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1  Introduction
The rapid progress of deep convolutional neural networks (CNNs) and generative 
adversarial networks (GANs) [1] has led to a surge of new applications in computer 
vision. Among these, facial image processing has been a popular area, including sub-
fields such as face image generation [2–4], inpainting [5–7], manipulation of expres-
sion, age and other facial attributes  [8–11]. In this paper, we address an interesting 
yet challenging task: generating the whole face image based only on image patches of 
several facial parts, as shown in Fig. 1. Many works by predecessors mainly complete 
the missing part of the face, and the missing part is often a small part of the whole 
picture; however, here is the opposite situation: we need to complete the whole por-
trait according to the very small facial part clue. Because human facial parts are the 
ultimate basic feature elements in portraits, the face image synthesis methods in this 
paper are used in a wide range of applications, such as surgical plastic effect preview, 
portrait drawing, and virtual portrait synthesis. Specifically, in actual virtual portrait 
synthesis applications, users may prefer to use the key facial organs from different 
persons to generate a realistic photo of the "desired" virtual portrait. Additionally, 
the generated fake face retains human identity information at some level, so it can be 
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used to provide fake data for training and evaluating applications such as face recog-
nition [12] and face tracking [13–15].

To the best of our knowledge, this work represents the few attempts to synthesize 
the whole face image according to the limited facial parts provided by a user. Exist-
ing work that addresses a similar but simpler problem includes methods for image 
inpainting [5–7] and for domain transformation.

Methods for domain transformation [16–18] synthesize the target domain from the 
source domain through conditional GANs. These approaches work well when there 
is a strong correlation between the two domains. However, when the source domain 
contains large missing areas, as in this case (containing only parts), these methods 
fail to discover relationships between the two domains well. Thus, they are unable to 
generate visually plausible contents for the missing regions. This is mainly because 
the large missing areas destroy the potential correlations between the two domains, 
which in turn hurts the generative performance of the model. Another relevant 
research field is image inpainting  [5–7], which aims to synthesize visually realistic 
and semantically plausible pixels for missing regions that are coherent with the other 
parts of an image. To date, a large number of image inpainting methods have emerged 
due to the rapid progress of CNNs and GANs, which formulate inpainting as a con-
ditional image generation task. These methods work well when the pixels around the 
missing area are known. However, when most of the pixels in the image are miss-
ing, there is less neighboring information for unknown areas in the image, and image 
inpainting methods fail to work well. For instance, in terms of generating the face 
image based on limited facial parts, these methods often create distorted structures 
and/or blurry textures.

To address the limitations of previous works, this paper presents a novel convolu-
tional encoder-decoder generative network to implement face synthesis conditioned 
on key facial parts. It is able to synthesize high-quality facial images even condi-
tioned on several key facial parts only. The deep network of this approach follow-
ing the typical GAN structure contains a generator and a discriminator, as shown in 
Fig.  2. The generator network is designed to automatically align the facial parts to 
the precise position in a face image to generate a complete result, while the discrim-
inator network pushes the generated results to be visually realistic. Both networks 
contain convolutional, BatchNorm [19], and ReLu layers. In addition, to mitigate the 

Fig. 1    A sketch of parts-based facial image synthesis
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loss of texture information, the generator network only decreases the image resolu-
tion twice with stride convolutions. For the training process, we propose integrating 
the reconstruction loss, the perceptual loss  [20, 21] and the adversarial loss into a 
unified framework to achieve the best result. Specifically, the reconstruction loss is 
used to generate contents in the unknown region, and the perceptual loss models the 
high-level semantic structure, eliminating structure distortion and texture inconsist-
ency of the synthesized contents. Furthermore, the perceptual loss can speed up the 
training process of the model, with fewer training steps and better results. Finally, 
the adversarial loss is employed to enhance visual authenticity and ensure that the 
model’s adversarial gaming process is ongoing.

The method in this paper performs well in face synthesis and repair and can even mod-
ify and replace facial organs. In summary, the contributions of this work are as follows:

•	 Face images are synthesized based on key facial parts. It brings the possibility of fus-
ing multiple facial organs from different persons to generate realistic virtual por-
traits, which has great application prospects in medical facial plastic surgery, portrait 
drawing of suspects or virtual anchor synthesis and implementation.

