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1 Introduction
Renal cysts (a.k.a., kidney cysts) are sacs of fluid or round pouches of fluid in kidneys. 
They can be classified as “simple” which are benign cysts (non-cancerous) or “complex” 
which might be malignant cysts (cancerous). The risk of malignancy can be quantified 
using Bosniak classification (developed in 1986 by Dr.Morton Bosniak), where CT scan 
is used to distinguish four renal cyst categories from I to IV, ranging from simple to com-
plex cysts. This classification helps radiologists to determine each renal cyst as “nonsur-
gical” (i.e., benign in Bosniak categories I and II) or “surgical” (i.e., surgery is required in 
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Bosniak categories III and IV). So far, this classification standard has remained the most 
commonly used classification to characterize renal cysts. However, in practice, Bosniak 
classification is subjective, meaning that poor extensive variations exist across different 
interpreters. According to the systematic review of [1], approximately 49% and 11% of 
those diagnosed in Bosniak categories III and IV, respectively, are found that their biopsy 
results indicate benign tumors (non-cancerous). Hence, their surgery operations are 
considered overtreatment and patients take risk of surgery without clinical benefit [2].

Recently, Machine Learning (ML) and Artificial Intelligence (AI) have been improved 
dramatically, particularly in Deep Learning (DL) for image understanding. In the past, 
it was necessary to manually design a set of visual features (a.k.a., handcrafted features) 
to develop AI-based medical imaging systems. However, in 2012, AlexNet [3], a deep 
learning-based Convolutional Neural Network (CNN) won ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) [4] with image classification results that totally outper-
formed other competitors both in the 2012 challenge and in previous challenges. Since 
the success of AlexNet in 2012, applications of deep learning in medical image analysis 
have gradually shifted to deep learning architectures, as these architectures share unique 
abilities to learn and generate useful visual features just by looking at image examples. 
In 2015, Microsoft’s ResNet [5] yielded a new low of 3.6% error rate in the history of 
ILSVRCs; this was the first time that computers surpassed the human-level performance 
of 5.1% in the ILSVRC image classification task. Consequently, the number of papers 
related to medical image analysis using deep learning techniques increased dramatically, 
particularly in 2015 and 2016 according to the survey in [6]. Apart from this, the survey 
in [6] concludes many interesting facts of medical image analysis. For example, segmen-
tation was a task with the maximum number of medical imaging research papers; Mag-
netic Resonance Imaging (MRI), microscopy and CT were three medical imaging data 
types with top three numbers of research papers; there was a small amount of medical 
imaging research papers on abdominal CT image data. Besides, another recent paper of 
[7] reviews that the number of publications related to deep learning was exponentially 
increased for ‘deep learning and medical’ and ‘3D deep learning and medical’ keywords 
after the years 2015 and 2017 onwards, respectively.

The unnecessary surgery for Bosniak category III and the obvious trend of deep learn-
ing in medical imaging, inspire us to develop a deep learning-based analytical system 
that is capable of solving or alleviating the problem of Bosniak renal cyst classification 
(category III). Based on common practices found in current deep learning communities, 
we decide to split our task into two consecutive sub-tasks, i.e., kidney segmentation and 
Bosniak renal cyst classification, where each sub-task involves one deep learning model.

In the remaining of this paper, Sect.  2 reviews previous works. Section  3.1 walks 
through our first-hand experiences of preparing CT image data retrieved from one of 
the busiest public hospitals in Bangkok, Thailand. Section  3.2 explains our proposed 
deep learning models for kidney segmentation. Then, the models’ performances are 
evaluated and discussed in Sect. 4. Finally, Sect. 5 concludes this research paper. Note 
that, although this paper is written in the context of having Bosniak renal cyst classifica-
tion as the final goal, the proposed models only deal with the first task of a deep learning 
model for kidney segmentation and there is no model proposed for Bosniak renal cyst 
classification yet.
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2  Related works
According to some previous works of deep learning-based kidney classification [8–
10], one conclusion we found is that researchers tend to segment only the kidney 
mass from CT images before proceeding to the classification step.

