tomato crop is considered a strategic crop for many countries worldwide, so atten-
tion has been paid to the early detection and control of diseases. Leaves can detect plant 
diseases of all kinds because it dramatically affects the whole plant. Recent works stated 
that every disease in a given spot has a color associated with another color and in a spe-
cific direction. Therefore, it is essential to find a way to detect the disease that affects 
plants through the shape, color, and orientation of the spots inside the leaf, for enhanc-
ing food nutrition schemes [10–15].

In the early years, image processing with data mining techniques was used to recog-
nize plant diseases [16–18]. The major approaches used in this technique were K-nearest 
neighbor (KNN), backpropagation neural network, support vector machine (SVM), and 
spatial gray-level dependency matrices. These approaches effectively recognize healthy 
and unhealthy plant leaves [19–22]. The features of the image can be extracted using 
image processing techniques such as color analysis and thresholding approaches [23]. 
Furthermore, deep learning (DL) algorithms are used to extract features in an automated 
way. Researchers have used them to extract distinctive features in plant disease recogni-
tion with the least amount of knowledge and less human effort. These algorithms consist 
of interconnected architectural layers through which data are rep-resented, and higher-
level features can be extracted from the last layers of networks. However, the low-level 
features are extracted from the lower layers [24, 25].

A convolutional neural network (CNN) is a popular and widely used DL technique 
for classification and feature extraction in various applications such as natural language 
processing, speech processing, and computer vision [26–28]. A CNN simulates a com-
plex series of cells in a cat’s visual cortex. Parameter sharing, sparse connections, and 
equivalent representations are CNN’s three key benefits, and they simulate complex 
series of cells in a cat’s visual cortex. However, the traditional method uses fully con-
nected networks, whereas CNN uses local connections and shared weights to use the 
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two-dimensional input image. This method yields a network with considerably fewer 
parameters, making it simpler and easier to practice. This process is like that which 
occurs in visual cortex cells. Small parts of a scene, rather than the entire scene, are vul-
nerable to these cells. In other words, the cells serve as local filters over the information, 
extracting spatially using local correlation from the data [29–33].

There are many convolutional layers in a typical CNN, followed by pooling (subsam-
pling) layers, and finally, fully connected layers in the final stage [32]. Although several 
flaws have been noted, CNN pre-trained architectures have been successfully applied 
to plant disease detection [34, 35]. A CNN does not place a high value on the orienta-
tion and spatial relationships between image components; therefore, it does not consider 
the spatial relationship between its features. However, it is unresistant to affine transfor-
mations, necessitating a large amount of data for learning, including all possible image 
orientations. Nevertheless, constructing a model requires a large dataset. This results in 
longer training times and overuse of computing resources. A CNN is called invariant 
rather than equal-variant because of its pooling operation [36].

It does not capture the relative spatial and orientation relationships, and it is easily 
tricked by image orientation or a shift in a pose. In a CNN, the max-pooling layer is 
essential to reduce the spatial information of the data transferred to the next layer by 
down sampling it. This process can be termed a downside for a CNN because it cannot 
propagate spatial hierarchies between different objects [37].

In-plant diseases, the leaf is the first part affected. Researchers discovered that every 
disease has certain spots, and each Spot has a color associated with another color and 
a specific leaf location. Therefore, it is essential to find a way to detect the disease that 
affects plants through the shape of their spots, col-or, and destination inside the leaf [38]. 
Because traditional CNN techniques cannot detect diseases that depend on spots’ loca-
tion on plants, this study will not consider them. It is practical if experiments relating to 
this study are conducted outside the laboratory [39].

Lately, an unprecedented type of neural network that suggests a “capsule” concept 
[40]. In this way, the capsule must encode a particular visual feature’s presence, and its 
transformations can be subject to a specific application or domain. This paper defines 
the capsule as a set of neurons representing the entire feature and parameters related to 
the instantiation of the features. Although a traditional CNN uses kernels’ scalar activa-
tions, capsule vectors enrich the network with information. Adam is a stochastic opti-
mization approach that just requires first-order gradients and uses little memory. This 
method uses estimations of the first and second moments of the gradients to calculate 
individual adaptive learning rates for distinct parameters; the name Adam comes from 
Adaptive Moment Estimation. It helps adjust the learning rate for each neural network 
weight using the estimates of the first and second moments of the gradient [41].

The tomato crop is one of the important crops that we use daily, making it indispen-
sable. Early detection of diseases in plants is one of the leading practices that agricul-
tural engineers use to limit the spread of the disease, and it can be achieved most times 
through plant leaves. The tomato leaf is one of the necessary things that express the health 
condition and the degree of ripeness of the fruit. There are two forms of tomato fruits: 
healthy and unhealthy. It is challenging to stir the fruit in three-dimensional directions to 
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distinguish the external shape to detect diseases in the ripe and immature fruits. There-
fore, early detection of the disease through their tree leaves is needed [42, 43].

