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Abstract 

This article presents a fast parallel lossless technique and a lossy image compression 
technique for 16-bit single-channel images. Nowadays, such techniques are “a must” in 
robotics and other areas where several depth cameras are used. Since many of these 
algorithms need to be run in low-profile hardware, as embedded systems, they should 
be very fast and customizable. The proposal is based on the consideration of depth 
images as surfaces, so the idea is to split the image into a set of polynomial functions 
that each describes a part of the surface. The developed algorithm herein proposed 
can achieve a similar—or better—compression rate and especially higher speed rates 
than the existing techniques. It also has the potential of being fully parallelizable and 
to run on several cores. This feature, compared to other approaches, makes it useful for 
handling and streaming multiple cameras simultaneously. The algorithm is assessed in 
different situations and hardware. Its implementation is rather simple and is carried out 
with LIDAR captured images. Therefore, this work is accompanied by an open imple-
mentation in C++.

Keywords: Depth image, Fast compression, Parallel implementation

1 Introduction
The massification of technologies—like 3D reconstruction, autonomous vehicles and 
robots—has increased the popularity of technologies like depth sensors. Many state-of-
the-art smartphones already come with built-in depth sensors that make 3D data freely 
available. This depth data bring new ways of interacting as more accurate data are avail-
able in real-time. Also, it has an enormous impact on 3D design and industrial applica-
tions as it is mentioned in [3], as they provide high-quality data at a high speed and with 
a low cost, enabling real-time 3D reconstruction.

The Microsoft Kinect sensor is one of the first and most popular devices for obtaining 
3D information. Multiple sensors can be used to instrument larger interactive spaces or 
to address sight line limitations of a single or multiple camera [23].

However, the newer Kinect v2 device is very CPU consuming, since, for every depth 
image, the camera sends multiple images to the PC, which are combined on the GPU. In 
order to deal with these limitations, many other devices have arisen in the market, such 
as IntelReal Sense [14] or Structure [15]. At the same time, a new generation of depth 
estimators, based on CNN inference models, like it is shown in [2] are arising, which 
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constitutes an interesting alternative to depth Cameras. Even that these methods have 
great quality, they are still not quite accurate and have high computer requirements for 
running.

All of these technologies provide their own SDK for development, but are focused on 
image capturing instead of storing. Therefore, efficient compression that exploits the 
characteristics of depth maps is still an open issue. As is well-known, there are two main 
types of compression algorithms: lossless and lossy. Lossless techniques naturally use 
original data without alteration. Although this avoids the problem of artifacts that dra-
matically impact on depth images, there are still a few lossless implementations that are 
optimized for depth images. On the other hand, popular lossy compression techniques, 
like “MP4”, are optimized for color images and do not naturally support 13bpp or 16bpp 
formats. Splitting 13-bit depth values across multiple color channels is a poor strategy. 
Errors due to lossy compression in the channel that holds the most significant bits will 
cause large artifacts to appear in the reconstructed depth image. Certain H.264 profiles 
support 14-bit color depth, and HEVC Version 2 supports 16-bit monochrome images. 
However, neither of them handles depth discontinuities appropriately, nor they require 
too much CPU effort.

This paper presents a fast technique that supports both lossless and lossy compression 
and which exploits the easiness of handling curved surfaces instead of pixels. The pro-
posal is to split the image into parallel row scans and try to approximate it with splines 
or lines. The output of such method is a list of parametric functions that represent a 
part of an object. This method achieves similar compression rates as commonly available 
lossless techniques. Yet, it runs significantly faster, making it suitable for real-time or 
latency-sensitive interactive applications that employ multiple distributed depth cam-
eras. It also supplements a residual encoding with a dictionary-based compression, such 
as the one in [4], from Facebook. Since it has the further benefit of being rather sim-
ple and open, its C++ implementation is included in a code repository. To validate the 
performance of this method, different depth-map compression scenarios are assessed 
and compared to standard 16-bit image formats. The comparison metrics used are the 
standard PSNR, compression rate and frames-per-second. This document is structured 
in four sections, as follows: Sect. 2 summarizes some of the existing works and proposals 
in the area; Sect. 3 gives a description of the proposed algorithm and its variants; Sect. 4 
displays some proofs and examples, and Sect. 5 presents the final conclusion.

