
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Waseem et al. 
EURASIP Journal on Image and Video Processing         (2023) 2023:14  
https://doi.org/10.1186/s13640-023-00614-z

EURASIP Journal on Image
and Video Processing

Multi-attention-based approach 
for deepfake face and expression swap 
detection and localization
Saima Waseem1*  , Syed Abdul Rahman Syed Abu‑Bakar1, Zaid Omar1, Bilal Ashfaq Ahmed2, Saba Baloch1 and 
Adel Hafeezallah3 

Abstract 

Advancements in facial manipulation technology have resulted in highly realistic 
and indistinguishable face and expression swap videos. However, this has also raised 
concerns regarding the security risks associated with deepfakes. In the field of multi‑
media forensics, the detection and precise localization of image forgery has become 
essential tasks. Current deepfake detectors perform well with high‑quality faces 
within specific datasets, but often struggle to maintain their performance when evalu‑
ated across different datasets. To this end, we propose an attention‑based multi‑task 
approach to improve feature maps for classification and localization tasks. The encoder 
and the attention‑based decoder of our network generate localized maps that high‑
light regions with information about the type of manipulation. These localized features 
are shared with the classification network, improving its performance. Instead of using 
encoded spatial features, attention‑based localized features from the decoder’s 
first layer are combined with frequency domain features to create a discrimina‑
tive representation for deepfake detection. Through extensive experiments on face 
and expression swap datasets, we demonstrate that our method achieves competi‑
tive performance in comparison to state‑of‑the‑art deepfake detection approaches 
in both in‑dataset and cross‑dataset scenarios. Code is available at https:// github. com/ 
saima waseem/ Multi‑ Atten tion‑ Based‑ Appro ach‑ for‑ Deepf ake‑ Face‑ and‑ Expre ssion‑ 
Swap‑ Detec tion‑ and‑ Local izati on.
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1 Introduction
Deepfake techniques have recently achieved significant success due to advances in gen-
erative models [1–5]. These techniques empower individuals with the ability to manipu-
late facial features within an image, resulting in the creation of forged faces. The current 
approaches have the capability to generate high-quality fake content that appears indis-
tinguishable from real media to the human eye. Numerous instances of deepfake have 
been exploited, particularly in politics and pornography [6, 7]. This misinformation has 
caused people to worry about fraud and credibility issues in society. Face (identity) and 
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expression swap are two well-known forms of deepfake face manipulation. Expression-
swap or re-enactment techniques enable the transfer of expressions from one person to 
another while keeping the original subject’s identity unchanged. In contrast, identity or 
face swap involves replacing the face of one person with the face of another individual 
[8]. A well-designed facial expression can effectively convince others to agree with some-
one’s perspective without any verbal communication, and with a deepfake face swap, it 
becomes possible to portray an individual’s physical presence in a particular location 
where they were not actually present. To effectively combat these deepfakes, the devel-
opment of robust and reliable face forgery forensics is important to ensure the integrity 
and ethical standards of multimedia content.

Existing deepfake detection techniques typically frame deepfake as a binary clas-
sification task. These approaches heavily rely on deep neural networks (DNN) [9–17]. 
Nevertheless, some researchers have explored alternative techniques [18–21] utilizing 
hand-crafted features for deepfake detection. However, with the rapid development of 
deepfake synthesis techniques [4, 22, 23], the performances of hand-crafted approaches 
are not satisfactory [8]. A common approach among DNN methods involves extract-
ing video frames and using a convolution neural network (CNN) with a fully connected 
layer for classification. However, these methods overlook correlations between distant 
positions by focusing on information within each receptive field. As a result, they rely 
on superficial correlations to differentiate between real and manipulated images. Due to 
the independent and evenly distributed training-test split, these simplified patterns have 
a random probability of being effective on unseen test sets, making them susceptible to 
overfitting. Consequently, their effectiveness is limited to the manipulation methods 
they were explicitly trained on, and these approaches exhibit significant performance 
decline when detecting unseen face manipulations. To address this limitation, recent 
deepfake detection algorithms have incorporated the concept of the attention mecha-
nism into CNNs [24] to enhance both within-dataset and cross-dataset performance by 
expanding the areas of local image features. Different manipulation methods, such as 
face swap and expression swap, have unique characteristics and patterns of manipula-
tion, as shown in Fig. 1. These variations in forgery patterns pose a challenge in main-
taining similarity among each manipulation method, which may result in overfitting and 
a decrease in overall performance [25].