So far, kidney segmentation (a.k.a., renal segmentation) has remained a challeng-
ing task for CT images. This is because kidney mass can be found in abdominal CT 
images where not only the kidney but other organs such as liver, pancreas, spleen, and 
GI tract are residing in. The comprehensive survey in [11] shows that, over the past 
decades, numerous traditional segmentation techniques for CT images have been 
proposed, including manual segmentation, thresholding segmentation, region-based 
segmentation, model-based segmentation, atlas-based segmentation, graph-based 
segmentation, and hybrid segmentation. However, these traditional techniques have 
limitations in the context of kidney segmentation regarding CT images. For example, 
simple techniques such as thresholding segmentation and model-based segmentation 
are sensitive to noises and unable to deal with large intensity variations in abdominal 
CT images; atlas-based segmentation and graph-based segmentation require user ini-
tialization, which is not automatic and inter-rater variability can affect segmentation 
performance.

In recent years, deep learning techniques with CNN have achieved superior perfor-
mance in numerous fields of computer vision, including semantic segmentation, image 
classification, object detection, and so on. For salient image segmentation tasks, it can 
be said that deep learning is now one of the most popular techniques. For example, in 
2016, Zhou et al. [12] propose a fully convolutional neural network (FCN) for seman-
tic segmentation on CT images. In this work, VGG-16 is used as the backbone CNN 
architecture. Using all three anatomical planes, this work utilizes CT image data from 
230 patients (84,823 image slices) for training and 10 patients for testing. According to 
their evaluation, the results in terms of the mean value of Intersection Over Union (IoU) 
or Jaccard index for right and left kidneys are 0.86 and 0.84, respectively. Later, in 2017, 
Zhou et  al. [13] improve their previous work by defining the range of target regions 
based on organ localizations; this helps increase IoU of the left kidney to 0.88. Note 
that in this improved work, the numbers of patient cases are changed to 228 patients for 
training and 12 patients for testing.

In 2017, Sharma et  al. [14] present the automated segmentation of ADPKD (Auto-
somal Dominant Polycystic Kidney Disease) kidneys using an FCN trained end-to-end 
on slicewise axial-CT sections. This work uses VGG-16 as a backbone CNN, but only 
axial plane images are considered. Their data consist of 165 patients (16,000 original 
CT image slices which are increased to 48,000 image slices after data augmentation) 
for training and 79 patients (9000 CT image slices) for testing. Their proposed method 
yields the mean Dice similarity coefficient (DSC) of 0.86 ± 0.07 (mean ± SD) when com-
paring this automated segmentation with the ground-truth manual segmentation (done 
by clinical experts). However, if a patient has liver cysts in close proximity to the kidney, 
this automated segmentation tends to overestimate the kidney volume due to the inclu-
sion of liver cysts in the segmented kidney region. Also, in rare cases of kidneys with 
extremely high total volume (>13,000 mL), this proposed method cannot exploit context 
information around the kidney, leading to poor segmentation results.
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In 2018, Jackson et  al. [15] employ an automated CNN-based software tool to per-
form quantitative analysis of SPECT images based on the anatomical outline in a fused 
CT volume. U-Net architecture is used on axial-plane CT image slices. Their data set 
includes 89 patient cases for training and 24 patient cases for testing. The proposed 
model achieves mean Dice scores of 0.91 and 0.86 for right and left kidneys, respectively.

Although many previous studies achieve good segmentation using deep learning tech-
niques, to the best of our knowledge, we have found no study mentioned generalizability 
either to a different data source or to a different quality of images. Fundamentally, image 
quality in CT, as in all medical imaging, depends on four primary factors [16]—image 
contrast, spatial resolution, image noise, and artifacts. Moreover, CT images are typi-
cally stored in Digital Imaging and Communications in Medicine (DICOM) file format 
and the different environments of DICOM files could affect segmentation performance 
as mentioned in previous studies [12–15].

3  Methods
3.1  Data preparation

3.1.1  Informed consent

This research is a retrospective cross-sectional study of 200 patients who had taken 
abdominal CT images from January 1, 2007 to December 31, 2019. The CT image 
data of Thai patients are provided by the Department of Radiology and Department of 
Pathology, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand. To retrieve 
abdominal CT images from the hospital’s database, we follow the principles of Helsinki 
Declaration and under Medical Research Involving Human Subjects Act. The protocol 
of this research is approved by the ethics committee of Ramathibodi hospital. While 
conducting this research, patients’ information is protected using encrypted Hospital 
Number (HN) with the MD5 hash function known only by the principal investigator. 
The encrypted HN is used during feature extraction and data analysis processes with 
no disclosure of patient information at all. Note that the need for individual informed 
consent is waived by the ethics committee of Ramathibodi hospital, Bangkok, Thailand.