2  Related works
Our eyes estimate depth by comparing the images obtained by our left and right eye. 
The minor displacement between both viewpoints is enough to calculate an approximate 
depth map. The pair of images obtained by our eyes is referred to as a “stereo pair”. This, 
combined with our lens with variable focal length and our general experience of “seeing 
things”, allows us to have seamless 3D vision.

When engineers and researchers understood this concept, they tried to emulate 
the way our eyes work in order to extract depth information from the environment. 
There are numerous approaches that lead to the same outcome based on the following 
strategies:
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• Dual camera technology: some devices have two cameras which are separated by a 
small distance, and compute depth using stereo-paired inference;

• Dual pixel technology: in this case, each pixel comprised two photodiodes, which are 
separated by a very small distance (less than a millimeter). Each photodiode receives 
the image signals separately, and then analyzes them as a stereo-image pair. Google 
Pixel 2 uses this technology;

• IR sensors: the first version of Kinect used an infra-red (IR) projector to compute 
depth. A pattern of IR dots is projected onto the environment, and a monochrome 
CMOS sensor (placed a few centimeters away) receives the reflected rays. To pro-
duce depth information, the difference between the expected and received IR dot 
position is calculated;

• Laser sensors: LIDAR systems fire laser pulses at the objects in the environment and 
measure either the flight time or the time the pulses take to get reflected back. These 
systems additionally measure the change in laser pulses’ wavelength, providing accu-
rate depth information.

IR captured images tend to have blurry edges, while Lidar images tend to retain the 
objects’ contours. As many new devices are using laser-based sensors, our tests will 
focus on them. To sum up, nowadays several of these sensors are used synchronously. 
Some companies like [13] offer 3D reconstruction solutions based on several depth 
scanners connected to a local PC. When this process cannot be performed locally, there 
are various considerations to be taken. Streaming multiple cameras through the network 
will be limited by the bandwidth; for example, transmitting the full HD-color image from 
a single Kinect sensor at video rate will require more than 1.4 Gbps network bandwidth. 
The high-quality JPEG compression (Q = 50) bandwidth required for 30.7 Mbps (30 Hz) 
allows for multiple cameras on a typical 1 Gbps local area network.

More sophisticated video compression techniques—such as H.264 or HEVC—can 
reduce this bandwidth requirement dramatically, since hardware encoders are com-
monly available on modern GPUs. As could be inferred from Intel’s Site [14], their pro-
posal is for a small network of Raspberry PI to handle multiple cameras. Their idea is 
to use a Raspberry to control each camera and produce streaming, as can be seen in 
Fig. 1. In Intel’s work, a stream of 1 frame-per-second is reached, which is relatively low. 
However, it is assured that leveraging better compression algorithms will allow for more 
USB3 camera modes to be reliably supported. Novel software and hardware 3D-com-
pression schemes are being continuously published, what calls for closer evaluation. The 
above-mentioned work also highlights the importance of sharing 3D data with a wider 
audience for education and research purposes.

Kinect depth images are smaller and can be sent through a local area network at video 
rates (30 Hz) without compression. Having a 512 × 424 resolution and a 13-bit-pixel size 
would require 104 Mbps. In theory, a 1Gbps network can support seven cameras, both 
for RGB and depth. In general, networks are WIFI-based, so they do not usually reach 
theoretical bandwidth. Saturating a network in this way could add latency to each image 
transmission.

Compressing the depth image may allow for the possibility of having more cam-
eras, reducing latency, and leaving network bandwidth available for other payloads. 
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Unfortunately, all commonly available lossy image compression techniques seem to 
adversely affect the geometric interpretation of depth images. For example, a lossy com-
pression can result in the appearance of unacceptable artifacts in depth discontinuities, 
such as near the edges of objects.

2.1  Existing methods

Most of the previous works that focused on Kinect depth-image compression use lossy 
techniques. One of the approaches is based on adapting existing video codecs. The 
authors of [23] propose a novel transformation of depth image data that minimizes the 
impact of lossy compression when packing 16-bit depth image values into three channels 
for H.264 and VP8 codecs. This technique suffers from noise generation and depth dis-
continuities. In the work of [16], the use of lossless compression on the most significant 
bits of the depth image, and the use of H.264 to encode the remaining bits are evaluated.