Fig. 1 Illustration of deepfake face swap and expression swap manipulations along with the corresponding 
localization maps generated by the proposed approach. The localization maps emphasize the specific 
regions on the face that have undergone manipulation
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Recent deepfake generation techniques, like GANs, often employ encoder–decoder 
architectures in their generators. The decoder incorporates an upsampling design to 
enlarge the feature maps generated by the encoder, resulting in a colorful image. How-
ever, this upsampling process hinders GAN models from accurately reproducing the 
spectral distributions of real training data [13, 26]. Consequently, fake images exhibit 
distinct artifacts in their frequency spectrum, which can be exploited to differentiate 
them from real images [13]. These frequency-related artifacts are commonly observed 
in various deepfake manipulations, especially in scenarios that involve compression 
where spatial information is significantly degraded [27].

We hypothesize that by appropriately assessing an image’s spatial and spectral 
information, the network can effectively focus on critical regions for decision-mak-
ing. Here, we propose an attention-based multi-task learning technique that effec-
tively integrates spatial and spectral information to classify the facial images as real or 
fake, while simultaneously localizing modified regions within the face, specifically in 
deepfake facial manipulation subcategories, i.e., face swap and expression swap (face 
re-enactment), depicted in Fig. 2. Accurate localization of manipulated regions is vital 
in multimedia forensics for a comprehensive understanding of deepfake forgeries, 
as high-resolution localization maps provide valuable insights into the specific type 
of manipulation employed. To address this, we introduce a simple attention-based 
learning technique to localize potential areas of manipulation. Explicitly localizing 
these manipulated regions through an attentional mechanism provides two benefits: 
it suppresses irrelevant information, directing the network’s attention to manipulated 
areas, thereby avoiding disruptions and improving the network’s understanding of 
modified regions.

Our experimental results demonstrate that the proposed attention-based manipu-
lation localization and detection technique significantly improves performance in 
within-dataset and cross-dataset evaluations. Experimental results on popular deep-
fake datasets, such as FaceForensics++ [28], CelebDF [8], and DFDC-P [29] dem-
onstrate the competitive performance of our approach compared to state-of-the-art 
methods. Our contributions can be summarized as follows:

• We present the image features learning scheme at local and global levels using a 
dual attention mechanism (spatial and channel) by jointly integrating convolutional 
encoder and decoder features to localize pixel-level image forgeries.

Fig. 2 Overview of deepfake detection problem
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• Our proposed model demonstrates robustness for both cross-dataset and within-
dataset evaluations by effectively combining frequency and localized spatial features.

2  Related work
This section provides a concise overview of prior research relevant to detecting and 
localizing deepfakes.

2.1  Manipulated detection

One common deepfake detection approach is to treat a video as a sequence of still 
images and perform operations on them. Various techniques have been explored, 
such as capturing unique low-level camera features to detect fake faces [30], estimat-
ing inconsistencies in head pose [19], and utilizing flaws in eye-blinking patterns and 
other facial features for deepfake classification [18, 31]. However, these methods are not 
effective in detecting advanced deepfake manipulation techniques. Several deep neu-
ral network-based solutions have been developed to differentiate between real and fake 
faces. These include MesoNet [12], Capsule Network [10], XceptionNet [32], Efficient-
Net [33], F3 Net [16] and GocNet [17]. Various features, such as spatial, steganographic, 
and temporal features [14, 15, 34, 35], as well as frequency dependent cues [36], multi-
scale Laplacian of Gaussian (LoG) operator [11], and motion features with a fine-grained 
weighting of inter-class distances [37] have been investigated for deepfake detection. 
Despite these efforts, challenges persist in detecting realistic deepfakes. Sun et al. [38] 
introduced Dual Contrastive Learning (DCL) approach to analyze real and fake paired 
data for deepfake detection. Multi-attention Deepfake Detection (MaDD) [24] presented 
a framework that captures artifacts using multiple attention maps. However, it lacks 
strong supervision and struggles to identify minor forgery traces in quality-degraded 
videos. Wodajo et al. [39] combined vision transformers with CNNs (CViT) to capture 
local and global features from face images, but at the cost of increased computational 
complexity due to a high number of parameters. Hua et al. [40] proposed an interpret-
able model for fake face detection by establishing a patch-channel correspondence that 
provides evidence for fake face detection. However, this approach faces limitations in 
quantifying the degree of interpretability and optimizing the patch-channel correspond-
ence because of strong channel correlation and computational complexity.

