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1  Introduction
With the rapid development of 3D media and display technologies, 3D multimedia 
immersive services are being explored to address new demands. For example, 3D virtual 
reality has been widely used in various fields, such as medicine, games, and education. 
In recent years, an increasing number of 3D movies are made commercially available 
in cinemas. With display technology improvement, there is high expectation that the 
glassed 3D displays to watch stereo 3D videos will be ultimately replaced by the naked-
eye 3D displays, without wearing any glasses.

Supporting naked-eye 3D displays brings the need to have multiple view images avail-
able. In depth image-based rendering (DIBR) [1], 3D information is represented by the 
color image frame and its corresponding depth map. Pixel-based perspective multiple 
view images are then generated effectively based on information from the color image 
frame and depth map. The multi-view can help retrieve the image successfully [2]. To 
achieve a high-quality and comfortable 3D viewing experience, it is crucial to have an 
accurate depth map.
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Depth maps are commonly acquired either by depth sensors [3] or by stereo matching 
pairs [4, 5]. However, the depth map generated by depth sensors is often noisy, missing 
depth values and tends to misalign with the object boundaries in color image. The depth 
map estimated by stereo matching methods often contains errors in occlusion and flat 
regions. Recently, much work has been done to predict depth maps based on 2D videos, 
such as using monocular depth estimation networks [6–8] or creating key depth frames 
manually followed with depth map interpolation [9] afterward. The generated depth 
map suffers either blurred edges as shown in Fig. 1 or other inevitable errors caused by 
manual notations along object boundaries. To achieve high-quality accurate depth maps, 
a depth enhancement system is needed to remove the noise and correct the depth errors.

Without loss of generality, a typical scenario that a limited quality depth map contain-
ing noise and errors is retrieved from a pair of stereo color images is considered. Multiple 
approaches have been proposed to further enhance the depth map quality by explor-
ing the pixel correlation and structure relationship between the color image and depth 
map. However, when the color image contains highly textured objects, the enhancement 
from correlation calculation often causes texture-like artifacts in depth map. Traditional 
depth enhancement approaches apply adaptive filters to smooth or remedy the noisy 
depth maps. Gaussian filtering-based methods [10] estimate the missing depth values 
using the known neighboring depth values. Joint bilateral filtering (JBF)-based methods 
[11, 12] as an extension of bilateral filtering [13], apply information from color frame to 
gain more accurate depth map enhancement. However, these frameworks usually gener-
ate blurry depth results since they cannot train the systems to focus on the area around 
object boundaries.

Recently, deep learning has been introduced in various image processing applications, 
such as image super-resolution [14, 15], image restoration [16], image denoising [17, 18], 
and depth denoising by graph [19] networks. The denoising and enhancement convo-
lutional neural network (DE-CNN) [20] and image-guided method [21] also have been 
adopted for depth enhancement.

In this paper, we propose an end-to-end framework for depth enhancement with 
the inputs of color frame and noisy depth map and the output of the enhanced depth 
map. The rest of the paper is organized as follows. In Sect. 2, we briefly review related 
work, including deep residual convolution neural network (DRECNN) [22], residual 
dense network [23], and focal loss [24]. In Sect. 3, we describe in details the proposed 

Fig. 1  The depth map with blurred edges achieved by depth estimation network [8]. a color image; b depth 
ground truth; c predicted depth map
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image-guided depth enhancement (IGDE) system. In Sect. 4, we present the experimen-
tal results. Finally, we draw the conclusions in Sect. 5.

2 � Related work
The DRECNN is a typical framework that performs depth enhancement well. It learns 
the underlying correlation between depth map and color image first, and then applies 
the learned correlation to enhance the quality of the depth map. As shown in Fig. 2, the 
DRECNN architecture is divided into depth branch, intensity branch, and fusion mod-
ule. The depth and intensity branches have the same structure, consisting of one set of 
convolution and ReLU layers and seven sets of convolution, batch normalization, and 
ReLU layers to retrieve the depth and intensity feature maps. The fusion module applies 
eleven sets of convolution, batch normalization, and ReLU layers and a convolution layer 
to retrieve fusing coefficient maps. By referring to the concept of image-guided filter 
[21], the filter output Ĩi is given as

where I is the input guidance image, ak and bk are the linear coefficients assumed to be 
constant in the window ωk. Extending this concept, the DRECNN with the fusion mod-
ule retrieves the pixel-level fusing coefficient maps a and b. As shown in Fig. 2, the resid-
ual depth map can be obtained by

where Y is the luminance of color image and D is the depth map. The DRECNN effec-
tively improves depth enhancement and avoids overfitting problem by finding a linear 
model supervised by the ground-truth label.