While existing lossy video compression techniques are not aware of contours, input 
depth image data may be pre-processed in certain ways to minimize the appearance of 
artifacts around edges [21]. Another approach to depth-image compression is to address 
the geometrical interpretation of depth-image data in the compression technique. 
In [12], for example, its authors approximate the scene as a series of planar surfaces, 
whereas geometrical wavelets are used in [18] to model surfaces in depth images. Mean-
while, [6] proposes an extension to HEVC so it can support different formats. In general, 
such techniques are computationally expensive, specially in the encoding stage. Even 
though some of the proposed techniques address the problem of edge artifacts by explic-
itly modeling contours in the depth image, like in [9] these techniques also require too 
much computational effort. Besides, there are still several issues to overcome as depth 
compression remains an open challenge.

3  Methods
There are a few published lossless—or nearly lossless—depth-image compression 
techniques. The proposal of [12] is probably the one that mostly resembles this pre-
sent work since its authors combine plane segmentation with run-length encoding 
schemes to achieve a lossy compression. Our proposal is focused on speed, but also 

Fig. 1 Network configuration for handling several depth cameras
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on keeping reasonable good-quality reconstructions after encoding. As images rep-
resent a scene, a row of such image is part of the object’s surface, similar to an iso-
surface. Our idea is to treat each depth image row separately and to describe it as a 
set of polynomial functions.

This schematic is presented in Fig. 2 where the RGB color picture is also presented. 
On the right, the depth is represented using pseudo-color (red is far, blue is close). 
Down, it is shown the real-time pipeline, with corresponding parameters. The dic-
tionary for fast compression, as we will explain later, is generated off-line.

The proposed “lossy” algorithm evaluates each pixel in a sequential way, from left to 
right. If the gradient between consecutive pixels is low, it is enqueued into a vector of 
numbers called “spline”. In other cases, it is assumed that the pixel belongs to a differ-
ent object, so a new vector is allocated. After visiting all pixels, each separated spline 
is evaluated in order to find the parameters of the function that best fits the elements.

The algorithm is supposed to be implemented using parallel technology. For this 
purpose, we have a memManager that handles the process memory, as it is explained 
in the next section. Following that same idea, the proposed “Polynomial lossy fit” 
algorithm is presented below.

Fig. 2 Encoding pipeline (top). Schematic (bottom) step-by-step algorithm



Page 6 of 17D’Amato  EURASIP Journal on Image and Video Processing          (2023) 2023:5 

For each spline, a polynomial regression model in a gen-
eral form is used as a fitting function. This could be expressed as 
yi = β0 + β1xi + β2x

2
i + · · · + βmx

m
i + εi (i = 1, 2, . . . , k) . The vector of estimated poly-

nomial regression coefficients is obtained using the “ordinary least squares estimation”. 
In our case, m is the amount of elements in each spline i, and n the exponential coeffi-
cient used. When n is small and fixed, this could be solved in almost constant time. Once 
all the necessary splines are evaluated, a final step—computing residual—is performed. 
In this step, the difference between estimation and real image is stored in a separated 
structure.

3.1  Compute residual and quantize

Unlike color information, depth is characterized by large smooth regions with very 
abrupt transitions. Preservation of these sharp edges during encoding process is crucial 
for applications that utilize depth information. In the literature, several approaches have 
been proposed for encoding depth images/videos. All methods aim at preserving edges 
while coding smooth regions with a minimum cost.

Our method tends to create more differences around the objects’ edges. 
There is a difference between the original sampled depth frame and the esti-
mated one; this is called residual. In our case, residual is computed as 
residuali,row = framei,row − evaluate(spline, i, row) , where i is the current pixel of the 
corresponding row in the image. The residual is stored in the same spline that describes 
the original pixel. This residual is finally stored using a linear fixed quantization (divid-
ing each element by a constant). In future versions, an adaptative quantization could be 
used.

3.2  Differential encoding for lossless compression

In case a lossless compression is required, a similar procedure is carried out. Basically, 
instead of approximating the object’s surface by a curve, the idea is to store only the first 
element of a sequence, and then store the differential element. Its corresponding algo-
rithm is shown below.
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A Threshold 128 is taken in order to encode the difference with an 8-bit value, what 
initially leads to lower memory requirements. As it was already mentioned about quan-
tization, an adaptative solution could result in better encoding.