2.2  Forgery localization

In addition to classification, certain techniques are specifically designed to focus on 
localizing the manipulated regions. Nguyen et  al. [41] utilized a multi-task learning 
strategy with a Y-shaped architecture to simultaneously locate modified video regions 
and detect manipulation. Li et al. [42] presented an X-ray approach for faces to detect 
boundaries around manipulated face regions. However, this method relies on external 
training data and has lower performance when image quality varies, such as compres-
sion or blurring, which can affect the detection of boundary traces. Liu et al. [43] intro-
duced an automated machine-learning approach for deepfake detection and localization, 
reducing the need for manual network design. Dang et al. [44] proposed supervised and 
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weakly supervised strategies for estimating image-specific attention maps to localize 
manipulated regions in face images. However, this approach is sensitive to compression. 
Therefore, it is crucial to prioritize robust localization of the manipulated regions to 
address the impact of compression. Our goal is to achieve consistent forgery localization 
even when image quality is compromised at different levels. Using pixel-level localiza-
tion, our approach aims to improve the generalization performance of deepfake detec-
tion. Unlike previous methods focusing on spatial features, our approach simultaneously 
learns spatial features and frequency-related patterns.

By effectively incorporating spatial and spectral information, we developed a multi-
task learning approach to classify facial images as real or fake and to localize modified 
regions in the face. For manipulation localization, we introduce an attention-based 
encoder–decoder architecture that integrates semantic information extraction. Our 
approach uses an attention-based U-Net architecture with frequency features in the 
detection stream, resulting in improved classification performance. To the best of our 
knowledge, this is the first study to use U-Net with a spatial and channel-specific atten-
tion mechanism for detecting and localizing face manipulations.

3  Proposed method
In contrast to single-objective approaches, our method utilizes attention-based locali-
zation and classification networks to generate the probability of an input image being 
forged or real and simultaneously provide localized maps highlighting manipulated 
regions within each input video frame, as shown in Fig. 3. The proposed model operates 

Fig. 3 Illustration of the pipeline used in the proposed method for detecting and localizing deepfake facial 
manipulation. Face image and its spectral (FFT) representation are used as input
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on a tuple dataset denoted as H = (Ai,Bi,Di, yi)
N
i=1 , where Ai ∈ R

H×W×3 represents 
a 2D image of a face, Bi ∈ R

H×W×1 corresponds to the reference input mask for each 
fake face type, which includes the face swap mask that covers the entire face area and 
the expression swap mask, representing the facial structure as shown in Fig. 6. Di is the 
spectrum coefficient in the frequency domain, and yi ∈ (0, 1) serves as a label indicating 
whether the input Ai has been manipulated or not. The subscript i represents data points 
from the face and frequency spectrum dataset. Our main objective is to train a model to 
determine whether a test image has been manipulated and, if so, to what extent. Local-
izing the modifications in facial images requires focusing on the specific regions affected 
by each type of manipulation. Thus, for Facial Manipulation Localization (FML), we use 
a dataset {(Ai,Bi)}

N
i=1 , while for Facial Manipulation Detection (FMD), we utilize a data-

set of tuples {(Di, yi)}
N
i=1 . To classify manipulated images by combining attention-based 

spatial and spectral information from two network streams, we replace Global Average 
Pooling with Bilinear Pooling (BP).

3.1  Facial manipulation localization (FML)

We propose Residual U-Net with spatial channel attention block (scAB) to focus on 
the face regions for deepfake localization during the learning process. In our approach, 
the encoder directly receives the input image, and during the decoding phase, both the 
encoder and the features from the preceding layer decoder undergo processing through 
the scAB to generate decoder features, as illustrated in Fig. 3. At each skip connection 
of Residual U-Net, we employ the scAB to dynamically learn the location and semantic 
information.

Given an image Ai passed through the network to produce encoder features 
fe ∈ R

C×H×W  , and decoder features fd ∈ R
C×H×W  , here, C, H, and W correspond to 

the feature map’s channel count, height, and width, respectively. ScAB generates spatial 
attention map SAM ∈ R

1×H×W  and channel attention map CAM ∈ R
C×1×1 using the 

encoder fe and decoder features fd as depicted in Fig. 4. The spatial attention block (sAB) 
directs the model’s attention toward relevant deep spatial structures. On the other hand, 
the channel attention block (cAB) acts as a bridge, closing the semantic gap between 
the encoder and decoder features by incorporating extra contextual information into the 
lower-level encoding features, thereby enhancing the overall understanding of the data.

The SAM(fe, fd) is computed by applying the Average Pooling and Max Pooling along 
the channel dimension of fe and fd . The resulting maps are summed-up and passed 
through a sigmoid function.

(1)SAMe(fe) =f v×v
1 ([(fe)

s
avg, (fe)

s
max])

(2)SAMd(fd) =f v×v
1 ([(fd)

s
avg, (fd)

s
max])

(3)SAM(fe, fd) =σ(SAMe(fe), SAMd(fd)
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The convolution operation is represented as f v×v
1  with a filter of 7× 7 size, and the 

sigmoid function is denoted as σ . The low-level encoder features possess valuable spa-
tial details but lack semantic information. Combining low-level encoders with high-level 
decoders without considering semantic differences can adversely affect the localization 
results. To improve fusion effectiveness, we integrate semantic concepts into low-level 
features using convolutional feature inter-dependencies. This is accomplished through 
the CAM technique, which facilitates meaningful feature discrimination [45].