After AlexNet [25] was proposed, the state-of-the-art CNN architectures commonly 
adopt large number of layers. However, by simply increasing convolutional layers, bet-
ter results are not guaranteed due to the gradient vanishing problem. Using batch nor-
malization could solve partially the problem of gradient vanishing. ResNet [23], which 
utilizes the residual blocks by adding the original input to the output with a shortcut 
connection, effectively solves the degradation problem caused by increasing the network 
layers. Since then, the residual blocks are modified to build various high performance 
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networks. The EDSR [26] removes the batch normalization to boost the convergence 
speed. DenseNet [27] achieves similar results with much smaller number of parameters. 
SRDenseNet [28] applies DenseNet to solve image super-resolution effectively. Figure 3 
shows the structures of the residual block, dense block, and residual dense block.

For image super-resolution, the architecture of residual dense network (RDN) [15] as 
shown in Fig. 4 is composed of multiple residual dense blocks. The features generated 
by previous convolution layers are concatenated to 1 × 1 convolution layer to reduce the 
number of channels. The RDN consists of N residual dense blocks (RDBs) which transfer 
the low-resolution (LR) image to the high-resolution (HR) image. The RDN preserves 
the details of the LR image and performs the suitable image corrections to obtain the HR 
image.

In deep learning CNNs, it is important to design loss functions in order to train the 
target CNN network. The loss functions with mean square error (MSE) and mean abso-
lute error (MAE) are often used in regression problems, while the cross-entropy is used 
in classification problems. To improve speed and direction of network convergence, 
special loss functions has been proposed. Taking the binary classification problem, the 
cross-entropy loss is given as

(3)CE(p, y) =

{

− log(p) if y = 1
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where y with {+ 1, − 1} denotes the label and p represents the probability that the pre-
dicted sample belongs to 1. Adding the cross-entropy of all samples, we can find the loss 
of the network. To correct the imbalance of binary samples, the focus loss used in Reti-
naNet [24] is suggested as

where γ > 0 is a focusing parameter to reduce the relative loss for well-classified examples 
with p > 0.5 and α is the shared weight to control positive and negative samples. Compar-
ing to two-stage object detectors, faster RCNN [29] and RFCN [30], the focal loss can 
improve one-stage object detectors, YOLO [31] and SSD [32] to obtain higher perfor-
mance. The one-stage detector has too much difference in the number of positive and 
negative samples during training, α is used to reduce the influence of negative samples 
with (1 − pt)γ modulating factor. The modulating factor reduces the weight of easy-to-
classify samples to ensure the network pay more attention to difficult-to-classify sam-
ples. The effectiveness of focal loss has been proven in many advanced networks.

3 � The methods
The guided image filter [21] uses the correlation between color and depth maps to 
enhance the noisy depth map. However, images with complex textures often degrade the 
depth map with ghosting textures. Learning-based methods mitigate the strong influ-
ence from image texture. However, the enhanced depth maps often contain inaccurate 
depth at object boundaries. To address this issue, we proposed an end-to-end depth map 
enhancement system that focuses mainly on correction of the depth edges.

3.1 � The IGDE network

The proposed image-guided depth enhancement (IGDE) network, as shown in Fig.  5, 
consists of two feature extractors, one fusion module, and one depth refinement module. 
It is noted task-adaptive attention [33] and multi-feature fusing [34] can help increase 
the performances of image captioning and recognition, respectively. We employ the 
residual dense network (RDN) as the backbone of the feature extractor and depth refine-
ment module. We extract features from the image and depth frames, and concatenate 
them together as the fused feature. The fused feature is sent to the depth refinement 
module to obtain the enhanced depth map.