3.3  Parallel memory management

One of the major challenges of parallel implementation is the handling of simultaneous 
memory allocation that comes from multiple threads, as mentioned in [10] and in [7]. In 
general, every time a new variable needs to be allocated, the memory manager is locked 
until it organizes the heap.

In the proposed method, the amount of “splines” needed for encoding the image is 
unknown at first. Therefore, the splines need to be created dynamically, leading to lower 
CPU performance. In order to reduce the time required for structures to be created, we 
have proposed the use of a pre-allocated scheme, as shown in Fig. 3.

Fig. 3 Mem allocation scheme
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At the beginning, the system estimates and allocates a fixed number of memory chunks 
that hold spline data. Such number is empirically computed from several previous algo-
rithm runs with different depth images. In practice, this number is about 1/8 of the total 
amount of pixels.

Once the encoding begins, each new “spline” structure created is handled by the “mem-
Manager” class. Within this class, an atomic semaphore is implemented, which controls 
the current index of available structures. The manager returns the pointer to the available 
memory chunk. Then, the structure is marked as used, as shown in Fig. 3. As the atomic 
operation entails the increasing an index—regardless of how many threads make the call at 
the same time—no bottleneck arises.

Once an image is completely encoded, the whole data vector is marked as “available”, and 
is prepared for another encoding.

3.4  Lossless compression configuration

In order to get the best compression rate, the final step is to apply a dictionary-based 
compression algorithm. (This step could also be applied in lossy compression.) In our 
implementation, the open source library of [4] is used. This library has an outstanding 
decompression rate, but it is not very fast for compression.

In order to reach a high framerate, our proposal is to train this algorithm with several 
compressed images using our algorithm to generate a default dictionary file with existing 
library tools. Later on, during encoding—in case this step is enabled—this computed dic-
tionary is used. As can be seen in Fig. 4, some tests were run to validate this configuration. 
These figures show the time required for each frame and the resulting stream size in kbytes 
after compression (lower is better in both cases).

As it can be observed, using this pre-trained dictionary really improves the speed (it is 
faster) and the compression size (output is smaller) in both cases. For the upcoming sec-
tions, the best configuration described is used for any test that enables this encoding.

4  Results and discussion
In order to compare the proposed methods of compression, six different depth inner 
sequences, captured with a realSense L515 Lidar Camera, were generated. Each sequence 
was composed of 150 frames of 1024 x 768 resolution. At the same time, we used a dataset 
from [5] which contained a set of an office room captured with a RealSense D415 sensor 
(called scene 7) and a dataset from [11] (scene 8) that has 640 x 480 images captured with 
structured Kinect sensor V1.

All of them were indoor scenes with different characteristics: from a person in front of 
the camera to part of a kitchen room. For measuring the quality of the encoding/decoding 
method, the peak signal-to-noise ratio (PSNR) was used. The PSNR, that has also been pro-
posed in most of other related works, is defined as 1:

where d is the bit depth of pixel, W is the image width, H is the image height, and p[i, j], 
p′[i, j] is the ith-row jth-column pixel in the original and compressed image, respectively.

(1)PSNR = 10 log10
(2d − 1)2WH

W
i=1

H
j=1(p[i, j] − p′[i, j])2

,



Page 9 of 17D’Amato  EURASIP Journal on Image and Video Processing          (2023) 2023:5  

Moreover, the compression rate—as the comparison between the original size and the 
one resulting after applying the method—was also used. The third metric used was the 
frames-per-second that can be reached while encoding.

In addition to our implementation, the same sequences were compressed using an 
intra-coded mode of JPEG2000 coding standards, both in lossless and lossy modes. The 
PNG format, which is one of the fastest formats, was used. Finally, Jasper libraries were 
used for JPEG2000 [8]. All tests were run strictly on CPU.

4.1  Encoding residual

First of all, the resulting bitrate was evaluated in sample scenarios by adding residual 
encoding. In this case, the quantization parameter was varied and a lossless compres-
sion on the residual data was applied. In all cases, an evaluation was done on both, 

Fig. 4 Comparison with and without dictionary
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the linear (N = 2) and the cubic (N = 3) fit version shown in Fig. 5. The idea was to try 
to choose the best encoding configuration.