3.1.2  Data retrieval, selection and annotation

Data retrieved from Ramathibodi hospital’s database consists of two parts. The first part 
is abdominal CT images in all three anatomical planes (i.e., axial, coronal, and sagit-
tal planes) and in all phases of contrast media injection. These CT images are stored in 
DICOM file format with accompanying details, such as resolution, slice thickness, HN, 
etc. The second part of retrieved data are pathological test results that confirm malig-
nancy of renal cysts together with HNs that link back to corresponding abdominal CT 
images.

In this phase of data preparation, many problems arose. First, it took us 5–6 months 
for data request and protocol approval, as there was an unexpected delay due to COVID-
19 outbreak. Second, the pathological test results were stored in a way that did not allow 
any automatic or programming-based retrieval; the only way to get them was to connect 
to the hospital’s intranet, access each patient’s Portable Document Format (PDF) radiol-
ogy report, and read the report manually. Third, according to the actual pathological test 
results, the number of patients with Bosniak category III and IV was way too small-only 
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19 patient cases from the total of 200 cases. This unexpectation was crucial as data from 
19 patient cases was not enough for training complicated deep learning models regard-
ing kidney mass segmentation. To get around with this insufficient number of patient 
cases, in this research, we started training and validating our kidney segmentation mod-
els (Sect. 3.2) with a public data set of 300 patients from the official 2019 KiTS challenge 
[17] (the data set was available for download at https:// github. com/ nehel ler/ kits19). 
Then, we tested the trained models on our CT images of Thai patients, examining how 
the domain shift affected segmentation performance.

The last problem we encountered is the classic problem of laborious data annota-
tion tasks that consumed too much time from human physicians. Because CT images 
retrieved from Ramathibodi hospital came with no segmenting annotation, we had to 
ask an experienced urologist to help annotate data for us, despite her regular workload 
as a urologist in one of the busiest public hospitals in Bangkok, Thailand. The annotation 
was done with a python-based graphical image annotation tool named labelme 4.5.1 [18] 
and it took 1–5 min for the urologist to annotate one image slice. Hence, for one patient 
with 70 image slices, the annotation task cost 70–350 min from the urologist. After wait-
ing for 3–4 weeks, we decided to continue developing our prototype models using data 
of four Thai patients (two with benign renal cysts and two with malignant renal cysts), 
whose 70 image slices (per one patient) were properly annotated.

In conclusion, our models are trained on the KiTS19 public data set [17] that con-
sists of cross-sectional CT data from 300 patients with kidney tumors (210 patients for 
training and 90 patients for testing). However, as KiTS19’s testing data of 90 patients do 
not have accompanied ground truth images, we exclude these data from our supervised 
training. In a detail of the KiTS19 data set, each patient includes 400–600 CT image 
slices whose slice thickness ranging from 1–5 mm, and each CT image slice has a 2D 
dimension of 512×512 pixels. Although all patients (mostly American) in this data set 
were treated at the same University of Minnesota Health, more than half of the imaging 
was obtained from 50 referring institutions, making this data set a diverse data set in 
terms of CT scan settings. As for the CT data of Thai patients to be used in our domain 
shifting test, we choose only abdominal CT image slices in venous phase contrast media 
injection, as this phase provides the clearest visibility of kidneys. One Thai patient has 
about 100–200 image slices (the slice thickness ranges from 2–3 mm and one slice has a 
2D resolution of 512×512 pixels) per one phase of contrast media injection but only 70 
image slices containing kidney mass are used in our experiments.

3.1.3  Data preprocessing

In this section, we describe all preprocessing steps regarding CT data stored in DICOM 
file format.