Presently, researchers have made several attempts to use artificial intelligence to pre-
dict, diagnose, and investigate suitable ways for plant disease classification and to take 
action after detecting the symptoms of leaf diseases. Sardogan et al. [44] presented the 
CNN model and Learning Vector Quantization (LVQ) algorithm-based method to clas-
sify tomato leaf disease. They used 400 leaf images for training and 100 leaf images for 
testing. The average accuracy of 86% was obtained for five class labels of leaf diseases, 
including healthy, bacterial Spot, late Blight, septoria spot, and yellow curved.

Mokhtar et al. [45] used SVM with different kernel functions to classify two different 
yellow leaf curl diseases for 200 infected tomato leaf images, and 90% average accuracy 
was obtained. Besides the five mentioned classes obtained in [44, 46], a CNN to classify 
six class leaf diseases, adding spider mites to their study. The average accuracy achieved 
was 76% for 600 input images (100 for each class) presented by [46]. A large-scale dataset 
consisting of 14,828 images of tomato leaves infected with nine diseases, which are 4032, 
yellow leaf curl virus; 325, mosaic virus; 1356, target spot; 1628, spider mites; 904, leaf 
mold; 1723, septoria spot; 1781, late Blight; 952, early blight; and 2127, bacterial Spot, 
was presented by Brahimi et al. [47] using a CNN. They compared the CNN model with 
shallow models and hand-crafted features. The accuracy values obtained were 94.54% 
and 95.46% for the SVM and random forest shallow models. Meanwhile, 98.66% and 
97.35% were obtained for Alexnet, and 99.18% and 97.71% were obtained when Goog-
leNet was used with and without pretraining.

Nine class labels were further presented by Gao et  al. [8] to identify leaf disease in 
tomatoes using a CNN. They also used the applied transfer learning algorithms such as 
Res-net, Alexnet, and GoogleNet with stochastic gradient descent and Adam optimizers. 
They achieved significant accuracy of 96.51% (Resnet). Conditional Generative Adver-
sarial Network (CGAN) with DenseNet121 was presented by Abbas et al. [48] to gener-
ate synthetic images of tomato plant leaves based on ten class labels of the PlantVillage 
dataset that contains 16,012 images with a class-wise tomato image distribution. They 
achieved 99.17% accuracy compared with 99.51% and 98.65% for five and seven class 
labels. Atila et al. [49] present an EfficientNet deep learning model to classify thirty-nine 
categories of plant diseases, including tomato disease, with average accuracy 99.91%.

Chowdhury et al. [50] presented a CNN EffecientNet to classify tomato leaf diseases 
with three different scenarios. The first scenario uses two class labels that classify 
tomato into two healthy and non-healthy. The second scenario is based on segmented 
six class labels. Finally, the third scenario is the utilization of ten class labels, and 
they used Adam optimizer for both segmentation and classification model. They 
achieved an average accuracy of 99.00% based on tomato leaf images. Furthermore, 
Tan et al. [51] presented a comparative study between the traditional Machine Learn-
ing approaches and Deep Learning approaches to classify tomato diseases using leaf 
images extracted from the PlantVillage dataset. The dataset contains ten categories 
such that the number of healthy leaf images is 1591, and the nine remaining infected 
leaf images are varied from 373 to 5357. They obtained 82.10%, 91.00%, and 82.70% 
using the classical K-Nearest Neighborhood (KNN), Support Vector Machine (SVM), 
and Random Forest (RF), respectively. While they obtained 92.70%, 98.90%, 99.70%, 



Page 5 of 21Abouelmagd et al. EURASIP Journal on Image and Video Processing          (2024) 2024:2  

98.90%, and 91.20% using AlexNet, VGG16, ResNet34, EffecientNet, and Mobile-
NetV2, DL approaches respectively.