As it was expected, the cubic fit (N = 3) tended to work with higher quality and less 
residual size than the linear fit (N = 2). In the following section, also a higher expo-
nent (N = 5) was also tested.

Fig. 5 Bitrate comparison with different fit parameters
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4.2  Performance evaluation with different hardware

With regard to performance, the different algorithms were run in different hard-
ware configurations. Two main configurations were used. The next section shows the 
impact of parallelism in each case:

• Intel i7 9300 with 16GB RAM laptop
• Raspberry PI 4 with 4GB RAM.

Both devices were tested with 100 frames, and the average times were obtained. Fig-
ure 6 shows the different cores each hardware has to exploit parallelism.

The Raspberry hardware has a lower clock rate of 1.1 GHZ, compared to the Intel 
9300, which has a peek rate of 3.1 GHZ. As expected, this comparison allowed us to 
observe how the average time fell as the number of parallel threads increased. The 
Raspberry hardware has only 4 physical cores, which means it cannot accelerate more 
than it already does. On the CPU, an average of 60 FPS was obtained for encoding 
with tops of 100 FPS. In contrast, the Raspberry reached an average speed of 6 FPS, 
with a top of 7 fps.

4.3  Lossless compression comparison

The lossless version of the algorithm was applied to the proposed cases. In Table 1, 
the performance comparison of compression rates is presented with respect to the 
above-mentioned methods. Each metric used is the average of what was obtained 
from the entire sequence. A sample picture of each scene is also shown.

As it can be observed, the performance of the depth-coding algorithm showed 
better outcomes than the other methods. The key is to choose a good compression 
library. No deeper analysis was carried out.

Fig. 6 Performance comparison with different cores
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Table 1 Lossless compression rate

Name Ours PNG J2K Sample

Scene 0—kitchen 12.2% 29.8% 36.0%

Scene 1—empty wall 21.4% 27.9% 23.6%

Scene 2—box 22.1% 28.5% 25.0%

Scene 3—object 23.2% 29.5% 26.0%

Scene 4—animation 33.2% 44.5% 39.3%

Scene 5—closer animation 24.4% 36.5% 27.8%

Scene 6—market 6.6% 30.1% 31.1%

Scene 7—office [5] 5.9% 23.5% 27.7%
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4.4  Lossy compression comparison

At a later stage, the same scenes were processed using the lossy approach with several 
configurations. The algorithm was configured to fit different polynomial of degree 
N, N = 2 (linear), N = 3 (cubic) and N = 5. The method variant was evaluated only by 
applying fitting (basic) and encoding residual with ZSTD compression. Residual was 
quantized using a 128 factor. All of these results are presented in Table 2.

For comparing the lossy version, the linear combination of SPEED, compression 
RATE and PSNR was used (best results are shown bolded), keeping the lower values 
at their best. It was observed that, in homogeneous scenes (like 1, 2, 3 and 8), the 
JPEG2000 format tends to work better than our algorithm. In all other cases (scenes 
0, 4, 5, 6 and 7), our algorithm worked better in producing a better reconstruction 
quality (PSNR) and a minimal compression rate.

Table 1 (continued)