•	 Three loss functions are introduced in our approach, which are the key to making 
the synthesized realistic portraits: a reconstruction loss to generate image content 

Fig. 2  Network architecture. In the architecture, the extracted human facial parts are input into the 
generator to generate a fake face. The discriminator is used to discriminate between real and generated 
faces. Reconstruction loss and perceptual loss are obtained by comparing generated faces and real faces. 
The reconstruction loss part is shown in green and is used to train the generator. The perceptual loss part 
is represented in dark blue, and its calculation uses a pretrained VGG19 network. Finally, the orange part 
represents the adversarial loss used to train the generator and discriminator
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in an unknown region, a perceptual loss to enhance the network’s ability to model 
high-level semantic structures and an adversarial loss to ensure that the synthesized 
images are visually realistic.

•	 Comprehensive experiments are performed on the CelebA dataset  [22], and both 
qualitative and quantitative results show the promising performance of this model. 
Moreover, further validation is performed on the Cross-Age Celebrity Dataset 
(CACD) [37] and Labeled Faces in the Wild Home (LFW) [38]. Our method outper-
forms the average performance of the state-of-the-art methods.

This paper is structured as follows. In Sect. 2, several key areas related to this research 
are reviewed. In Sect. 3, the novel convolutional encoder–decoder generative network to 
synthesize facial images based only on limited facial parts is presented. Extensive experi-
mental results are presented in Sect. 4. Finally, the conclusion of this paper is presented 
in Sect. 5.

2 � Related works
In this section, we review related works from three closely related areas, namely, genera-
tive adversarial networks, image translation and image inpainting.

2.1 � Generative adversarial network

Generative adversarial networks (GANs) [1], as a special deep generative model, aim to 
model a mapping from a random vector to an image by adversarial training. A typical 
GAN consists of a discriminator and a generator. The generator is trained to generate 
fake samples from the random noise vectors. The discriminator is trained to distinguish 
between real samples and fake samples. This framework can be represented as a two-
player min–max game with value function:

where x is sampled from the real data’s distribution pdata(x), and pz(z) represents the dis-
tribution of the noise input z.

Recently, many variants of GAN have been proposed to greatly improve their perfor-
mance and broaden the application scopes. Radford et al.  [2] proposed deep convolu-
tional generative adversarial networks (DCGANs), which replace fully connected layers 
in the original GANs with the convolutional layers in both the generator and the dis-
criminator network. DCGANs optimize the network structure of the generator and 
discriminator, which can make the generator learn good representations of images 
and improve the stability in the adversarial training process at the same time. Another 
important variant is the conditional version of generative adversarial nets (CGAN) [23], 
which adds class information to the discriminator and generator to model conditional 
probability distributions. The idea of conditional image generation has also been suc-
cessfully applied to face image generation [8–11], image translation [16–18], and image 
inpainting  [5–7]. Inspired by these approaches, we propose a new GAN-based frame-
work that is able to generate face images conditioned on a small patch of facial parts. 
This framework combines three loss functions, the reconstruction loss, the perceptual 

(1)min
G

max
D

Ex∼pdata(x)[log (D(x))]+ Ez∼pz(z)[log (1− D(G(z)))],
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loss [20, 21] and the adversarial loss, which can constrain the model to generate elegant 
and accurate portraits.

2.2 � Image inpainting

Image inpainting aims to synthesize plausible contents for the missing regions in the 
image such that the completed image appears to be visually realistic. Recently, many 
image inpainting methods based on deep generative models have been proposed [5–7]. 
These methods formulate image inpainting as a conditional image generation problem, 
which synthesizes the contents of the missing regions in a convolutional end-end fash-
ion. For example, context encoders [5] first introduce generative adversarial loss to train 
deep neural networks for the image inpainting task, where the completion network is 
trained by minimizing the pixelwise reconstruction loss and the adversarial loss, which 
can produce much sharper results and avoid blurred texture. Iizuka et  al.  [6] improve 
this work by optimizing the completion network structure to introduce a global adver-
sarial loss, which further improves the coherency between generated and existing pix-
els. Nevertheless, this approach still needs to employ a Poisson blending postprocessing 
step to improve the visual effect of the completed image. Yu et al. [7] proposed a novel 
contextual attention module to capture the long-range spatial dependencies, which can 
eliminate the effect of invalid pixels in missing regions by borrowing or copying feature 
information from known regions to complete missing pixels. The methods mentioned 
above are designed for the scenario in which the pixels around the missing area are 
known. In this case, the surrounding pixels are critical to successfully generate plausible 
structures and textures for the missing regions. However, when the missing region in the 
image is large or even dominates, as in our case of generating a face image based on a 
few facial parts, these methods will not work well and tend to create distorted structures 
or blurry textures in the missing region.