To calculate CAM(fe, fd) , we employ Average Pooling and Max Pooling techniques to 
reduce spatial information in both encoder and decoder features, as inspired by [46]. 
Subsequently, these compressed features are passed through N Dense layer with u units. 
It is essential to note that u varies for each Dense layer. The Dense layer operation is 
responsible for detecting channel dependencies and producing squeeze channel atten-
tion maps. The individual output attention maps CAMe(fe) and CAMd(fd) are then com-
bined using element-wise summation. The resulting sum undergoes C1 convolutions, 
followed by a sigmoid function, to obtain the final CAM representation. In summary, the 
computation of CAM(fe, fd) is as follows:

Fig. 4 Illustration of Spatial Channel Attention Block (scAB) and attention block for frequency spectrum 
features
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The input encoder layer features are enhanced by multiplying them with the scAB 
output, effectively incorporating the benefits of both SAM and CAM. This process is 
depicted in Fig. 4.

The element-wise multiplication operation ⊗ is applied to preserve the spatial and chan-
nel dimensions of the input feature map in both SAM and CAM. The refined features Fr , 
and the decoder features fd are concatenated and passed to the convolutional layer to 
build the decoder features for the next layer.

3.2  Facial manipulation detection (FMD)

To improve image quality, common upsampling techniques are employed in auto-
encoders [47] or GANs [26]. These techniques increase the pixel dimensions verti-
cally and horizontally by a factor of m, utilizing the low-resolution encoded image 
as input. By leveraging the property of Discrete Fourier Transform (DFT), Odena 
et  al. [48] discovered that adding insignificant zeros to a low-resolution image is 
equivalent to overlaying multiple spectra of the low-resolution image onto the high-
frequency region of the resulting high-resolution image. This discrepancy causes the 
frequency spectrum of deepfake images to deviate from real images, making them 
distinguishable [13]. To extract forgery features in the frequency domain, we employ 
a two-dimensional Fast Fourier transform (2D FFT) on the input image Ax

i  , result-
ing in the spectrum representation Di . The backbone network generates a convolu-
tional feature map ff ∈ R

H×W×C using Di as input. To direct the network’s attention 
towards discriminative regions for classification, ff  is processed through an atten-
tion block, as illustrated in Fig. 4.

The output of the attention block is element-wise multiplied with the ff  features, result-
ing in the refined feature map Frefinedf .

Once the frequency feature map Frefinedf  is obtained, these features are then com-
bined with the spatial features Fd1 from the first decoder layer of the U-Net. Fd1 
contains manipulation-aware features compared to the spatial features from the 
encoder’s last layer. We utilize Bilinear Pooling (BP) to capture the comprehen-
sive representation of these features. Bilinear Pooling merges features of different 

(4)CAMe(fe) =f uN ((fe)
c
avg)+ f uN ((fe)

c
max),

(5)CAMd(fd) =f uN ((fd)
c
avg)+ f uN ((fd)

c
max),

(6)CAM(fe, fd) =σ(F1×1
c1

(CAMe(fe)+ CAMd(fd))).

(7)Fr = fe SAM(fe, fd) CAM(fe, fd)

(8)fatt =φ(ff )

(9)Frefinedf =ff
⊗

fatt
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dimensions and offers improved expressiveness compared to concatenation or ele-
ment-wise product-based methods. Bilinear Pooling is computationally efficient and 
competitive with the best feature fusion strategies [49]. In the BP block, features 
from Fd1 and Frefinedf  are fused to compute the class probability.

3.3  Loss function

Four different loss functions, L1, L2, dice loss, and focal loss have been evaluated for 
manipulation localization network. L1 and L2 losses are commonly used in regres-
sion tasks, while dice loss and focal loss are typically utilized in classical segmentation 
tasks. Our findings show that L2 and L1 losses outperformed the segmentation losses, 
suggesting that the regression losses are more suitable for localized maps. Table  4 
compares results using different loss functions. In addition, we combined U-Net with 
the classification network for training and employed binary cross-entropy loss. The 
overall loss is the weighted sum of the two activation losses, i.e., localization and clas-
sification loss:

The two weights ( ρclass, ρlocalize) are set to 1. This is because classification and localiza-
tion tasks are equally important.