Name Ours PNG J2K Sample

Scene 8—assorted [11] 14.0% 44.0% 44.9%

Table 2 Compression rate

J2K Basic Residual

Q85 Q95 N = 2 N = 3 N = 5 N = 2 N = 3 N = 5

scene0 Rate 15.5% 20.4% 17.3% 18.1% 19.0% 13.6% 14.2% 15.1%

PSNR 49.00 57.90 50.39 56.36 57.27 54.38 57.49 58.16

scene1 Rate 4.7% 6.5% 7.2% 7.5% 7.8% 5.6% 5.6% 6.1%

PSNR 53.00 61.00 51.70 59.62 59.91 52.33 60.22 60.52

scene2 Rate 5.1% 7.1% 7.9% 8.5% 9.1% 6.4% 6.7% 7.4%

PSNR 52.00 60.70 52.32 59.14 62.00 54.49 59.79 62.00

scene3 Rate 5.6% 7.8% 9.6% 10.3% 10.9% 8.1% 8.3% 8.9%

PSNR 51.60 60.05 45.00 56.40 57.74 51.74 58.20 59.01

scene4 Rate 9.6% 12.8% 11.6% 13.2% 14.8% 11.5% 11.6% 13.0%

PSNR 49.00 58.00 40.45 52.66 54.54 48.12 54.46 55.73

scene5 Rate 2.5% 3.9% 3.5% 4.5% 5.5% 5.5% 4.8% 5.3%

PSNR 53.00 61.00 39.00 49.00 50.34 48.12 51.03 52.80

scene6 Rate 10.2% 13.7% 7.3% 8.4% 8.6% 8.2% 7.5% 8.3%

PSNR 48.00 57.00 37.25 53.93 54.20 49.73 54.86 55.62

scene7 Rate 9.6% 13.0% 7.5% 8.4% 8.6% 7.68% 7.43% 8.03

PSNR 51.00 56.00 40.09 52.68 53.20 50.78 54.50 56.13

scene8 Rate 9.2% 12.8% 20.0% 21.8% 23.6% 20.7% 19.3% 21.3%

PSNR 49.00 58.00 39.99 42.29 42.84 47.01 48.23 51.84
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4.5  Performance comparison with other methods

Table 3 shows the performance time obtained from the different algorithms, for both 
encoding (E) and decoding (D) tasks with the best hardware configuration.

In all cases, the linear fit reached top-frame rate. When residual was added, the per-
formance fell dramatically. This happened because ZSTD has a one-thread implemen-
tation. When a higher polynomial function was evaluated, the gain in quality was not 
that notable with respect to the loss of speed. Our algorithm works in an asymmetri-
cal way (since decoding is about 10 times faster than encoding). This is a good feature 
in algorithms of said kind, especially when decoding occurs in a low-profile hardware 
or when it is necessary to handle many cameras.

Finally, the results of scene 8 were compared to the work in [12]. Approximately, a 
20% of compression and PSNR of 40 were reached. In the same scene, authors claimed 
to have about 10% of compression with a quality PSNR of 45. Our work could not be 
exactly compared with this one since there was no implementation of such technique 
available. On the other hand, a high speed of about 110 FPS was obtained with our 
algorithm while [12] does not mention the computational effort, a critical metric for 
validation that could be used for multi-camera streaming.

5  Conclusions
A novel method, based on multiple curve fittings for encoding noisy depth images, 
was presented in this paper. The proposed depth-image method was tested on several 
scenarios and hardware configurations. The method was then compared to JPEG2000 
and PNG formats, where it achieved a better combination of compression and speed 
performance. Furthermore, the combination of the proposed depth segmentation and 
the residual coding scheme proved to outperform other similar depth segmentation 
algorithms when applied to depth compression.

Since depth cameras are very sensitive to light changes, they have several issues that 
cause a noisy image. One of the main problems is the extension of video encoding so 
that part of the information could be reused. Another one is the reduction of the num-
ber of curves, especially for planar objects. It is clear that there are still several issues to 
work on. The third problem is that the algorithm does not work well when the object 
contour is poorly limited. Particularly, this happens in depth images obtained by Struc-
tured Sensors, but not in Lidar ones. If different parameters are selected according to the 
source of image capture, the issue could be solved. Despite our best efforts—and con-
trary to earlier results—there is still more work to do in the evaluation of different cam-
eras and in many different situations. Our next work will explore the implementation of 
such methods in GPU in order to get a better speed-up and defining a unique descriptor 
for automatically parametrizing the algorithms, balancing between quality and speed.

Abbreviations
CNN  Convolutional Neural Network
GPU  Graphics processing unit
PSNR  Peak signal-to-noise ratio

Acknowledgements
To the PLADEMA Institute’s team for their infrastructure support for infrastructure supporting.



Page 16 of 17D’Amato  EURASIP Journal on Image and Video Processing          (2023) 2023:5 

Author contributions
The idea, implementation and validation of this work was carried out by the main author. The author read and approved 
the final manuscript.

Authors’ information
Mr. Juan Pablo D’Amato, PhD is a computer science researcher. He has been working for several years in topics related 
to Computer Vision and Computer Graphics and their applications. He is specially advocated to improving algorithms 
performance using new parallel strategies.

Funding
This work was partially funded by the National Agency of Scientific and Technological Promotion from Argentina (AGEN-
CIA)—PICT Start Up 2020-0005 and the National Scientific and Technical Research Institute (CONICET).