Rescaling this preprocess step refers to converting CT numbers as originally stored in 
pixels of CT image slices into Hounsfield Unit (HU) of radiodensity measurement. In CT 
scan, each pixel of 2D CT image slices is originally assigned to a numerical value called 
CT number-the average of all attenuation values contained within the corresponding 
voxel, where voxel is a volume element in the patient and voxel volume refers to the 
product of pixel area and slice thickness. This CT number can be converted to HU scale 
to reflect the electron density of the imaged tissue at a given location. Each HU value 

https://github.com/neheller/kits19
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is then assigned to one grayscale intensity to form a digital image—the higher the HU 
value, the brighter the pixel intensity. The conversion from CT number to HU scale can 
be done with the following equation:

where rescale_slope and rescale_intercept (as stored in DICOM file) are 1.0 and − 1024.0, 
respectively, for our Thai patient data. As for the KiTS19 data set, data are already in HU 
scale, so there is no need for us to do this conversion.

Window Level (WL) and Window Width (WW) due to the fact that there are 2000 
shades of gray and might be as many as 4000 shades in modern CT scan devices, it is 
beyond human vision to distinguish such a wide range of grayscale shades. Likewise, 
DICOM files are high-resolution grayscale images (64-bit with Hounsfield unit) that 
might not be suitable with most deep learning models, whose default format is 32-bit 
floating-point. Hence, it is necessary to clip or cutoff only the HU range of interest.

In medical practice, shades of gray are scoped to a specific range of values to dis-
play tissues or organs of interest; any value outside the range is assigned to black. The 
parameters used to specify the range are called Window Level (WL) and Window Width 
(WW). WL is the value used to specify the middle of HU value to display as the main 
intensity. For example, for the bone tissue of range + 400 to + 1000 HU values, WL 
should be set to the middle of + 700 HU. WW is the value used to specify the width or 
range of grayscale level to be displayed. To cover all possible HU values regarding the 
organ of interest, WW has to be set in according to WL. For example, using WL = + 
700 HU and WW = + 200 HU results in the display of range + 600 to + 800 HU which 
does not cover the entire range of bone tissue.

In this research, we focus on the renal organ whose HU values are in the range of + 20 
to + 40 HU. Therefore, we set our range of HU to the minimum of − 73 and the maxi-
mum of + 304, ensuring coverage visibility of kidneys. After clipping HU values to our 
specified range, we normalize all HU values to the range of 0.0–1.0 to yield faster con-
vergence according to the best practice in training deep learning models.

Image Registration this is the preprocessing step for geometrically aligning image slices 
taken at different times and angles. As for the data set of KiTS19 and our Thai patient 
data, there is no unalignment problem, so this preprocessing step is skipped.

Data Augmentation we employ data augmentation to improve variability and diversity 
of the training data in KiTS19. Our data augmentation is done by a library named albu-
mentations 0.2.3 [19] (https:// album entat ions. ai/), including horizontal flip (p = 0.5), 
random brightness contrast (p = 0.5), random gamma (p = 0.5), and grid distortion (p = 
0.5, border_mode=cv2.BORDER_ CONSTANT).

3.2  Deep learning models for kidney segmentation

To segment kidney mass from one CT image slice, 2D image segmentation algorithms 
are appropriate solutions. However, when kidney mass has to be segmented continu-
ously from a sequence of CT image slices, the problem becomes harder and requires 
more complicated solutions of 3D image segmentation for smooth segmentation over 
the sequence. Speaking of 3D image segmentation in the medical domain, many success-
ful algorithms are based on 3D variants of the U-Net architecture [20]. In addition, many 

(1)HU = (rescale_slope ∗ CT_number)+ rescale_intercept

https://albumentations.ai/
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works have recently suggested that the deeper the network, the better the performance 
[21]. Likewise, according to Heller et  al. [22], deep 3D CNNs are said to be the most 
popular methods so far in KiTS19 Challenge’s submissions.

In practice, it is challenging to train a very deep neural network from scratch due to 
problems, such as vanishing gradients. To overcome this problem, the concept of skip 
connections (a.k.a., residual connections) introduced in Microsoft’s ResNet [5] comes 
in handy. For example, Zhang et al. [23] propose a deep ResUNet network for road seg-
mentation, where ResUNet refers to a semantic segmentation neural network that com-
bines the strengths of U-Net and residual neural network. This combination brings two 
main benefits: (1) the residual unit helps ease the training as some layers in the network 
can be skipped and (2) the skip connections help facilitate information propagation with 
no degradation, making it possible to design a neural network with much fewer param-
eters but with comparable or even better performance on the task of semantic segmen-
tation. Hence, in this research paper, we decide to use the concept of deep ResUNet to 
compromise between the network’s depth and the training’s practicality.