4  Experimental setup
4.1  Implementation details and evaluation settings

For all real/fake video frames, we employ MTCNN [50] to detect and crop the face 
region, saving the aligned facial images as inputs with a size of 224 × 224. ResNet 
[51] is used as a backbone network to extract spatial and frequency features. The 
model is trained using Adam optimizer [52] with an initial learning rate (LR) of 
1e−4 , β1 = 0.9 , β2 = 0.999  epsilon = 1e−08 , and epsilon = 1e−08 . After 30 epochs, 
if the network does not improve, the learning rate drops to LR× 0.1 . We train our 
models on NVIDIA GeForce RTX-3060 Ti GPUs with batch size 16. We used vari-
ous data augmentation techniques to prevent overfitting and encourage the model to 
learn identity-independent features rather than solely focusing on face recognition. 
These techniques include flipping, rotating, contrast change, adding Gaussian noise, 
and compression to simulate diverse scenarios. In order to evaluate the efficacy of our 
suggested method, we utilize well-established metrics for detecting deepfakes. These 
metrics include Accuracy (Acc), which is used for assessing the performance of the 
model within the FaceForensics++ [28] dataset, as demonstrated in studies by [12, 
51, 53–55]. Additionally, we employ area under the ROC curve (AUC) for evaluating 

(10)Lcomb = ρclassLclass + ρlocalizeLlocalize.

Table 1 Summary of face and expression swap datasets

Manipulation Method Dataset

Face swap Deepfake and FaceSwap CelebDF, DFDC‑P, 
FF++ (DF, FS), 
DFD

Expression swap Face2Face and Neural‑Textures FF++ (F2F, NT)
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the model’s performance across CelebDF [8], DFD [56], and DFDC-P [29] datasets, as 
shown in previous research by [10, 12, 16, 17, 28, 33, 37, 41, 57]. Finally, we also use 
Mean Intersection over Union (mIoU) for further evaluation. To ensure fair compari-
sons with other techniques, we calculate average metric scores for all frames within a 
video.

4.2  Datasets

We evaluated our proposed method on four benchmark datasets: FaceForensics++ 
[28], Celeb-DF [8], DFD [56], and DFDC-P [29], as summarized in Table 1. 

1 FaceForensics++ (FF++) [28]: The dataset consists of 1000 original YouTube vid-
eos and 4000 fake videos generated using four manipulation algorithms: Deepfake 
(DF), FaceSwap (FS), Neural Textures (NT), and Face-to-Face (F2F). To ensure a bal-
anced representation of real and fake data, 30 frames were selected from each fake 
video and 120 frames from each original video. Two different qualities of the dataset 
were used for training and testing: high quality (HQ) with a moderate compression 
ratio of 23 (C-23) and low quality (LQ) with a higher compression ratio of 40 (C-40). 
Higher compression results in lower video quality. The FF++ dataset now includes 
FaceShifter (FSH) face swapping videos, consisting of 10,000 fake videos created by 
manipulating real videos from the FF++ real videos.

2 Deepfake Detection Challenge-Preview (DFDC-P) [29]: The dataset includes 4113 
face swap deepfake videos alongside 1131 original footages.

3 Celeb-DF [8]: This dataset contains 590 original videos and 5,639 fake face swap vid-
eos.

4 Deepfake Detection Dataset (DFD) [56]: Google and Jigsaw contributed to the data-
set, which includes 363 real videos and over 3600 face swapped deepfake videos.

5  Results
5.1  Forgery detection results

We performed both inner and cross-data evaluations for the proposed approach. The 
training and testing sets were sourced from the same dataset for inner-dataset evalu-
ation. In contrast, the cross-dataset evaluation involved training and testing on differ-
ent datasets.

5.2  Inner-dataset evaluation

This section presents a comparison between our methods and established state-
of-the-art techniques using an inner-dataset evaluation. Extensive research has 
been conducted on the task of deepfake detection [58]. Only methods trained on 
FF++ HQ (C-23) and tested on FF++ LQ (C-40) were considered for this com-
parison. Frame-level results on the FF++ dataset are reported for fair comparisons. 
Table  2 summarizes the accuracy results of different state-of-the-art detectors. The 
reported results for [12, 51, 53–55] are directly cited from [12] and [28]. Our pro-
posed method achieves comparable or superior performance compared to the current 
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state-of-the-art approaches for low compression. Specifically, our approach demon-
strates improved performance on Deepfake (DF) and Neural-Texture (NT) manipu-
lations in both high-quality (C-23) and low-quality (C-40) videos. Our proposed 
solution shows slightly lower accuracy for F2F and FS manipulations. Despite the 
existence of ADD [43], and Multi-Task [41] approaches for localizing manipulation 
regions, our method outperformed them.

This shows that improved results are possible even for compressed video by combin-
ing frequency and spatial domain information, suggesting that frequency spectrum fea-
tures are resilient to compression. Highly compressed videos often exhibit poor quality, 
leading to the weakening of several frequency components. The performance enhance-
ment from the attention block at both the spatial and frequency backbones helped to 
prioritize features with higher classification importance. We evaluated the trained mod-
el’s performance on the FaceShifter dataset and obtained an accuracy of 95.88% for C-23 
and 89.88% for C-40 compressed videos. Figure 5 shows the ROC results for inner data-
set evaluation on the FF++ dataset.