Although their study results were promising, a track change of leaf color or compo-
nents is essentially required. However, our proposed architecture can handle this prob-
lem using CapsNet because it tackles the disadvantage of traditional CNN, tracks the 
variably of leaf changes, and enhances the identification process’s performance. There-
fore, we recommend using a capsule network that can encode the visual feature and a 
set of neurons representing the entire feature and realize the parameters related to the 
instantiation of the said feature. The novelty of this research lies in several key aspects, 
which significantly differentiate it from existing approaches and contribute to its signifi-
cance in the field of plant disease detection. Firstly, while previous studies have focused 
on using traditional CNN architectures for plant disease classification, this research 
introduces the utilization of an optimized capsule neural network (CapsNet). CapsNet 
addresses the limitations of CNNs by capturing relative spatial and orientation rela-
tionships, which are crucial for accurate disease detection. By leveraging the unique 
properties of CapsNet, such as encoding visual features and utilizing a set of neurons 
representing the entire feature, the proposed architecture improves the performance of 
disease identification. Secondly, the optimization of CapsNet’s hyperparameters using 
the Adam optimizer is another novel contribution. The Adam optimizer is known for 
its ability to adaptively adjust the learning rate for each weight in the neural network. 
This optimization technique improves the efficiency and effectiveness of the Cap-
sNet model, leading to enhanced disease classification accuracy. Compared to existing 
approaches, the proposed framework offers several significant advantages. The use of 
CapsNet addresses the shortcomings of traditional CNNs, allowing for improved detec-
tion and classification of tomato leaf diseases based on spot shape, color, and orienta-
tion. The integration of drone-captured images enhances the quality and resolution of 
the input data, facilitating more precise disease analysis. Additionally, the optimization 
of CapsNet’s hyperparameters using the Adam optimizer further boosts the model’s per-
formance. This paper highlights the following contributions:

1. The development of a computer vision system for the accurate classification of 
tomato leaf diseases.

2. The construction of a CapsNet-based architecture that overcomes the limitations of 
traditional CNNs and efficiently extracts and classifies plant images.

3. The optimization of CapsNet hyperparameters using the Adam optimizer.
4. The optimized CapsNet model offers farmers a reliable tool for timely disease iden-

tification and management, contributing to improved agricultural productivity and 
food security.

5. The successful distinction of ten types of tomato leaf diseases based on the color, 
shape, and orientation of the spots within the leaves.

The rest of this paper is organized as follows. Section  2 demonstrates that the pro-
posed methodologies include the proposed architectures. Section 3 includes the evalua-
tion of the experimental results. The conclusion and future work are presented in Sect. 4.
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2  Methodologies
This paper presents a computer vision system using CapsNet to overcome traditional 
CNN’s limitations and improve the identification process’s efficiency. Figure  1 depicts a 
block diagram of the proposed CapsNet architecture. CapsNet comprises a group of neu-
rons that perform a significant internal computation before compressing the results into 
smaller vectors of highly informative outputs. When installed in a system’s brain, this net-
work is inspired by a Mini column in which each capsule learns to identify an obliquely 
distinct visual entity across a limited set of viewing conditions and deformations [52, 53].

Each capsule’s detection probability encodes the feature as the length of its output vec-
tor. The detected feature is guided to the parameters for instantiation. Consequently, the 
feature transfers around the picture or affects its state somehow. The likelihood remains 
constant (the length of the vector does not change), but the vector’s orientation changes. 
When an object “moves over the manifold of potential appearances” in the image, Hinton 
refers to this movement as “activities equivariant.” Simultaneously, the detection probabili-
ties remain constant, which is the type of invariance that we can aim for rather than the 
type given by CNNs with max pooling [54].

To ensure that the vector length or the likelihood of an object remains between zero and 
one, the nonlinear function called “squashing” was used in Eq. (1) to keep both the length 
and direction of the input vector in the (0, 1) range.

(1)Rj =
||pj||

2

1+ ||pj||
2

pj

pj

Fig. 1 Proposed capsule network architecture for leaf classification
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where  Rj represents the vector output and capsules j and  pj represent the input.
The total input of capsule  Pj is a weighted sum over all “predictive vectors,” ôj|i . The 

capsules in the previous layer were calculated by multiplying the weight matrix  Wij by 
the output  oi of a capsule in the layer below.

where cij denotes “coupling coefficients” obtained from the dynamic routing algorithm, 
the “coupling coefficients” between the i capsule and all capsules in the layer above the 
sum to 1 was determined by the “routing softmax,” representing the initial log_bits bij of 
the prior probabilities of that capsule that should be coupled to capsule j.

As investigated in Fig.  1, the proposed architecture to classify tomato leaf diseases 
based on optimized CapsNet consists of the following stages: Acquiring a dataset of 
tomato leaf images by drone is in its early stages.

• Dataset preprocessing.
• Feature extraction.
• Pruning feature.
• CapsNet and optimization.