2.3 � Image‑to‑image translation

Image translation, as a common image processing task, aims to translate an input image 
from a source domain to a target domain. Recently, various methods  [16–18, 24, 25] 
have been proposed to address this task due to the rapid progress of deep convolu-
tional networks and generative adversarial nets. Instead of directly optimizing the L1 
loss, which often leads to blurry images, these approaches leveraged the adversarial loss 
to encourage sharper results. For example, the “pix2pix” work of Isola et  al.  [16] first 
employs conditional adversarial networks to translate images from the source domain to 
the target domain using input–output image pairs as training data. It effectively trans-
forms Google maps to satellite views and generates object images from sketch maps. In 
contrast to using paired data, unpaired image-to-image translation frameworks [24, 25] 
have also been proposed. CycleGAN [25] and DiscoGAN [24] show promising results 
on unsupervised image translation by utilizing cycle consistency. However, when the 
source domain and the target domain are only relevant in some local areas, such as face 
generation based on a few image patches of facial parts, the source and target domains 
have strong correlations in the facial parts region, but there is little correlation in the 
other regions due to the loss of large areas in the source domain. These methods easily 
learn the relationships in the known facial part regions of the source domain. However, 
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it is difficult for them to learn the relationships outside these regions, which is prone to 
cause instability in adversarial training, thereby creating distorted structures or incon-
sistent blurry textures in these areas.

2.4 � Face completion

In Li’s article [26], the use of two independent discriminators is proposed: a local dis-
criminator for calculating the loss of the missing part of the face and a global discrimina-
tor for calculating the adversarial loss of the entire image. Then, the pixelwise softmax 
loss was used to train the generative network. As discussed by the authors, such a net-
work has a disadvantage: it does not perform well in inpainting faces that are not aligned. 
The reason is that the pixelwise losses do not capture perceptual differences between 
output and ground-truth faces. For example, moving a face a few pixels in parallel as a 
new image will still be the same person compared to the original image, but their pixel-
wise loss may be quite large. FCENet [27] continued to use the local/global discrimina-
tor structure and introduced a facial geometry estimator to infer facial part maps and 
landmark heatmaps. The RGAN [28] introduced a recurrent neural network to the GAN 
model, which can extract multiscale features and transfer them for face completion at 
different feature levels. There are many methods that are not mentioned here. By study-
ing the work of these methods, it can be found that a major challenge in face completion 
is that the missing parts will be blurred in the generated face. In the study of Jian et al. 
[29–32], the SVD method was used to enhance the face image to complete the conver-
sion of face images from low-resolution (LR) inputs to high-resolution (HR) outputs. 
The recent method of Wang et al. [33] combines a variety of losses and proposes a new 
method of face restoration, which, in addition to dividing the face part, also introduces 
the concept of identity preserving. The above methods perform well in the application of 
face completion, face hallucination and face restoration but do not take into account an 
extreme case: almost the entire portrait is missing, and only part of the face organs are 
input.

3 � Method
In this section, the proposed method for face generation conditioned on a few patches of 
key facial parts is described. The key facial part extraction, network architecture and loss 
function methods are described in detail below.

3.1 � Training data preparation

This method is required to precisely extract the facial parts to achieve facial image gen-
eration given a small patch of facial parts. To achieve this goal, first, the 68 facial key 
points are detected using dlib [34]. The facial parts mask can be obtained by connecting 
all points pairs. Then, the facial parts mask is used to extract the facial parts separately, 
as shown in Fig. 3A. When a user wants to synthesize a whole face giving these facial 
parts, the model will position these facial parts to an “average face”, where the facial parts 
are positioned in a rough position, which is used as the input of our model, as shown in 
Fig. 3B.
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3.2 � Model architecture