5.3  Cross-dataset evaluation

Generalization ability is a key indicator of algorithm superiority, often evaluated through 
a cross-dataset evaluation. However, it is more practical to evaluate across datasets 
because it is often difficult to determine which modification approach was used for the 
test data.

This section focuses on the framework’s adaptability to unseen datasets during train-
ing, highlighting its transferability through cross-dataset evaluation. To evaluate the 
proposed method’s transferability and enable fair comparisons, we trained it on FF++ 
with multiple manipulations and conducted tests on CelebDF [8] and DFDC-P [29]. 
Table 3 provides a comparison of AUC values with state-of-the-art face forgery detec-
tion methods.

Our method outperformed the most recent approaches in terms of AUC on the 
DFDC-P dataset and also performed well on Celeb-DF. In conclusion, CNN-based 
approaches [10, 12, 16, 17, 28, 33, 37, 41, 57] predominantly emphasize local features 
within facial images, lacking global information for comprehensive enhancement. As a 
result, these methods exhibit limited transferability when cross-evaluated on DFDC-P 
and Celeb-DF datasets. Moreover, CViT approach [39], which employs the convolutional 

Fig. 5 ROC curves illustrating the classification performance on (HQ—C‑23) and (LQ—C‑40) compression 
qualities from the FF++ dataset
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vision Transformer (ViT), experiences a decline in performance for inner-dataset evalu-
ation on FF++ as compared to other state-of-the-art techniques [11, 16, 17, 24, 33, 37, 
38, 43]. On the other hand, the recent state-of-the-art model MaDD [24] demonstrates 
relatively competitive performance in both within-dataset and cross-dataset evaluations 
compared to earlier approaches. In particular, our approach achieved a 4% higher AUC 
(area under the curve) compared to the highest reported approach, MesoNET [12], in 
evaluating the DFDC-P dataset. This improvement can be attributed to our method’s 
emphasis on the input image’s frequency and spatial components. While the two-branch 
[11] approach showcased superior transferability on the CelebDF dataset, our method 
outperformed it on DFDC-P dataset performance.

5.4  Manipulation localization results

The dual attention block scAB combines encoder and previous layer decoder features at 
each skip connection of ResU-Net. This integration allows the model to learn discrim-
inative image features for manipulation localization while disregarding irrelevant pix-
els, as shown in Fig.  6. In training the proposed model, inverted FF++ ground truth 
masks are employed as input for fake and real faces. The inversion process involves rep-
resenting the manipulated area with black pixels, while the real, unmanipulated area is 
depicted as white pixels as shown in Fig. 6. This inversion technique enhances the visu-
alization of the model’s predictions, as it distinctly highlights the regions where the face 
is manipulated.

As depicted in Fig. 1, facial expression modification usually occurs in regions such as 
the eyes, lips, and eyebrows. In deepfake face swap, all facial attributes except hair and 
ears are replaced. Figure  6 displays localized maps for original and fake images, dem-
onstrating the model’s effective learning of fake facial regions and accurate localization 
of potential manipulation pixels in each sample. The network maintains exceptional 
localization capabilities across all layers, particularly in accurately localizing the mouth, 
eyebrows, and eyes for expression changes. The network effectively localizes the facial 
region that has been transferred to the target image in face swap scenarios. In evaluating 
the face manipulation localization network, we examined four different loss functions 
using both original and fake images from the FF++ dataset for training and testing. The 
accuracy results, presented in Table 4, demonstrated that regression losses (L1 and L2) 
outperformed traditional segmentation losses in accurately localizing real and fake faces.

Next, we conduct a comparative analysis between our model and other approaches 
that utilize multi-task learning to enhance generalization capabilities. These approaches 
include LAE [62] and Multi-Task [41], and ADD [43]. These methods simultaneously 
perform forgery localization and classification. Following the same experimental setup 
as these methods, we train our model on the F2F (HQ) dataset and evaluate its effective-
ness on both the F2F (HQ) and FS (HQ) datasets to measure its cross-dataset perfor-
mance. The reported statistics for the competing methods can be found in the respective 
papers. As depicted in Table 5, our proposed method demonstrates better performance 
over the approaches [41, 43, 62] for cross-dataset evaluation.