Availability of data and materials
The source code in a GIT repository for free access is shared here https:// github. com/ jpdam ato/ depth Compr ession. Also, 
several open source databases available on the Internet were used for testing the algorithms.

Declarations

Competing interests
In accordance with Springer policy and my ethical obligation as a researcher, it is hereby informed that there are no 
conflict of interests with any company or organization.

Received: 31 March 2022   Accepted: 30 March 2023

References
 1. C. Yan, B. Gong, Y.  Wei, Y. Gao, Deep multi-view enhancement hashing for image retrieval. IEEE Trans. Pattern Anal. 

Mach. Intell. (2020)
 2. A. Bozic, P. Palafox, J. Thies, A. Dai, M. Nießner, TransformerFusion: monocular RGB scene reconstruction using trans-

formers. NeurIPS (2021)
 3. J. Choe, S. Im, F. Rameau, M. Kang, I.S. Kweon, VolumeFusion: deep depth fusion for 3D scene reconstruction. In: ICCV 

(2021)
 4. M. Kucherawy (Facebook), Zstandard Compression and the ’application/zstd’ Media Type. https:// datat racker. ietf. 

org/ doc/ html/ rfc88 78 (accessed: 01.09.2021)
 5. A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, M. Nießner, Scannet: richly-annotated 3d reconstructions of 

indoor scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 58285839 
(2017)

 6. C. Yan, Y. Zhang, Z. Xu, F. Dai, L. Li, Q. Dai, F. Wu, A highly parallel framework for HEVC Coding unit partitioning tree 
decision on many-core processors. IEEE Signal Process. Lett. 21–5, 573–576 (2014). https:// doi. org/ 10. 1109/ LSP. 2014. 
23104 94

 7. B. Wang, D. Souza, M. Mesa, C.C. Chi, B. Juurlink, A. Ilic, N. Roma, L. Sousa, Highly parallel HEVC decoding for hetero-
geneous systems with CPU and GPU. Signal Process. Image Commun. (2017). https:// doi. org/ 10. 1016/j. image. 2017. 
12. 009

 8. A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG 2000 still image compression standard. IEEE Signal Process. Mag. 
18(5), 36–58 (2000). https:// doi. org/ 10. 1109/ 79. 95280 4(2001)

 9. F. Jäer, Contour-based segmentation and coding for depth map compression. Visual Communications and Image 
Processing (VCIP). https:// doi. org/ 10. 1109/ VCIP. 2011. 61159 89 (2011)

 10. Juan D’Amato, M. Vénere, A CPU-GPU framework for optimizing the quality of large meshes. J. Parallel Distributed 
Computing. 73, 1127–1134 (2013). https:// doi. org/ 10. 1016/j. jpdc. 2013. 03. 007

 11. N. Silberman, D. Hoiem, P. Kohli, R. Fergus, Indoor segmentation and support inference from RGBD Images. Euro-
pean Conference on Computer Vision (2012)

 12. S.H. Kumar, K.R. Ramakrishnan, Depth compression via planar segmentation. Multimed. Tools Appl. (2019). https:// 
doi. org/ 10. 1007/ s11042- 018- 6327-4

 13. T. Carter, 3D body scanner platform, Company site. https:// fit3d. com/ (accessed: 01.09.2021)
 14. S. Dorodnicov, A. Grunnet-Jepsen, A. Puzhevich, D. Piro, Open-Source Ethernet Networking for Intel®RealSenseTM 

Depth Cameras, Company site, https:// dev. intel reals ense. com/ docs/ open- source- ether net- netwo rking- for- intel- 
reals ense- depth- camer as (accessed: 01.09.2021)

 15. Structure SDK (Cross-Platform), https:// struc ture. io/ devel opers (accessed: 01.09.2021)
 16. W. Kim, A. Ortega, P. Lai, D. Tian, Depth map coding optimization using rendered view distortion for 3D video cod-

ing. IEEE Trans. Image Process. 24(11), 3534–3545 (2015). https:// doi. org/ 10. 1109/ TIP. 2015. 24477 37
 17. S. Shahriyar, M. Murshed, M. Ali, M. Paul, Efficient coding of depth map by exploiting temporal correlation, 2014 

International Conference on Digital Image Computing: Techniques and Applications (DICTA), 1–8, (2014) https:// doi. 
org/ 10. 1109/ DICTA. 2014. 70081 05