(4)FL(pt) = −α(1− p)γ log(p),

280
480

1

480
280

3

480

480

480 480280

280

280 280

1

32

32

32

1×1 conv

: Concatenation

Feature Extractor Fusion Depth Refinement

C

CResidual 
dense

network

Residual 
dense

network

Residual 
dense

network

Depth
Map

Color
Frame

Enhanced
Depth
Map

Fig. 5  The architecture of the proposed IGDE network



Page 6 of 14Lee et al. EURASIP Journal on Image and Video Processing          (2022) 2022:6 

Figure 6 shows the detailed structure of the feature extractor. In the early stages of the 
network, the low-level features of the image frame are concatenated into the low-level 
features of the depth map. In simulation section, we will describe a better number of lay-
ers for the concatenations of low-level image features.

At the end of the network, we convert the fused feature into the enhanced depth map 
with the depth refinement module. Here, we use the same residual dense network as the 
backbone of the depth refinement module. The features obtained by the residual dense 
network are restored to a depth map by a 1 × 1 convolution. The detailed architecture of 
the depth refinement module is shown in Fig. 7. All the convolutions used in the module 
utilize ReLU to prevent the network output from being too linear.

3.2 � Loss functions

To train the proposed IGDE network, we refine the noisy depth values at object bounda-
ries to be consistent with the image frame. Typically, depth loss function calculates the 
depth loss from all pixels in depth map. Since the number of object boundaries pixels 
is much lower than that of the pixels of the whole image, the impact of errors at object 
boundaries is often compromised. We proposed to add a special depth focal loss by 
assigning lower weights for pixels with smaller depth deviations and higher weights for 
pixels with larger deviation. In addition, we also design a Sobel loss to emphasize the 
depth deviation at object boundaries. The total loss function, including depth loss Ldepth, 
depth focal loss Lfocal, and Sobel loss Lsobel, becomes
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where d and d* are predicted depth value and the corresponding ground truth, respec-
tively. Msobel is the mask that focuses on the object boundaries, where ρ, μ, and λ are the 
weighting factors of the losses. We set all of them to 1. The details of each loss function 
are described as follows.

3.3 � Depth loss

To minimize the difference between predicted depth maps d and the corresponding 
ground truth d*, we use the L1 loss as

where i and j denote the pixel indices, and H and W are the height and width of depth 
maps, respectively.

3.4 � Depth focal loss

For refining the noisy depth map, the error depth pixels only occupy a small portion 
of the depth map. We aim to train the network to focus more on the error pixels than 
the correct ones. Hence, we suggest the depth focal loss as

with

where α and γ are the shared weight and focusing parameter. Currently, we set the values 
of α to 0.25 and γ to 2. Similar to the focal loss [24], ei,j can be treated as the probabil-
ity that the correct predicted depth is 1 in most cases. In (8), the ratio of the difference 
between the predicted and ground truth values to the maximum depth value 255 exhib-
its similar characteristics of positive and negative samples for depth focal loss. With the 
depth focal loss, our network emphasizes more on the pixels with a higher ratio of errors 
in order to make the training results more accurate.

3.5 � Sobel loss

Since the depth map contains the errors mostly near object boundaries, we design a 
Sobel loss to ensure the network to focus more on areas close to object boundaries. 
The Sobel loss is expressed as

(5)
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where Msobel is a depth edge mask and β is the parameter used to control the importance 
of the edge area. We set Msobel to 1 for pixels close to object boundaries and set it to 0 for 
the rest of pixels. Here, we choose β = 0.9.

To compute the depth edge mask, as shown in Fig. 8, we first perform Sobel edge 
detection to the input depth map to obtain Sobel edges. Then, the detected edges are 
expanded by dilation operator. Finally, we apply the OTSU thresholding method to 
compute the depth edge mask. In (9), the depth error pixels in the region of depth 
edge mask will be weighted by 0.9, while those outside the depth edge mask will be 
weighted by 0.1. Of course, we can use β to adjust the weights of the area near the 
depth edge with respect to the rest of the area.

4 � Results and discussions
The proposed IGDE system is implemented in Python 3.7, CUDA 10.2, cuDNN 7.6.5, 
and Tensorflow-GPU 1.15.0 learning function library. For hardware infrastructure, we 
use the personal computer with Intel Core i7-9700 k CPU 3.6 GHz-4.9 GHz, 32 GB 
3200  MHz RAM. NVIDIA Geforce RTX 2080Ti 11G GPU is used to accelerate the 
training process of the proposed IGDE system.