To evaluate the impact of augmentation on analyzing unseen test sets, we trained 
our model on the FF++ (HQ) dataset comprising (DF, FSH, and real videos) with and 
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Table 3 Comparison of AUC (%) for cross‑dataset evaluation on CelebDF [8] and DFDC‑P [29], 
including results of other methods cited from [11, 24, 37, 38, 60, 61]

Bold values indicate the best performace against the specfic dataset in each column

Method FF++ CelebDF DFDC-P

Two‑stream [30] 70.10 53.80 61.4

MesoNET [12] 84.70 54.80 75.3

HeadPose [19] 47.3 54.6 55.9

VA‑MLP [18] 66.4 55.0 61.9

FWA [57] 80.10 56.90 72.7

Xception‑raw [28] 99.70 48.20 49.9

Xception‑C23 [28] 99.70 65.30 72.2

Xception‑C40 [28] 95.50 65.50 69.7

Capsule [10] 96.60 57.50 53.3

Multi‑task [41] 76.30 54.30 53.6

Two‑branch [11] 93.18 73.41 64.0

F3Net [16] 98.10 65.17 70.1

EfficientNet [33] 99.70 64.29 70.12

Sun et al. [38] 99.3 64 69

GocNet [17] 97.55 67.43 –

ADD [43] 91.71 66.48 –

CViT [39] 91.08 63.60 67.3

MaDD [24] 99.80 67.44 67.1

FakePoI [37] 94.7 61.2 72.5

Proposed method 97.78 68.25 79.10

Fig. 6 First and second row from each deepfake manipulation type (DF, FS, FSH, NT, F2F) show the original 
images and manipulated ones, respectively. Third row shows the ground truth masks, while the bottom row 
represents the predicted mask from our proposed approach
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without data augmentation. Subsequently, we assessed the model’s performance on the 
DFDC-P dataset. To showcase the effectiveness comprehensively, we conducted tests on 
both the DFDC-P(real) and DFDC-P (fake) datasets, as presented in Table 6. The table 
showcases the effectiveness of augmentation in improving cross-data performance. The 
first row, labeled “w-aug”, corresponds to the training approach with augmentation, 
while the second row, labeled “w/o-aug”, refers to training without data augmentation.

Upon analyzing the evaluation results within the dataset in Table 2 and the cross-data 
assessment results in Table  3, noticeable performance variations are observed among 
unseen datasets. This substantiates the challenges posed by the distribution gap between 
the seen and unseen datasets regarding generalization accuracy. Our future study will 
focus on exploring additional features, such as background context or voice, to examine 
if they can contribute to further reducing the generalization gap. In particular, we will 
investigate the potential of incorporating a limited amount of data from unseen datasets 
for fine-tuning the model.

6  Ablation study
We independently performed ablation experiments for each localization and detection 
branch with different network configurations to assess the effectiveness of each compo-
nent in the proposed approach.

Table 4 Comprehensive evaluation of localization loss functions on FF++ dataset

Loss-function ACC (Fake) % ACC (Real) %

Dice‑loss 83.79 88.75

Focal‑loss 87.78 89.30

L1 90.16 93.63

L2 93.77 95.45

Table 5 Facial manipulation localization performance in terms of accuracy on Face2Face and 
FaceSwap datasets with high video quality

Bold values indicate the best performace against the specfic dataset in each column

Method F2F (HQ) FS (HQ)

Multi‑task [41] 92.8 54.1

LAE [62] 90.9 63.2

ADD [43] 98.33 67.02

Proposed method 94.43 70.04

Table 6 Localization network cross‑data evaluation on DFDC‑P with and without augmentation

Training approach ACC (Fake-DFDC-P) % ACC (Real-
DFDC-P) 
%

FF++(DF, FSH, Real)w−aug  61.98 59.24

FF++(DF, FSH, Real)w/o−aug  53.73 52.98
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6.1  Deepfake manipulation detection network

We quantitatively assessed the significance of the detection model’s component in 
understanding the detection efficiency of the proposed network. We compared the out-
put from (a) the detection branch trained with only frequency domain features, (b) the 
detection branch using features from the frequency and spatial domain with no ScAB 
block, and (c) a combination of both frequency and spatial domain with ScAB block. To 
show this, all models are trained on FF++ (HQ) and evaluated on FF++ (LQ) and DFD 
datasets.

In contrast to combining information from the spatial and frequency domains, we find 
that employing features from the frequency domain alone does not yield satisfactory 
results. One should not discard all spatial information and depend solely on frequency 
domain parameters for classification. Instead, combining both domains boosts perfor-
mance considerably. A simple hard combination of features from both domains using 
a Bilinear Pooling layer enhances the performance. However, in this case, there is no 

Fig. 7 The detection performance of different features on FF++ and DFD datasets. ID1 only uses frequency 
domain features, ID2 uses spatial and frequency domain features without a ScAB block, and ID3 includes a 
ScAB block

Table 7 Component analysis on the proposed detection branch for the high‑quality (HQ), low‑
quality (LQ) FF++, and DFD datasets. Each component is gradually incorporated and evaluated to 
compare the ACC (%) results

ID Frequency 
features

Spatial features SCAB FF++ (C-23) FF++ (C-40) DFD

1 � 87.62 82.23 60.22

2 � � 92.50 89.33 72.91

4 � � � 97.33 92.50 76.49
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information about the manipulation location on the face, giving limited room for infor-
mation flow between both domains.

