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1  Introduction
Thanks to the openness of Internet and the easiness of advanced multimedia tools, mul-
timedia contents (e.g., image, video) may undergo certain operations when they are 
shared within the network. Operations include non-malicious actions and malicious 
actions. The non-malicious operations preserve the perceptual content and keep intact 
the understanding of the content, while the malicious operations deliberately distort 
the integrity. Therefore, the former is usually allowable and the latter is unacceptable. 
Traditional integrity authentication methods (e.g., Message Digest, Secure Hashing 
Algorithm) fail to check perceptual content, if both the allowable and unacceptable 
operations are taken into consideration. Hashes generated by those methods are bit-wise 
sensitive and leave no room for the perceptual content preserving actions. Perceptual 
hashing for image or video is an effective way to afford authentication of perceptual 
content, allowing the malicious-free operations happening [1]. It denotes the video by a 
compact string and discerns the secure content from the attacked content.
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A number of perceptual video hashing methods have been proposed until now. 
Because video can be seen as a sequence of images, it is quite meaningful to look at 
methods for image hashing when we study the video hashing. Generally, image hashing 
can be roughly categorized into three types: (1) Image descriptor based methods. These 
methods extract perceptually important features from images and quantize those fea-
tures into final hashes, e.g., histogram [2], Canny descriptors [3]; (2) Image matrix trans-
formation based methods, which decompose image matrix into various components and 
select the most important part to form hashes. Examples include Discrete Cosine Trans-
formation (DCT) [4], Radon transformation [5], etc.; (3) Machine learning based meth-
ods, which try to find correlation between features within high dimensional space, e.g., 
locally linear embedding [6] and core alignment [7].

Compared to image perceptual hashing methods, video hashing methods could incor-
porate the temporal property between sequential frames. Methods can be divided into 
two sections, i.e., spatial domain based and temporal-spatial domain based. The former 
usually chooses or generates representative/key frames for the video. The final hash is a 
concatenation of hashes of representative/key frames. Yang et al. [8] developed a video 
hashing based on speed up robust feature (SURF) descriptor. However, it was for video 
copy detection and was quite sensitive for frame content operations. Xiang et al. [9] used 
mean value of luminance histogram to infer hash value. It was catered for geometric dis-
tortion tolerance and showed strong robustness against content preserving operations.

Perceptual video hashing methods based on temporal-spatial domain generate hashes 
from information of both inter- and intra-frames. Pioneer work of this kind was the 
3D-DCT method [10]. It exhibited good robustness against noise adding, luminance 
enhancement, etc. But its discrimination for content changing manipulations was not 
satisfactory. As for the representative frame research, Esmaeili et al. [11] proposed TIRI 
(Temporally Informative Representative Images) frame construction, which effectively 
fuses a series of consecutive frames. Value of a pixel on the TIRI frame is actually a com-
bination of values of pixels on corresponding positions of those frames. Compared to 
the 3D-DCT method, TIRI method is less time consuming and is able to capture more 
semantic information. Many works have utilized TIRI for video hashing, for instance, 
the saliency video hashing [12] and the visual attention based hashing [13].

Some perceptual video hashing adopted matrix decomposition or machine learning 
methods. For example, Song et al. [14] chose a quantization based hashing, where the 
least quantization error is optimized using iterative methods. It was for video retrieval 
and was paid more attention to robustness. Another type of video hashing is based on 
deep learning method, e.g., multi-model stochastic recurrent neural networks for video 
hashing [15], binary encoder to decoder architecture for self-supervised video hashing 
[16], unsupervised hashing based on semantic structure [17] and cross-modal based 
deep hashing for video [18, 19]. Yang et al. [20] addressed the security issue of hamming 
space search, which improved robustness against the vulnerability of deep learning. 
However, these methods are mainly used for the video retrieval, video captioning and 
visual recognition [21–23]. They are more suitable to handle video semantics processing 
and our work is primarily focused on video perceptual representation.