We evaluate the proposed IGDE system on the Scene Flow dataset [26], which is 
a large-scale synthetic dataset containing Flyingthings3D, Monkaa, and Driving sub-
datasets. Some selected examples of datasets are shown in Fig. 9. Compared to other 
datasets, it has more accurate ground-truth depth maps since they are generated by 
virtual images. The images in the dataset are divided into 70,908 training images and 
8740 testing images with H = 540 and W = 960. We crop the image to H = 512 and 
W = 960 in the proposed network.

To simulate depth maps with erroneous edges, we randomly inflate or reduce depth 
values at object boundaries in all depth maps. We then take the simulated depth maps 
and the corresponding color maps as input to the proposed system. During training, 
images with a batch size of 2 were randomly cropped to size H = 280 and W = 480. To 
improve the prediction accuracy, we normalized the input images by dividing them by 
255. We trained our network with a learning rate of 0.0001 for 50 epochs.
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4.1 � Visualization performance of the network

Figure 10 shows the visual results of testing on the Flyingthings3D sub-dataset. The 
depth map refined by the proposed IGDE system performs well at object boundaries. 
Comparing the error map before and after refinement, the number of error points has 
been significantly reduced.

To test the effectiveness of the proposed network, the trained network is directly 
applied to Middlebury dataset. Figure  11a and b, respectively, shows four original 
natural images and their corresponding ground-truth depth maps with unknown 
holes, which are treated as noisy depth maps. After simple extension of known depth 
values from the bottom vertically and the enhanced process by the proposed IGDE 
system, Figure 11c and d show the enhanced depth maps and the error depth maps, 
respectively. For those unknown holes, for natural images, we do not know the exact 
depth value. The subjective quality as the graphic image becomes impossible. How-
ever, the refined depth maps by the proposed IGDE system show the reasonably good 
objective quality. The IGDE system can enhance the depth maps of natural images 
successfully. For detailed evaluation of the performances, we present numerical com-
parisons with other methods in the next sub-section.

4.2 � Comparisons with quality measures

We compare the performance of the proposed IGDE system with three depth refine-
ment networks, namely, denoising and enhancement CNN (DE −  CNN) [20], deep 
residual enhancement CNN (DRECNN) [22], and depth enhancement network with 
color-based prediction network (DEN + CBPN) [35]. The DE  −  CNN with single 
branch concatenates the depth map and color image as the input, while the proposed 
IGDE, DRECNN, and DEN + CBPN systems with two branches fuse the depth and 
image features in different approaches. Without ground truth values, the quality 
measure can also use no-reference measure [36]. With the ground-truth depth maps, 

Fig. 9  Examples of color images and their depth maps from: a Flyingthings3D, b Monkaa, c Driving 
sub-datasets
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Table 1 shows the comparison results on Scene Flow testing set [37]. We use common 
quality measures, such as PSNR in dB, SSIM, and RMSE, to evaluate the performance 
of all networks. In addition, we also, respectively, calculate the PSNRt and PSNRf of 
correct and error depth pixels of the prediction results. Table 1 shows that the pro-
posed IGDE achieves the best results, which are marked with bold face. Hereafter, in 
Tables 2 and 3, we also marked the best results with bold face.

The PSNR, PSNRt, and PSNRf in dBs are defined as follows:

(10)PSNR = 10 · log10

(

MAX2

MSEall

)

= 10 · log10

(

2552

MSEall

)

,

(11)PSNRt = 10 · log10

(

2552

MSEt

)

,

(12)PSNRf = 10 · log10

(

2552

MSEf

)

,

Fig. 10  Visualization results on Flyingthings3D sub-dataset: a color map, b ground-truth depth, c depth map 
with errors, d refined depth map, e error map before refinement, f error map after refinement
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where MSEall, MSEt, and MSEf, respectively, denote the mean square error of all, correct, 
and incorrect depth pixels. The structural similarity (SSIM) measure is defined as

where l(x, y), c(x, y), and s(x, y) denote the luminance, contrast, and structure measures 
of x and y, which are, respectively, defined as

where ux and uy are the averages of x and y; σx and σy represent the standard deviations 
of x and y, respectively; σxy denotes the covariance of x and y; and C1, C2, and C3 are con-
stants to stabilize the division with a weak denominator. The RMSE is defined as