We used input from the first decoder layer with ScAB block to show the impact of 
integrating pixel-wise forgery localized spatial information with frequency domain fea-
tures. This permits only the altered spatial pixels to be shared with the detection branch 
rather than features from the entire face, thereby learning a better optimal combination 
of shared representations from both feature domains. Table 7 and Fig. 7 illustrate that 
the optimal results for within dataset and cross datasets are achieved through the com-
bination of frequency and localized spatial domain features.

6.2  Deepfake manipulation localization network

In this ablation study, we aimed to investigate the impact of spatial and channel attention 
on the performance of the localization branch. We conducted quantitative experiments 
and provided visualization to demonstrate the importance of the ScAB block. We com-
pared the performance of three models trained with different components:

• Model-A: Localization branch with spatial channel attention block (scAB).
• Model-B: Localization branch with spatial attention block only (sAB).
• Model-C: Localization branch without any attention block (W/O AB).

Localization results from Model-A, Model-B, and Model-C on FF++ dataset
We conducted an ablation study on the localization network using FF++ (C23) and 

FF++ (C40) for training and evaluation. The results are summarized in Table  8. The 
study revealed that including attention blocks significantly improved the performance of 
the localization branch. Model-C, with no attention block, exhibited the lowest perfor-
mance. On the FF++ (C23) dataset, Model-B, relying on a spatial attention block (sAB) 
only, outperformed Model-A. However, it was observed that on highly compressed 
images from the FF++ (C40) dataset, where a substantial amount of information was 
lost due to high compression, the sAB was outperformed by ScAB. This outcome can be 
attributed to the compression affecting both local image features and their surroundings. 
The reliance of Model-A on local image features and Model-B solely on spatial attention 
to expand the areas of local image features can lead to inaccuracies in attention weights 
and mislocalizations, particularly due to the loss of crucial details in highly compressed 
images. In contrast, the scAB, capturing not only global but also contextual information 
through channel attention, proved to be especially effective for the challenging FF++ 
(C40) dataset. Consequently, Model-A achieved the highest performance on FF++ 

Table 8 Comprehensive evaluation of localization performance using AUC and mIoU metrics for all 
models on the FF++ dataset with two levels of video quality

Models FF++ (C-23) FF++ (C-40)

mIoU (%) AUC (%) mIoU (%) AUC (%)

Model‑A 85.67 95.06 82.21 93.62

Model‑B 85.79 95.94 80.01 91.20

Model‑C 80.42 93.25 74.31 90.57
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(C40). Figure  8 showcases the localization results of each model. Model-A, equipped 
with both spatial and channel attention blocks, exhibited more focused attention on 
the manipulated pixel regions, incorporating local, global, and contextual information 
through spatial and channel attention from the image. Furthermore, the localization 
results obtained with ScAB successfully highlight the forged pixels of the manipulated 
regions, even in low-quality FF++ faces. This highlights the effectiveness of ScAB in 
addressing the challenges posed by low-quality images.

7  Conclusion
This paper addresses the problem of detection and localization of faces in deepfake 
images using a multi-task learning approach. Our proposed method incorporates an 
attention mechanism to process the feature maps for both detection and localiza-
tion tasks. By enabling information exchange between these tasks, we observed an 
overall improvement in the network’s performance, particularly for unseen datasets. 
To enhance the performance and provide localization of face forgery, we introduce a 
strategy involving the combination of the encoder and preceding layer decoder with 
dual attention block scAB. This approach localizes the manipulated facial regions 
at the pixel level. Through extensive experiments on three deepfake benchmarks, 

Fig. 8 Localization results from Model‑A, Model‑B, and Model‑C on FF++ dataset
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we demonstrate that our model tends to focus on the forgery regions instead of 
unwanted biases and artifacts, leading to more accurate predictions. Furthermore, we 
empirically show that the utilization of multiple attention blocks enhances the mod-
el’s ability to localize manipulated regions. This improvement contributes to achiev-
ing state-of-the-art performance in forgery detection. With the improved visual 
quality of deepfake generated faces, the detection problem remains highly challeng-
ing, resulting in a generalization gap between training and unseen datasets created 
by other approaches. In our future research, we aim to address this generalization gap 
by combining transfer learning with additional strategies, creating a comprehensive 
framework to further narrow this disparity.
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