In this paper, CNN, the convolution layer, holds an essential function to detect the 
features from an image pixel. Deeper CNN layers detect simple features like edges and 
color. The use of the max-pooling layer was limited. It did not significantly affect the spa-
tial relationship of the features. Still, using CNN with max-pooling benefited the model 
as it reinforced other features such as colors and borders. We have hybrid CNN con-
volutional layers with Capsule network layers in the proposed architecture. The hybrid 
removes the limitation of each disadvantage. The CNN requires downsampling by max-
pooling layer, and the Capsule network is equivariant that increases opportunity in clas-
sification rate with the reduced number of nodes per feature vector. The architecture 
includes three convolutional layers for feature extraction and interoperates three max-
pooling for reducing the oversize of feature vectors as input to the Capsule network [55]. 
It is specialized in determining the rotation, equivariant eventually it is complex and 
computationally cost. In turn, the principal purpose and rationality of the network basis 
on the hybrid of feature extraction using the limited number of the traditional CNN 
method in support of the Capsule network having equivariant without complexity in 
cost and time [56, 57].

(2)pj =

N
∑

i=1

cijôj|i

(3)ôj|i = Wijoi

(4)cij =
exp

(

bij
)

∑

k exp
(

bij
)
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2.1  The acquisition of a dataset stage

The source of the experimental data is the standard dataset founded in "Sharma, S. R. 
2020. Plant diseases. Available at https:// www. kaggle. com/ saroz 014/ plant- disea ses (Last 
Accessed on 18 Sep. 2022). The data are not collected from UAV as we present a per-
ception of the utilization of the UAV drone to take an accurate picture of the tomato 
leaves in the future. The image gathered from UAV has complex background than the 
image taken in the laboratory. In the actual workflow, the stated scenario is the proposed 
framework of the current is being designed UAV. The workflow consists of an edge node 
responsible for transforming the real-world image by UAV into simple as PlantVillage 
laboratory image. The edge node works on preprocessing and fore-background separa-
tion processes. The intended UAV captures images from the real-world environment 
and sends it to the edge node for being processed. In a future manuscript, we think the 
complete workflow scenario will be illustrated by real pictures across different phases 
of the classification process. Most drone operators are familiar with agricultural drone 
imaging. This study used drones in its data acquisition process. To begin, a local drone 
operator mapped the entire field.

2.2  Tomato leaf image preprocessing stage

Data augmentation and balancing are parts of the preprocessing phase. When train-
ing very little data, data augmentation will increase the dataset’s size to several times 
that of the original, which helps in preventing overfitting. This method aids in creating 
more straightforward and more stable models that are generally applicable. The training 
dataset was augmented by replicating the available data with data rotation of ± 30, the 
sheer range of 0.1, width shift range of 0.2, height shift range of 0.2, and zooms range 
of 0.3 to the horizontal. These parameters increased the training dataset size, improv-
ing performance and regularization, avoiding the overfitting problem. In data balancing, 
the number of images in each category was different, which means that the dataset was 
imbalanced, affecting the trained network’s overall performance. To solve this problem, 
oversampling or under sampling techniques are used to obtain a balanced dataset. The 
class weight function, which applies an oversampling approach, was used in this work. 
Afterwards, the oversampling method was applied to the training set, making the data-
set balanced at each category.

2.3  Features extraction stage

Applying the CapsNet architecture to the enrolled dataset provides the expected results 
because the original CapsNet used had fewer details and differences. In the proposed 
architecture, CapsNet’s performance was improved by adding a layer to extract more 
features. This layer contains the first conv_2d layer of kernel size 3 with 64 filters, the 
second conv_2d layer of kernel size 3 with 168 filters, and the last conv_2d layer of ker-
nel size 3 with 256 filters. Figure 2 shows the layers. The rectified linear unit (ReLU) was 
used as the nonlinear activation function after each layer, and the max-pooling layer was 
added after each convolution layer.

https://www.kaggle.com/saroz014/plant-diseases
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2.4  Pruning feature stage

This stage comes after feature extraction to reduce the number of parameters that do not 
affect the system’s performance. A fully connected layer with 1024 neurons and another 
fully connected layer with 512 neurons were used to get less weighted parameters. 
The output was reshaped to generate primary capsule output vectors, which comprise 
32-layer capsules with 10 D. The output vectors were squashed using the squash-ing fea-
ture because the primary capsule layer was fully connected to the tomato capsule layer. 
A small epsilon value was applied to the squash function to avoid the vanishing gradient 
problem during training. Then, the output of the squash function was fed to the tomato 
capsule layer.

2.5  Capsule network (CapsNet) stage

The classification method for the resulting feature vectors from the pruning feature 
stage was conducted in this stage. The features from the first stage were remembered 
and reused in the second process. The second target task began as soon as the features 
were extracted. CapsNet was used and built on it because it is thought that the features 
extracted from a CNN trained dataset on a specific dataset could be helpful for another 
dataset with a similar issue. The CapsNet weights were updated and pretrained to pro-
duce vectors of the output feature extracted from this network that was transferred to 
the subsequent layers, called the primary capsule (PC) and dense capsule layers.