Given an “average face” image, the goal is to generate the whole face that is coherent with 
existing facial parts, which can be regarded as a conditional image generation problem. 
Many previous works  [5–7, 16–18] used the convolutional encoder–decoder network, 
jointly trained with adversarial networks to handle this task. The encoder contains a series 
of downsampling convolutional layers that encode the input image into a latent feature 
representation, and the decoder consists of several upsampling convolutional layers that 
decode the latent feature representation back to the original size. The more network lay-
ers there are, the stronger the learning ability, and the more information is lost through the 
process of downsampling and upsampling. To achieve a balance between the two, the gen-
erator network (encoder–decoder network) only employs two downsampling convolutional 
layers, as shown in Fig. 2, which can avoid reducing too much information. We also employ 
a series of convolutional blocks to enhance the generative ability of the model. For the dis-
criminator, the input of the network is the generated face image and the real ones sampled 
from the training datasets. As shown in Fig.  2, the discriminator consists of five down-
sampling convolutional layers and a fully connected layer, and then the output features 
of the discriminator are processed by a sigmoid function. Unlike the generator network, 

Fig. 3    Example of facial part extraction, left: input images, middle: the extracted facial parts, right: 
positioning facial parts to an “average face”

Table 1  Specification of the generator network

Each “conv.” denotes a convolutional-BatchNorm-LeakyReLu module. Each “deconv.” is followed by a BatchNorm layer. The 
last layer uses the tanh activation function

Num Type Kernel Stride Outputs

1 Input – – 3

1 Conv 5 × 5 1 64

1 Conv 3 × 3 2 128

1 Conv 3 × 3 1 128

1 Conv 3 × 3 2 256

6 Conv 3 × 3 1 256

1 Decon 3 × 3 2 256

1 Decon 3 × 3 1 128

1 Decon 3 × 3 2 128

1 Decon 3 × 3 1 64

1 Decon 3 × 3 1 3



Page 8 of 19Sun et al. EURASIP Journal on Image and Video Processing          (2022) 2022:7 

the BatchNorm layer is not used after the convolution operation. Tables 1 and 2 show the 
detailed network parameters of the generator and discriminator.

3.3 � Loss functions

To train the network to generate high-quality face images conditioned on key facial parts, 
three loss functions are jointly used: a per-pixel reconstruction loss to ensure training sta-
bility, a perceptual loss to model the high-level semantic structure for the large unknown 
regions and an adversarial loss of the generative adversarial network (GAN) [1] to improve 
the authenticity of the results.

As shown in Fig. 2, the reconstruction loss and the perceptual loss are obtained by com-
paring the generated fake faces and real faces, and they were used to train the encoder–
decoder pairs. The adversarial loss was used to train the generator and the discriminator.

Let x be the ground-truth image; the corresponding “average face” is denoted by z. Gen-
eration G takes z as the input and generates a whole face image x̃ = G(z) . We first define a 
per-pixel reconstruction loss Lr between the output x̃ and the ground-truth x, where �·�2 
represents the Euclidean norm. The reconstruction loss function for the generator is for-
mulated as follows:

Because the input image contains large missing regions, the per-pixel loss pays more 
attention to the low-level pixel-value differences of the reconstruction. To better recon-
struct the high-level semantic structure for the large unknown regions, we employ a per-
ceptual loss, which was first introduced by Gatys et al. [21]. This is an essential loss function 
for the training process that works well in our approach. Specifically, it computes the L1 
distances between x and x̃ , but after projecting these images into a series of high-level fea-
ture spaces using a pretrained network [35], it better captures the high-level semantic struc-
tures. In terms of mathematical formulation, the perceptual loss Lperc based on L1 distances 
is defined as formula (3):

(2)Lr =
∥

∥x − x̃
∥

∥

2
.

(3)Lperc =
∑N

i=1

∥

∥

∥
�i

(

xa
)

−�i

(

xâ
)
∥

∥

∥

1
.

Table 2  Specification of the discriminator network

Except for the last type, each “conv.” denotes a convolutional-LeakyReLu module. The term “FC” denotes the fully connected 
layer. The last layer uses the sigmoid activation function

Num Type Kernel Stride Outputs

1 Input – – 3

1 Conv 3 × 3 2 32

1 Conv 3 × 3 2 64

1 Conv 3 × 3 2 128

1 Conv 3 × 3 2 256

1 Conv 3 × 3 2 512

1 FC – – 1024

1 FC – – 2
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Here, �i is the ith layer of a pretrained network, and N is the total number of lay-
ers. Here, we use the three layers conv1_1, conv2_1 and conv3_1 of the VGG-19 net-
work [35] pretrained on the ImageNet dataset [36]. It is worth noting that we can use the 
L2 normal form (squared Euclidean distance) or squared Frobenius norm instead of L1 
distances. Inspired by [20] and [21], a style loss can also be added to preserve the picture 
style, and a total variation regularization to encourage pattern smoothness in the gener-
ated faces.