As for the question of which alternative should we use between 2D and 3D convolu-
tions. It is obvious that 2D convolution which processes a volume slice-by-slice cannot 
fully leverage the spatial information along the third dimension. However, 3D convo-
lution as preferred by many previous works of 3D medical image segmentation suffers 
from high computational cost and significant Graphics Processing Unit (GPU) mem-
ory consumption. To compromise between accuracy and computational resource, this 
research paper goes in between and utilizes the concept of 2.5D convolution to incor-
porate partial 3D information. This is the same strategy used by other works of organ 
segmentation, for example, brain [24, 25], pancreas [26] and liver [27] segmentation.

Inspired by the architecture proposed in Tsai and Sun [28], our experimental archi-
tecture of 2.5D convolution on ResUNet is illustrated in Fig. 1. At first glance, it looks 
very similar to ResUNet using normal 2D convolutions. However, the strategy of 2.5D 
convolution takes place at the very beginning of ResUNet which is illustrated as the box 
named “Slice Stack n× 512× 512 ” in Fig. 1. In this additional box, instead of using only 
one CT image slice input (1×512×512) to get one segmentation output (1×512×512), we 
use a stack of n adjacent CT image slices ( n× 512× 512 ) as the input to ResUNet where 
the middle slice is our slice of interest where the segmentation result of ResUNet (1×
512×512) will correspond to. This n-slice input provides larger image content in the axial 
plane and extra contextual information in the orthogonal direction, introducing partial 
3D information into the model. Note that in our experimental model architecture, all 
convolutional layers share the same kernel size of 3 × 3 and use a nonlinear activation 
function of Parametric Rectified Linear Unit (PReLU). Apart from faster computation, 
using 2.5D convolution instead of actual 3D convolution also has an advantage that 
allows us to increase the model’s complexity by adding more layers and using a much 
larger number of feature channels in each layer.

To get more comparative results, we also conduct experiments on another deep learn-
ing architecture called DenseUNet [28]. Nowadays, most CNN-based approaches are 
implemented with seminal backbone networks, among them the two arguably most 
famous ones are ResNet [5] and DenseNet [29]. On one hand, the residual connec-
tions in ResNet help promote information propagation, both forwardly and backwardly, 
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through the network. However, the identity shortcut that stabilizes training might limit 
its representation capacity. On the other hand, the connected path of DenseNet ensures 
the maximum information flow between layers, which improves the gradient flow, and 
thus alleviates the burden in searching for the optimal solution in a very deep neural 
network. As these two backbone networks have unique strengths, we decide to experi-
ment with both and call them ResUNet and DenseUNet respectively. In this work, the 
architecture of DenseUNet is shown in Fig. 2; it is the extended version of 2.5D ResUNet 
that borrows the concept of dense connections from the famous DenseNet-161. As seen 
in Fig. 2, input feature maps of the shallower layers are used as inputs to all subsequent 
(deeper) layers in the same dense block as well. This concept of dense connections not 
only helps ease the problem of gradient vanishing but also allows reusing feature maps 
from the shallower layers in the deeper layers.

Our two experimental model architectures are implemented with PyTorch 1.5.0 + 
cu101 library based on Python 3.6 programming language. Using the KiTS19 data set, 
our models are trained and validated in two training environments: Google Colab Pro 
(NVIDIA Tesla P100-PCIE GPU with 16GB memory) and NVIDIA DGX A100 (NVIDIA 
A100 GPU with 40GB memory). Google Colab Pro is a cheap and accessible training 