Fig. 2 a Feature extraction after the first layer, b feature extraction after the second layer, c and feature 
extraction after the third layer
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The PC layer comprises a convolutional layer taken after by a reshaping layer that 
reconfigures the excretory tensor into the capsule chain. In this layer, a dynamic routing 
algorithm was implemented.

The output of the capsules was passed through an activation function called “squashing,” 
which was then passed on to the dense capsule layer to obtain a vector of the output feature 
of 16 dimensions of each class. With the L2 criterion, the output class was chosen as the 
target class. The margin loss Lc was the cost function or optimized error loss function in 
the capsules for each class C and vector class vc. A multiclass classification allowance was 
calculated for binary cross-entropy. Equation (5) was used to calculate the weights to com-
pute the cost function:

where Tc = 1 corresponds to a class c image; otherwise, Tc = 0. During the experiments, 
m+  = 0.9 and m−  = 0.1 were used. The “λ” gives a value = 0.5 and helps in stopping the 
initial learning values from reducing the classes’ overall output vectors. The total loss for 
each class is equal to the sum of all losses as introduced by Mamidibathula et al. [61].

2.6  Adam optimizer

The expected value of a random variable to the power of n is called the N-th moment of 
that variable. It can be expressed as follows in Eqs. (6–15):

where m is the moment, and R is the random variable.
The method that computes adaptive learning rates for every attribute is Adaptive 

Moment Estimation (Adam). Adam calculates exponentially moving averages based on the 
gradient of a current minibatch to estimate the moments. It preserves an exponential decay 
average of past squared gradients vt in addition to an exponentially decaying average of the 
past gradient mt . The mean is the first moment, and the uncentered variance is the second.

where mt and vt Are the estimates of the gradients’ first moment (the mean) and the sec-
ond moment (the uncentered variance). The default values for β1 and β2 are 0.9 and 0.999, 
respectively.

Adam enabled DL practitioners to significantly improve the optimization of existing algo-
rithms over regular and stochastic gradient descent.

(5)LCo = TComax
(

0, mr+ − ||VCo||
)2

+ �(1− TCo)max
(

0, ||VCo|| − mr−
)2

(6)mn = E
[

Rn
]

(7)mt = β1mt−1 + (1− β1)gt

(8)vt = β2vt−1 + (1− β2)g
2
t

(9)mt = ϕ1mt−1 + (1− ϕ1)Gt

(10)Vt = ϕ2Vt−1 + (1− ϕ2)G
2
t
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where m and v are moving averages, G is the gradient on the current minibatch, and ϕ is 
the new algorithm hyperparameters introduced. The properties form and v are needed 
because they are estimates of the first and second moments:

The adjustment for these biases is obtained by computing bias-corrected estimates 
for the first and second moments as follows:

These bias-corrected estimates are then used to update the parameters, similar to 
Adadelta and RMSprop, resulting in the Adam update rule for updating weight:

where w is the model weights and is the step size.

3  Experimental results: discussion and analysis
3.1  Dataset description
The plant disease images of tomatoes were used as the dataset for this work. It consists 
of 70,834 images of diseases and healthy tomato leaves’ plants, 58,122 plant disease 
leaves for training and 12,712 images for testing. The images represent the tomatoes’ 
leaf diseases in the leaves and the healthy tomato leaf. However, the dataset is char-
acterized by distinguishing images taken at different angles and backgrounds. The 
dataset contains 10 categories: two-spotted spider mite, target spot, tomato mosaic 
virus, yellow leaf curl virus, bacterial Spot, early Blight, late Blight, leaf mold, sep-
toria leaf spot, and healthy leaves. Table 1 shows the 10 class labels with the trained 
and tested numbers. Figure 3 shows the samples of 10 tomato leaf images offering the 
most common leaf diseases. The experimental results were obtained using tensor flow 
and Keras with GPU Google Colab environment. The two main experiments for this 
work are demonstrated as follows:

3.2  Experiment I: architecture without the capsule layer

In this experimental scenario, the proposed network architecture consists of three stages 
of convolution layers with “ReLU” activation function and max pooling, followed by 
two fully connected layers and finally a classification layer with “Soft-max” activation 
function.