However, previous work suggests that the outputs often become blurry when the 
reconstruction loss is used. To overcome this problem, we combine the adversarial loss 
with the reconstruction loss to enhance the authenticity of the output images. Here, the 
adversarial loss serves as a binary classifier to distinguish whether an image is real or 
fake, and the generator network jointly trained with adversarial loss encourages the out-
put images to be more realistic. Formally, the adversarial loss is defined as formula (4):

Collectively, the loss functions used to train the discriminator and the generator net-
works are formula (5) and formula (6):

where �r , �perc and �adv are the weights to balance the strength of the perception loss 
and the adversarial loss with the reconstruction loss. In our experiments, we set up dif-
ferent �r , �perc , and �adv for ablation experiments between losses.

4 � Results and discussion
In this section, we present the experimental results and evaluate the performance of 
our proposed method on the test set. First, we introduce the benchmark dataset used in 
the experiment. Second, we describe in detail the strategy of network training and the 
related parameter configurations. Third, to explore the practicality and robustness of our 
proposed model, we provide face synthesis results based on facial-part patches from a 
single person or from multiple persons. Finally, we document qualitative and quantita-
tive comparison results with other image inpainting and translation algorithms to dem-
onstrate the superior performance of the proposed method.

4.1 � Benchmark dataset

We conduct our experiments on the CelebA dataset  [22], which has been widely used 
in a variety of computer vision tasks, such as face detection, facial attribute editing and 
facial part localization. The CelebA dataset contains approximately 202 K facial images 
covering rich facial pose variations (2,025,099 images in total). In the experiment, we 
follow the standard split operation with 182 K images for training and 20 K for testing. 
As mentioned in Sect. 3, we extract facial parts using dlib [34] to generate the training 
and testing data. To extensively test the robustness of our method, we also introduce two 
datasets, CACD [37] and LFW [38], for further validation.

(4)Ladv = min
G

max
D

Ex∼pdata(x)

[

log (D(x))+ log
(

1− D
(

x̃
))]

.

(5)LD = log (D(x))+ log
(

1− D
(

x̃
))

,

(6)LG = �rLr+�percLperc+�adv log
(

D
(

x̃
))

,
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4.2 � Training details

The proposed methods are implemented using the TensorFlow deep learning frame-
work [39] and executed on a computer with a single NVIDIA 1080Ti GPU (12 GB). For 
the network training, we scale images down to the 128× 128 resolution, and train the 
network using a batch size of 32 images. To make the training process stable and effi-
cient, three-phase training procedures are adopted. First, for training step-1, the gen-
erator is trained for 6000 iterations using both the per-pixel reconstruction loss and the 
perceptual loss to obtain blurry results. Afterwards, for training step-2, the generator 
network is fixed, and the discriminator network is trained for 1500 iterations with the 
adversarial loss to learn to distinguish between real and fake samples. Finally, for train-
ing step-3, both the generation and the discriminator network are trained jointly for 
50,000 ~ 100,000 iterations until the end of training. The entire training procedure takes 
approximately 1 day with a single NVIDIA 1080Ti GPU (12 GB), but the test procedure 
can be performed in real time. The detailed training procedure is shown in Algorithm 1. 
If the number of steps is changed in the three-step training, different results will be gen-
erated. Overall, if the number of steps in training step-1 is reduced, the model will con-
verge more slowly, and the final result will tend to be blurry.

4.3 � Qualitative results

First, we use the proposed method to generate whole facial images from a few facial-
part patches. Exemplar results are shown in Fig.  4. It is clear that the proposed 
method can not only automatically align facial parts to the precise position in a face 
image but also successfully synthesize visually realistic whole facial images even when 
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most of the pixels in facial images are absent. The results firmly demonstrate the pow-
erful generative capability of this approach.

Interestingly, compared to the original portrait photos, the colors and illuminance 
in the fake portraits generated by our method are more uniform, and there are fewer 
noise points. In this regard, this method can effectively remove the highlight noise 
and blur caused by the lighting factors in the original image, making the photo por-
trait more recognizable (Fig. 4).

In practical applications, users may prefer to generate realistic faces based on the 
key facial parts from more than one person (for example, virtual portrait synthesis). 
To test whether our approach could address this need, we present multiple facial 
parts from different persons to the algorithm and check if it could output a realistic 
and consistent facial image. The synthesized example images are shown in Fig. 5. The 
results again show that the proposed method can synthesize visually realistic images 
conditioned on facial parts from multiple persons. This is not a simple task, since the 
facial parts must be fine-tuned so that they look consistent and reasonable in one 
image. However, this algorithm can achieve this goal and synthesize sharp faces.