Fig. 1 2.5D ResUNet architecture with the slice stack of n = 3. Please note that this diagram is created by the 
desktop software named diagrams.net (https://app.diagrams.net/), version 14.5.0
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alternative that is based on a cloud GPU whereas NVIDIA DGX A100 refers to a local 
non-cloud GPU. Due to the limited GPU memory of Google Colab Pro’s environment, 
only 2.5D ResUNet architecture gets trained for 30 epochs using the mini-batch size of 
8, cross-entropy loss function, and Adam optimizer (initial learning rate is set to 0.0001 
and multiplied by 0.1 when loss does not decrease for five consecutive epochs). Never-
theless, training our 2.5D ResUNet model on data of 210 patients in KiTS19 requires 30 
h (approximately) per one epoch of training because of the slow reading speed between 
Google Colab and Google Drive. As Google Colab Pro has a limitation of 24-h continu-
ous runtime, we have no choice but to reduce the training time per one epoch. Hence, 
from 210 patients of the KiTS19 data set, we choose the first 60 patients as our valida-
tion set and the last 60 patients as our training set. As a result, our 2.5D ResUNet model 
can be trained on Google Colab Pro using 9–10 h per one epoch.

In the local non-cloud training environment of NVIDIA DGX A100, not only that 
we have more available GPU memory but also there is no runtime limitation and no 
overhead time in reading data from different servers. As a result, we are able to train 
both experimental architectures with a bigger mini-batch size of 16, a training set of 
150 patients, and a validation set of 60 patients. Other training parameters remain the 
same as described in the previous paragraph. In this non-cloud training environment, 
the 2.5D ResUNet architecture can be trained in just 20 min per epoch using 28GB GPU 
Video Random Access Memory (VRAM), and the 2.5D DenseUNet architecture can be 

Fig. 2 2.5D DenseUNet architecture with the slice stack of n = 3. Please note that this diagram is created by 
the desktop software named diagrams.net (https://app.diagrams.net/), version 14.5.0
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trained using 30 min per epoch and 39GB GPU VRAM. Both architectures are trained 
for 20 epochs.

4  Results and discussion
To evaluate the performances of our trained models regarding kidney segmentation, 
we use Dice coefficient (a.k.a., F1 score for segmentation) which is a measure of overlap 
between two samples. This measure has a floating-point value ranging from 0.0 to 1.0, 
where Dice coefficient of 1.0 denotes perfect and complete overlap. Dice coefficient is 
originally developed for binary data and can be calculated as

where |A ∩ B| represents the common elements between A and B, and |A| represents 
the number of elements in A (and likewise for |B|). As for our task of evaluating a pre-
dicted segmentation mask against a ground-truth segmentation mask, we can approxi-
mate the term |A ∩ B| as the elementwise multiplication between the prediction mask 
and the ground-truth mask, then sum the resulting matrix into a final result of one sca-
lar value. Because values in our ground-truth mask are binary of either 0 or 1 whereas 
values in the predicted mask are floating-point of range 0.0–1.0, we can effectively zero-
out any pixels (in the predicted mask) which are not activated in the ground-truth mask. 
Finally, Dice score for one patient with many CT image slices is computed by averaging 
Dice scores from all image slices. Note that the same averaging computation is applied to 
compute Dice scores regarding train/validation/test sets.

Our experimental results are concluded in Table 1, where the best performance on Thai 
patients is from 2.5D DenseUNet using slice stack of 5. When evaluating on 150 patient 
data from the KiTS19’s train set (the second column), our five experiments show compa-
rable Dice scores compared to the two 3D U-Net models as reported in [30]. Nevertheless, 
our Dice scores in all experiments slightly drop when being used with unseen 60 patient 
data in the KiTS19’s validation set (the third column), and significantly drop when being 
used with Thai patients (the fourth column). This conveys a classic problem of performance 
drop due to domain shifting. Among our five experiments, the worst performance on Thai 

(2)DICE =
2|A ∩ B|

2|A| + |B|

Table 1 Experimental results regarding the KiTS19 data set and our four Thai patients

The best result regarding each column is highlighted in bold

Model architecture Averaged Dice score

KiTS train KiTS val Thai patients

Google Colab Pro:

   2.5D ResUNet (slice stack of 5) 0.9801 0.9373 0.6900

NVIDIA DGX A100:

   2.5D ResUNet (slice stack of 3) 0.9735 0.9554 0.7977

   2.5D ResUNet (slice stack of 5) 0.9772 0.9567 0.7335

   2.5D DenseUNet (slice stack of 3) 0.9779 0.9595 0.8367

   2.5D DenseUNet (slice stack of 5) 0.9769 0.9582 0.8760
Comparative results from [30]:

   3D U-Net 0.9734 - -

   Residual 3D U-Net 0.9736 - -
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patients is the one trained in Google Colab Pro’s environment. Our assumption is that lim-
ited computational resources and runtime constraints in Google Colab Pro’s environment 
not only introduce inflexibility in experiments but also hurt the performance of deep learn-
ing models as bigger models, larger batch sizes and more training data are not possible in 
this training environment.