(11)E[mt ] = E[Gt ]

(12)E[Vt ] = E
[

G2
t

]

(13)m̂t =
mt

1− ϕt
1

(14)V̂t =
Vt

1− ϕt
2

(15)wt = wt−1 − β
m̂t

√

V̂t+ ∈
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Table 1 The 10 class labels for tomato leaf image diseases and the trained and tested samples

Class number Class Number of training 
samples

Number 
of testing 
samples

1 Two-spotted spider mite 5364 1340

2 Target spot 4496 1120

3 Tomato mosaic virus 1196 296

4 Yellow leaf curl virus 17,144 2484

5 Bacterial spot 6808 1700

6 Early blight 3200 800

7 Late blight 6109 1524

8 Leaf mold 3048 760

9 Septoria leaf spot 5668 1416

10 Healthy 5089 1272

Total 58,122 12,712

Fig. 3 Samples of 10 classes of the tomato diseases image dataset
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Figure 4 shows training and testing accuracy, and Fig. 5 shows the confusion matrix 
indicating the testing classification accuracy of 92.87%. As shown in Fig.  4, using 250 
epochs, both accuracy and loss function were determined. It also shows the increase in 
the accuracy to achieve 92.87% and the decrease in the loss of 0.255. It can be observed 
from Fig. 5 that 92% of class 1 means that the two-spotted spider mite disease was cor-
rectly classified, 62% of class 2 means that target spot disease was correctly classified, 
and so on. In this experiment, the healthy leaves of the tomato plant were 98% correctly 
classified.

3.3  Experiment II: simple CapsNet architecture with three convolutional layers

To improve the accuracy of the recognition process for tomato leaf disease, this 
experiment was initially conducted using a simple CapsNet architecture with three 

(a) (b)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

-------- Training Acc.
----- Test Acc.   
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Training and Test Loss

Fig. 4 a Training and testing accuracy for Experiment-I without CapsNet, and b training loss and testing loss 
for Experiment-I without CapsNet

Fig. 5 Experiment-I’s confusion matrix of the 10 class labels representing tomato leaf diseases
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layers as proposed by Sabour et  al. [40]. Because spots on the leaf surface identify 
tomato diseases and the location of this point varies from disease to disease, the cap-
sule examination was expected to give the best results because it is concerned with 
the spatial relationship features of the image (as mentioned earlier).

Following up on the results, it was discovered that the results were unstable: may 
be very high, may reach 100% or very weak, and may reach 40% or less. Thus, the 
network architecture was modified to obtain stable performance with high accuracy. 
By applying the proposed architecture based on CapsNet (illustrated in Fig.  1), the 
network architecture consists of three stages of convolution layers with “ReLU” acti-
vation function and max pooling, followed by two fully connected layers and finally 
CapsNet, CapsNet consisted of primary and tomato capsule layers.

The execution of this model was accomplished using an Adam optimizer with a 
0.00001 learning rate, the dimension of the capsules in the PC layer was 10, the number 
of capsules in tomato capsule layers was 16, the number of routine iterations was 4, and 
the overall epochs of training was 250. Using CapsNet helped determine the location 

Fig. 6 Visual representation of the plant diseases (a) Bacterial spot disease, and (b) Leaf mold disease
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Fig. 7 a Training and testing accuracy for Experiment II with CapsNet, and b training and testing loss for 
Experiment II with CapsNet
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of the infection within the plant leaf, where the type of disease varies according to the 
location of the infection. Figure 6 shows the visual representation of the capsule layer for 
bacterial spots and leaf mold diseases.

The experimental results indicated that the training and testing accuracies were more 
stable and higher than previous results. As shown in Fig. 7, the proposed architecture’s 
accuracy was 96.39%, with a minimum loss function of 0.221. Moreover, the confu-
sion matrix for 10 classes was determined, and each class contained 10 leaf images of 
tomato diseases. As investigated in the confusion matrix, a significant enhancement was 
achieved compared with a traditional CNN demonstrated in Experiment I. For example, 
99% observed for healthy tomato leaf images were correctly classified, as shown in Fig. 8.

3.4  Performance evaluation and discussions

Five evaluation indexes were used in the classification problem: accuracy, precision, 
recall, F1-score, and confusion matrix. These indexes were used to evaluate the proposed 
approach’s predictive ability. Accuracy is defined as the ratio of correct predictions to 
total predictions, expressed as a percentage. It was calculated using Eq. (16). Precision is 
a factor that calculates a model’s ability to predict values for a specific category correctly, 
and it was measured using Eq.  (17). Recall measured the fraction of accurately catego-
rized positive patterns. This was determined using Eq. (18). The weighted average of pre-
cision and recall was the F1-score. The macro standard was used to measure the accuracy, 
recall, and F1-score’s overall results. By mapping expected outputs over actual outputs, 
the confusion matrix is a table that is commonly used to explain the performance of a 
classification model on a test set for which the correct values are known [58, 59].