To further study the ability of our method to individually edit a certain part of the 
face, we fix an original face as input and replace the person’s eyes with someone else’s 
eyes, and the same for the nose and mouth. The results of this attempt are shown in 
Fig. 6. The human cheek and chin portion are tested in Fig. 7 for an additional test of 
this model. In the future, it may be possible to restore faces using only simple strokes. 
This can exercise the function of editing or exchanging the attributes of facial parts. 
We made a face synthesis matrix by exchanging the facial parts of the faces, as shown 
in Fig. 8. To synthesize a "synthetic face" from more than one person, we randomly 
combined different parts of the face of 4 people. These results demonstrate the pow-
erful synthesis capability of our method, especially in virtual portrait synthesis.

Fig. 4    Face images generated on the test dataset. In each panel from left to right are facial-part patches, 
our synthesized facial images and the original facial images (the ground truth)
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Fig. 5    Examples of synthesized images with facial parts from different persons. The original faces are 
shown in the left and right columns. The facial parts sent to the algorithm are indicated by arrows. The 
middle column shows the synthesized result images

Fig. 6  Face editing by replacing parts of a person’s face with someone else’s. Rows 1, 3 and 5 are examples 
of eyes, nose and mouth, respectively. Rows 2, 4 and 6 are the synthetic results after replacing this facial part, 
where the first image is the reconstruction of the input image
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4.4 � Qualitative comparisons

Facial image generation based on facial parts is a challenging computer vision task, 
and very few existing works have tried to address this specific task. To this end, we 
have found some image completion methods to participate in the comparison: Patch-
Match (PM) [40], Context Encoder (CE) [5], Image Inpainting [7], pix2pix [16], and 
Pluralistic Image Completion (PIC) [41]. They are perhaps the most relevant ones to 

Fig. 7  Face editing by replacing jaws from different persons. Rows 1 and 4 are examples of jaws. Rows 2 and 
5 are the extracted jaws. Rows 3 and 6 are the synthetic results, where the first image is the reconstruction of 
the input image

Fig. 8    Random face synthesis from facial parts. Two facial parts combined matrices are shown here. In 
each matrix, the first column is the input image, each row is a decomposition of the input face, the last 
column is the reconstruction of the input, and the last row is the portrait synthesis result
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our work. To make the comparison make sense, the inpainting method [7] is modified 
to achieve inpainting conditioned on facial parts. In addition, to make a fair compari-
son, we train these methods with exactly the same input configuration as our method 
(using CelebA datasets). The output results are shown in Fig. 9.

The PatchMatch and the Context Encoder participated in the evaluation as baseline 
methods. Because the problem we study may be too extreme, most of the faces are 
missing in the image, so many previous methods are not perfect in performing this 
task. The Pix2Pix algorithm can generate visually plausible face image structures and 
textures, but some structures are distorted, and in some areas, the textures are blurry 
and inconsistent with known facial parts. In addition, the input facial parts have obvi-
ous boundaries with the surrounding areas. Although the results generated by the 
image inpainting method do not have the boundary problem, the generated content 
has more serious structure distortion and texture blurring in the synthesized area. 
Different from Pix2Pix and image inpainting, our method generates more realistic 
results with fewer artifacts than the two baseline models due to the perceptual loss, 
which eliminates structural distortion by modeling the high-level semantic structures.

4.5 � Quantitative results

In addition to the visual comparison, we also perform quantitative evaluation of dif-
ferent algorithms on the CelebA test dataset. Although in principle there is no good 
numerical metric to evaluate facial image generation results due to the existence of 
many possible solutions, we still report the results of three commonly used image 
quality assessment metrics: PSNR, SSIM and the inception score following the work 
of [7, 16, 42] (see the Additional file 1 for details on the measurement method). The 
inception score has been used for GANs to measure generated sample quality and 
diversity based on the inception model. The comparison results are documented 

Fig. 9    Comparison of some methods for image generation based on facial parts. Columns from left 
to right: the original facial images (GT is short for the ground truth), the facial parts (FP), the results of the 
modified image completion method. PatchMatch (PM) [40], Context Encoder (CE) [5], Image Inpainting [7], 
pix2pix [16], Pluralistic Image Completion (PIC) [41]
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in Table  3. It is clear that our method outperforms the other methods on all three 
metrics.