Table 2 shows per-patient Dice scores regarding three experiments sharing the same slice 
stack of 5. From this table as well as from Figs. 3 and 4 , one clear conclusion is that segmen-
tation performances tend to drop in Thai patients with malignant renal cysts (patient 502 
and 504). Besides, it can be seen that 2.5D DenseUNet always yields higher Dice scores than 
2.5D ResUNet.

In conclusion, there are two main limitations in our current work. First, because the test-
ing size of Thai patients was very limited, the model accuracy computed from this small test 
set might not be a good statistical representation of Thai patients. Second, our current work 
suffers from the problem of poor generalization due to data distribution shifts. Early work 
[31] has shown a similar problem that CT data sets on classification models may not gen-
eralize well when externally validated on data from a different institution. This is because 
the CT data sets are possibly vulnerable to distribution shifts stemming from changes in 

Table 2 Detail experimental results regarding each Thai patient

The best result regarding each Thai patient is highlighted in bold

Model architecture Dice score per one patient Averaged 
dice score

501 (benign) 502 (cancer) 503 (benign) 504 (cancer)

Google Colab Pro:

   2.5D ResUNet (slice stack of 5) 0.8650 0.6591 0.9128 0.3231 0.6900

NVIDIA DGX A100:

   2.5D ResUNet (slice stack of 5) 0.7608 0.4480 0.9050 0.8201 0.7335

   2.5D DenseUNet (slice stack of 5) 0.9014 0.7546 0.9132 0.9347 0.8760

Fig. 3 Kidney segmentation results regarding four Thai patients using 2.5D ResUNet (slice stack of 5) trained 
in Google Colab Pro environment
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Fig. 4 Kidney segmentation results regarding four Thai patients using models trained in NVIDIA DGX A100 
environment. From top to bottom are 2.5D ResUNet (slice stack of 3), 2.5D ResUNet (slice stack of 5), 2.5D 
DenseUNet (slice stack of 3), and 2.5D DenseUNet (slice stack of 5)
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patient population or rely on non-medical relevant cues between institutions. Therefore, 
the presented results in this paper might not represent the true performance of the network 
to Thai patient kidney segmentation.

5  Conclusion and future works
In this paper, we propose our study and experiments of using deep learning tech-
niques towards the long-term goal of easing the problem of unnecessary surgery for 
patients with Bosniak category III and IV diagnoses. The current research focuses 
on the very first step towards Bosniak renal cyst classification-deep learning mod-
els for segmenting kidney mass from high-dimensional CT data. To compromise 
computational resources and accuracy, our experimental architectures are based on 
two combined concepts of 2.5D convolution and skip connections. Two architec-
tures are experimented (i.e., 2.5D ResUNet and 2.5D DenseUNet) in two different 
training environments. The experimental architectures are trained and validated on 
the KiTS19 public data set then tested for domain shifting on our CT data of Thai 
patients. Experimental results suggest that training deep learning models in low 
computational resources can significantly hurt the performance. In addition, our 
experimental results show superiority of DenseUNet over ResUNet and there are seg-
mentation accuracy drops regarding domain shifting and regarding Thai patients with 
malignant renal cysts.

To draw a more concrete conclusion regarding Thai patients, more annotated data 
from Thai patients is required. As future works, first, we plan to experiment on trans-
fer learning and fine-tuning, investigating whether it is possible to simply transfer 
knowledge learned from KiTS19 to our data set in a kidney segmentation task. If the 
first experiment cannot yield our desired performance, we are interested in using 
another deep learning technique to learn the conversion between latent variables of 
the two data sets, so that images from these two different domains can be converted 
to match each other. Other interesting alternatives are to explore recently advanced 
techniques such as a multi-view deep neural network [32] to incorporate image slices 
from other scanning axes into consideration, no-reference image quality assessment 
[33] for better image quality evaluation, and image denoising [34] for enhancing the 
quality of each image slice.
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