Table 2 illustrates the five evaluation measures for the proposed model with CapsNet. 
From Fig. 1, it was ensured that when compared to the traditional CNN model (without 
CapsNet), the proposed model gave a better performance without CapsNet. Addition-
ally, as shown in Table 3, how much the proposed model outperforms previous works 
were compared. Although Abbas et  al., [48] achieved higher accuracies 97.11%, than 
the proposed method. They utilized CGAN algorithm with DensNet121 by which the 

Fig. 8 Experiment-II’s confusion matrix of the 10 class labels representing tomato leaf diseases
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Table 2 The performance measurement results for the traditional CNN architecture and the 
proposed model with CapsNet

Class number Ordinary architecture without CapsNet Proposed model with CapsNet

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

1 92.00 82.60 92.30 87.18 97.00 82.40 96.60 88.94

2 62.00 68.00 61.60 64.64 59.00 73.10 58.80 65.17

3 78.00 80.90 77.60 79.22 74.00 91.70 74.40 82.15

4 74.00 82.70 74.50 78.39 69.00 96.70 69.30 80.74

5 69.00 82.00 69.00 74.94 88.00 81.70 88.10 84.78

6 81.00 78.00 81.10 79.52 90.00 84.70 90.40 87.46

7 84.00 75.00 83.90 79.20 83.00 82.90 82.90 82.90

8 96.00 95.80 95.50 95.65 98.00 95.60 97.80 96.69

9 79.00 95.90 79.10 86.69 86.00 95.50 85.80 90.39

10 98.00 89.90 98.10 93.82 99.00 91.80 98.80 95.17

Table 3 A comparative study of the proposed architecture compared with previous work for 
tomato disease recognition

Researchers Methodology Dataset 
specification

Class labels Accuracy

Mokhtar et al., 2015 
[45]

Support Vector 
Machine (SVM)

The 200 infected 
tomato leaf images 
dataset includes two 
different yellow leaf 
curl diseases

Two Yellow Leaf 
Diseases

90.00%

Brahimi et al., 2017 
[47]

Using CNN com-
pared with shallow 
models and hand-
crafted features

The dataset contains 
14,828 images for 
nine diseases

4032 Yellow Leaf 
Curl Virus
1. 325 Mosaic Virus
2. 1356 Target Spot
3. 1628 Spider Mites
4. 904 Leaf Mold
5. 1723 Septoria 
Spot
6. 1781 Late Blight
7. 952 Early Blight
2127 Bacterial Spot

94.53%, and 95.46%

Sardogan et al., 
2018) [44]

CNN model and 
Learning Vector 
Quantization (LVQ) 
algorithm

The dataset with 400 
leaf images for train-
ing and 100 images 
for testing the fol-
lowing diseases

Healthy
Bacterial Spot
Late Blight
Septoria Spot,
Yellow Curved

86.00%

Zhang et al., 2018 
[60]

CNN and the 
applied transfer 
learning algorithms 
for Resnet, Alexnet, 
and GoogleNet

The dataset contains 
5550 images for 
Health and other 
eight diseases 
included

Early Blight,
Yellow Leaf Curl 
Disease,
Yellow Leaf Curl 
Virus,
Leaf Spot,
Leaf Mold disease,
Mosaic Virus,
Late Blight,
Two-spotted Spider 
Mite

96.51%

Foysal et al., 2020 
[46]

CNN The dataset has 600 
input images, 100 
for each class, and 
six class leaf diseases

Healthy
Bacterial Spot
Late Blight
Septoria Spot,
Yellow Curved
Spider Mites

76.00%
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Table 3 (continued)

Researchers Methodology Dataset 
specification

Class labels Accuracy

Abbas et al., 2021 
[48]

Conditional Gen-
erative Adversarial 
Network (C-GAN) 
with DenseNet121 
model

PlantVillage dataset 
contains ten catego-
ries of diseases with 
16,012 images

Tomato Yellow Leaf 
Curl Virus
Tomato Bacterial 
Spot
Tomato Late Blight
Tomato Septoria leaf 
spot
Tomato Two Spot-
ted Spider Mite
Tomato Target Spot
Tomato Early Blight
Tomato Leaf Mold
Tomato Mosaic Virus
Tomato healthy

DenseNet, C-GAN
97.11%

Atila et al., 2021 [49] EfficientNet PlantVillage dataset 
contains 39 plant 
leaf diseases and 
10 class labels of 
tomato leaf images
The number of 
tested images of 
tomatoes was 500 
leaf images

Tomato Bacterial 
Spot
Tomato Early blight
Tomato Late blight
Tomato Leaf Mold
Tomato Septoria leaf 
spot
Tomato Spider mites
Tomato Target Spot
Tomato Yellow Leaf 
Curl
Tomato mosaic virus
Tomato healthy