4.6 � Ablation study

In this section, we conduct ablation experiments to specifically explore the specific role 
of the three losses. The specific method is to shield one or two losses by changing the 
weight of the loss to evaluate the effects of loss individually and in combination. We 
tested reconstruction loss, perceptual loss and adversarial loss separately, as well as pair-
wise combinations between them (Fig. 10, best viewed by zooming in).

Although reconstruction loss can reconstruct the entire face image, its pixelwise prop-
erties determine its lack of generalization performance. Furthermore, images generated 
only by reconstruction loss may have results that look similar to the input but are prone 
to overfitting; simple pixel translation may lead to prediction failure. Therefore, we 
combine perceptual loss and adversarial loss. Among them, the adversarial loss ensures 
a high degree of realism of the image, making the image more natural, but cannot be 

Table 3  PSNR, SSIM and inception scores (IS) on 128 random test images from CelebA

Methods PSNR SSIM IS

Inpainting 28.92 0.762 0.196

Pix2Pix 30.71 0.873 0.124

PIC 29.04 0.791 0.140

ours 34.38 0.956 0.063

Fig. 10  The result of only using one loss and their pairwise combinations. Loss R, P, and A denote 
reconstruction loss, perceptual loss and adversarial loss, respectively, and Loss RP is the combination of 
reconstruction loss and perceptual loss. In this model, using adversarial loss alone does not make any sense
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used alone. The perceptual loss can enable the generated image to reproduce the con-
tent (features) and style of the image, which is the most important of the three losses. In 
particular, to remove noise and mosaics from images, we also introduce total variation 
regularization to reduce the spikey artifacts of generated images. In summary, the loss 
makes the picture clearer and more realistic, and regularization can reduce the noise and 
spikey artifacts of the picture.

4.7 � Additional dataset

To study the generalization performance of our model, we tested the model trained on 
the CelebA dataset on an additional dataset. Here, we use the Cross-Age Celebrity Data-
set (CACD) [37] and Labeled Faces in the Wild Home (LFW) [38] for further validation, 
which are widely used in face image research.

Following the method above, we trained our model on CelebA using 3 loss functions, 
which took approximately 30 thousand training steps. The results of applying this model 
to other datasets are shown in Figs. 11 and 12, and the results are not too poor. Because 
the size of the images in the CACD and LFW datasets is different from that in the train-
ing dataset, we uniformly scale them to the same size as the input. We found that the 
model performed well on the CACD dataset (Fig. 11), which may be because the CACD 
dataset is similar to the CelebA dataset. However, our model does not perform well on 
the LFW dataset (Fig. 12). One possible reason is that the portraits in the LFW dataset 
are much smaller, which provides less information. The face angle may be quite different, 
and the expressions of the characters are exaggerated. Even in this case, our model’s per-
formance is reasonable, which shows the necessity and effectiveness of the combination 
of the 3 losses. To test our method more extensively, we present more graphical results 
in the Additional file 1 and discuss some concerns not mentioned above.

Fig. 11  Apply the model trained on CelebA to the CACD dataset. The first row is randomly selected images 
from CACD, and the last row is a synthetic portrait of our model. (FP is short for facial parts.)

Fig. 12  Apply the model trained on CelebA to the LFW dataset. The first row is randomly selected images 
from LFW, and the last row is a synthetic portrait of our model. (FP is short for facial parts.)
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5 � Conclusions
In this paper, we explore the challenging task of facial image generation from facial 
parts. A novel end-to-end image synthesizing framework based on deep learning 
is proposed to address this problem. By introducing multiple loss functions in the 
facial image generation network, valid and visually realistic images are synthesized 
semantically based on only a few facial-part patches. We also demonstrate the unique 
ability of the proposed method to fuse multiple facial parts from different persons to 
generate a realistic facial image. Extensive qualitative and quantitative comparisons 
with two existing approaches strongly demonstrate the superiority of the proposed 
method. Furthermore, the proposed algorithm is highly flexible in various facial syn-
thesis, restoration, and camouflage applications. In the future, we will explore the 
possibility of allowing a user to manipulate facial attributes, making the algorithm 
competent for generating multiple output images with different styles, etc. These 
extensions will greatly enhance the usefulness of the proposed algorithm in many 
real-world applications.
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