(13)SSIM
(

x, y
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= l
(

x, y
)

· c
(

x, y
)

· s
(

x, y
)

,

(14)l
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2uxuy + C1
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(
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2σxσy + C2

σ 2
x + σ 2
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(

x, y
)

=
σxy + C3

σxσy + C3
,

Fig. 11  Visualization results on Middlebury dataset: a original color images, b ground-truth depth maps with 
unknown holes, c enhanced depth maps by the proposed IGDE system, d the absolute difference between 
the original and refinement depth maps

Table 1  Performance comparisons in scene flow testing set

Measures
Model

PSNR (dB) PSNRt (dB) PSNRf (dB) SSIM RMSE

Input depth 36.6835 None 21.1025 0.99999589 0.0146703

DE-CNN [20] 42.1632 45.1183 29.1516 0.99999824 0.0078065

DRECNN [22] 45.9433 49.6217 32.3469 0.99999935 0.0050490

DEN + CBPN [35] 37.1230 None 21.1025 0.99999581 0.0139462

Proposed 48.1056 52.9595 33.7814 0.99999962 0.0039363
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where N denotes the total number of pixels for prediction result, di
* and di indicate 

the ith ground-truth depth value map and the ith predicted depth value, respectively. 
We implemented networks of the three selected depth refinement methods due to 
their source codes are not available. We used our training configuration to train their 
networks. Based on comparison results, the proposed IGDE system achieves the best 
performance.

4.3 � Ablation study

We evaluated the performance of the proposed IGDE system with different set-
tings. First, we train the IGDE network with different sets of loss functions to prove 
that depth focal loss and Sobel loss make the network predict better. The prediction 
results with or without adding the proposed loss functions are shown in Table 2. The 
comparison results show that the two proposed loss functions clearly help achieve 
better results.

To demonstrate the effectiveness of concatenating three layers of low-level features 
of the image branch to those of the depth branch, we also try to reduce the number 
of concatenating layers of low-level features. Since the deeper layers of color image 
frame are more important to the depth map, we try to reduce the shallow layers of 
color map information to the depth branch. The comparison results are shown in 
Table 3. The results show that concatenating three different layers of color map infor-
mation to the depth branch generates the best prediction results.

(15)RMSE =

(

1

N

N
∑

i=1

(

d∗i − di
)2

)

1
2

,

Table 2  Evaluation results of the proposed loss functions

Measures
Model

PSNR (dB) PSNRt (dB) PSNRf (dB) SSIM RMSE

w/o depth focal loss
w/o Sobel loss

47.5933 52.8712 33.0588 0.999999578 0.004178

w/ depth focal loss
w/o Sobel loss

47.8342 53.5258 33.1803 0.999999602 0.004060

w/o depth focal loss
w/ Sobel loss

47.5974 52.5389 33.2153 0.999999596 0.004178

w/ depth focal loss
w/ Sobel loss

48.1057 52.9595 33.7814 0.999999625 0.003936

Table 3  Evaluation results of reducing layers of color map features

Measures 
Model

PSNR (dB) PSNRt (dB) PSNRf (dB) SSIM RMSE

w/o color map information 47.7598 53.6426 33.0325 0.999999603 0.0040952

w/ one layer of color map information 47.4954 52.3334 33.1743 0.999999583 0.0042278

w/ two layers of color map information 47.154 51.9130 32.8571 0.999999537 0.0043897

w/ three layers of color map information 48.1056 52.9595 33.7814 0.999999625 0.0039363
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5 � Conclusion
In this paper, we propose an image-guided depth enhancement system that extracts the 
features of color images to enhance the depth values of object boundaries through the 
residual dense network. To enable the network to focus more on enhancing the depth 
value of object boundaries, we propose Sobel loss to increase the weight of object edges. 
Regarding the concept of focal loss used in object detection, we further propose depth 
focal loss to improve the performance of network prediction. In addition, the inclusion 
of color information to the first half of the depth branch shows benefits for depth map 
restoration. We simulate the situation where the depth values of the object boundaries 
are intentionally mismatched to the color map in order to create a training dataset on 
Scene Flow dataset. Using this dataset to train and compare with other advanced meth-
ods, the proposed IGDE system obtains the best prediction results from multiple data. 
Finally, the ablation study shows that each function proposed in this paper effectively 
improves prediction results.
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