 18. M. Yaghouti Jafarabad, V. Kiani, T. Hamedani, A. Harati, Depth image compression using geometrical wavelets, 2014 
6th Conference on Information and Knowledge Technology, 117–122, (2014),  https:// doi. org/ 10. 1109/ IKT. 2014. 
70303 44

https://github.com/jpdamato/depthCompression
https://datatracker.ietf.org/doc/html/rfc8878
https://datatracker.ietf.org/doc/html/rfc8878
https://doi.org/10.1109/LSP.2014.2310494
https://doi.org/10.1109/LSP.2014.2310494
https://doi.org/10.1016/j.image.2017.12.009
https://doi.org/10.1016/j.image.2017.12.009
https://doi.org/10.1109/79.952804(2001)
https://doi.org/10.1109/VCIP.2011.6115989
https://doi.org/10.1016/j.jpdc.2013.03.007
https://doi.org/10.1007/s11042-018-6327-4
https://doi.org/10.1007/s11042-018-6327-4
https://fit3d.com/
https://dev.intelrealsense.com/docs/open-source-ethernet-networking-for-intel-realsense-depth-cameras
https://dev.intelrealsense.com/docs/open-source-ethernet-networking-for-intel-realsense-depth-cameras
https://structure.io/developers
https://doi.org/10.1109/TIP.2015.2447737
https://doi.org/10.1109/DICTA.2014.7008105
https://doi.org/10.1109/DICTA.2014.7008105
https://doi.org/10.1109/IKT.2014.7030344
https://doi.org/10.1109/IKT.2014.7030344


Page 17 of 17D’Amato  EURASIP Journal on Image and Video Processing          (2023) 2023:5  

 19. J. Lei, S. Li, C. Zhu, M. Sun, C. Hou, Depth coding based on depth-texture motion and structure similarities. IEEE Trans. 
Circ. Syst. Video Technol. 25(2), 275–286 (2015). https:// doi. org/ 10. 1109/ TCSVT. 2014. 23354 71

 20. S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. Chou, R. Cohen, M. Krivokuća, S. Lasserre, L. Zhu,  J. Llach, K. 
Mammou, R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. Tourapis, V. Zakharchenko, Emerging MPEG standards 
for point cloud compression, IEEE J. Emerg. Sel. Top. Circ. Syst. https:// doi. org/ 10. 1109/ JETCAS. 2018. 28859 81 (2018)

 21. M.M. Duch, J.R. Morros, J. Ruiz-Hidalgo, Depth map compression via 3D region-based representation. IMultimed. 
Tools Appl. 76, 13761–13784 (2017). https:// doi. org/ 10. 1007/ s11042- 016- 3727-1

 22. S. Mehrotra, Z. Zhang, Q. Cai, C. Zhang, P. Chou, Low-complexity, near-lossless coding of depth maps from kinect-
like depth cameras, IEEE 13th International Workshop on Multimedia Signal Processing, 1–6, https:// doi. org/ 10. 
1109/ MMSP. 2011. 60938 03 (2011)

 23. Y. Morvan, Acquisition, compression and rendering of depth and texture for multi-view video. Nano Letters - NANO 
LETT (2009). https:// doi. org/ 10. 6100/ IR641 964

 24. V. Delaitre, J. Sivic, I. Laptev, Learning person-object interactions for action recognition in still images, Adv. Neural Inf. 
Process. Syst. (2011)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TCSVT.2014.2335471
https://doi.org/10.1109/JETCAS.2018.2885981
https://doi.org/10.1007/s11042-016-3727-1
https://doi.org/10.1109/MMSP.2011.6093803
https://doi.org/10.1109/MMSP.2011.6093803
https://doi.org/10.6100/IR641964

	FitDepth: fast and lite 16-bit depth image compression algorithm
	Abstract 
	1 Introduction
	2 Related works
	2.1 Existing methods

	3 Methods
	3.1 Compute residual and quantize
	3.2 Differential encoding for lossless compression
	3.3 Parallel memory management
	3.4 Lossless compression configuration

	4 Results and discussion
	4.1 Encoding residual
	4.2 Performance evaluation with different hardware
	4.3 Lossless compression comparison
	4.4 Lossy compression comparison
	4.5 Performance comparison with other methods

	5 Conclusions
	Acknowledgements
	References