Average accuracy 
99.00%

Chowdhury et al., 
2021 [50]

EfficientNet and 
modified U-net

PlantVillage dataset 
contains 16,485 
images with ten 
class labels

Healthy
Early Blight
Septoria Leaf Spot
Target Spot
Leaf Mold
Bacterial Spot
Late Bright Mold
Tomato Yellow Leaf 
Curl Virus
Tomato Mosaic Virus

Accuracy 99.17%

Tan et al., 2021 [51] KNN
SVM
RF
AlexNet
VGG16
ResNet34
EffeicientNet
MobileNetV2

Ten class labels of 
PlantVillage dataset 
with 1591 healthy 
and 5357 infected 
tomato images

Bacterial Spot
Early Blight
Late Blight
Leaf mold
Septoria leaf spot
Two-spotted spider 
mite
Target spot
Tomato mosaic virus
Tomato yellow leaf 
curl virus
Health

Accuracy
KNN = 82.10%
SVM = 91.00%
RF = 82.70%
AlexNet = 92.70%
VGG16 = 98.90%
ResNet34 = 99.70%
EfficientNet = 98.90%
Mobile-
NetV2 = 91.20%

Proposed Architec-
ture

Traditional CNN and 
Capsule Network-
based Adam 
optimizer

The dataset contains 
10 categories;
Trained images
• 58,122
Tested images
• 12,712
The total number of 
images
• 70,834

Two-spotted Spider 
Mite,
Target Spot,
Tomato Mosaic 
Virus,
Yellow Leaf Curl 
Virus,
Bacterial Spot,
Early Blight,
Late Blight,
Leaf Mold,
Septoria Leaf Spot
Healthy Leaves

Traditional 
CNN = 92.87%
Capsule network 
accuracy = 96.39%
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dataset augmentation for synthetic images is performed on the PlantVillage dataset with 
16,012 images. Furthermore, Atila, [49] achieved higher accuracy than the proposed 
model; they used the limited number of tested images representing the 39 classes 1950 
images for all kinds of plants and only 500 tested tomato leaf images. To get more reli-
able findings, they need to expand their dataset by considering the plant diversity and 
the number of classes.

The proposed model used a dataset of 70,834 images (for training and testing) for 10 
different tomato leaf diseases and did not use any pre-train models.

4  Conclusion and future work
In this paper, we proposed an effective and robust architecture based on the opti-
mized Capsule Neural Network (CapsNet) for the classification and recognition of dif-
ferent tomato leaf diseases. Our methodology focused on detecting common diseases 
that affect the surface of plant leaves using images captured by drones. To validate the 
performance of the proposed CapsNet approach, we utilized a large-scale dataset com-
prising 70,834 images and compared it with traditional Convolutional Neural Networks 
(CNNs). The proposed architecture successfully addressed the limitations associated 
with traditional CNNs, such as unstable results and slight performance decrease. By 
leveraging the advantages of CapsNet, our approach achieved an accuracy of 96.39% 
with a minimum loss rate of 0.221, outperforming the traditional CNN approach, which 
achieved an accuracy of 92.87%. This significant improvement in accuracy highlights the 
effectiveness of CapsNet in accurately identifying and classifying ten different tomato 
leaf diseases, including two-spotted spider mite, target spot, tomato mosaic virus, yellow 
leaf curl virus, bacterial spot, early blight, late blight, leaf mold, septoria leaf spot, and 
healthy leaves.

In future research, we plan to utilize unmanned  aerial vehicles (UAVs) to collect 
plant leaf images, enabling more efficient and comprehensive monitoring of diseases. 
The collected images will undergo various preprocessing and transformation stages 
to handle the complexities introduced by the drone’s background. Additionally, we 
recommend expanding the scope of this study to include different types of plants and 
investigate additional features that can effectively represent diseases in plant leaves. 
By addressing these challenges, we aim to contribute to the development of early 
disease management strategies and overcome one of the fundamental challenges in 
ensuring food quality measurements.

(16)Accuracy =
Number of accurate predictions

Total number of prediction

(17)Precision =
particular category predicted correctly

all category predictions

(18)Recall =
Category was correctly predicted

All real categories
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Abbreviations
CNN  Convolutional Neural Networks
CapsNet  Capsule Network
UAV  Unmanned aerial vehicles
KNN  K-nearest neighbor
SVM  Support vector machine
DL  Deep learning
LVQ  Learning vector quantization
EffecientNet  Efficient networks
ReLU  Rectified linear unit
Adam  Adaptive moment
RF  Random forest
CGAN  Conditional generative adversarial network
VGG  Visual geometry group version 16
ResNet  Residual network
MobileNetV2  Mobile NETWORKS
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