Perceptual video hashing is widely accepted for its two main characteristics, i.e., 
robustness and sensitivity. Let V denote the video to be hashed, and let H(∙) denote the 
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hash function. Symbol Vsim represents video which are the results of perceptual content 
preserving operations on V. Likewise, symbol Vdif represents those which are the results 
of perceptual content distorting operations. The robustness can be explained as

where pr represents probability, parameters τ and θ1 are small numbers near zero. 
Robustness requires that hash distance between V and Vsim should be as small as pos-
sible. Similarly, sensitivity characteristic can be shown as

where parameter θ2 should be close to zero as much as possible. Sensitivity needs that 
large hash distance between V and Vdif exists. Thus video with content changing can be 
easily detected by comparing its hash to that of the original video.

Different applications have different requirements for the strength of robustness and 
sensitivity. For example, when perceptual hashing is designed for video content retrieval, 
it is better to allow much more robustness than sensitivity. Because video retrieval 
should return as many similar video sets as possible. On the contrary, if video hashing is 
used for content authentication, sensitivity should be preferred. Since video authentica-
tion is to decide whether video content is deliberately manipulated, hash should be sen-
sitive to those operations. As it can be observed from (1) and (2), distance between H(V) 
and H(Vsim) or H(V) and H(Vdif) is compared to a threshold τ. Thus the threshold serves 
as a boundary between robustness and sensitivity. However, to use only a scalar value τ 
to determine the result is not enough, because it neglects the semantics and priori infor-
mation for a specific circumstance.

In this paper we propose a novel perceptual video hashing with maximized robustness 
for content authentication. The idea is illustrated in Fig.  1, where red hollow triangle 
represents feature of original video V, small circles and rectangles represent features of 
Vsim and Vdif, respectively. When we design a video hashing for authentication, we keep 

(1)pr(�H(V )−H(V sim)� < τ) > 1− θ1 0 < θ1 < 1

(2)pr(�H(V )−H(V dif)� ≥ τ ) > 1− θ2 0 < θ2 < 1

Fig. 1  Conceptual illustration of video hashing for authentication with maximized robustness. Red hollow 
triangle represents feature of original video. Small circles and rectangles represent features of similar and 
dissimilar video. The feature offset lambda can define a new boundary shown in green dotted circle, with 
new feature green triangle as its feature center and new radius epsilon 2 as its robustness. Compared with its 
former robustness epsilon 1, the robustness is maximized but without loss of sensitivity
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in mind that we should detect those Vdif as much as possible. But we also need some 
robustness for Vsim. In regard to video security, sensitivity has higher superiority. There-
fore, we only allow robustness flexibility after we are ensured that Vdif could be correctly 
spotted. If we treat the hollow triangle as the center to compare, we could find a maxi-
mized robustness length ε1, with which defines a boundary (i.e., the red dotted circle) 
for sensitivity and robustness. However, if we move the center to solid green triangle by 
a feature adjustment λ, we could find a new robustness length ε2, which is much larger 
than ε1. Thus we obtain an improved robustness without loss of sensitivity. The solid 
green triangle is the new center to compare. The new boundary (i.e., the green dotted 
circle) extends the allowable features space. Therefore, the robustness is maximized but 
without cost of sensitivity. Remaining task is to tactically find parameters λ and ε2.

In our previous paper, we proposed core alignment for image hashing [7]. Although 
there seem connections between these two, several main differences exist. First, moti-
vations are quite different. In our last work, we tried to find the largest discrimination 
between similar and dissimilar contents by minimizing hash distances. In this paper, 
we endeavor to obtain the largest robustness when security is first preferred. Thus this 
approach is more conservative for content authentication when it comes to robustness 
requirement. Second, mathematical formulations and problem solving methods are 
quite different. Method here is to optimize two coefficients simultaneously while previ-
ous method was to find coefficients sequentially. Third, simulation and results are dis-
tinct in terms of open data sets and performances.

The novelty of this paper is that we incorporated the new idea of maximized robust-
ness into perceptual video hashing mathematical problem forming and solving for con-
tent authentication. Instead of treating robustness and sensitivity properties as of equal 
importance, we make sure that sensitivity is first met before we find the robustness. 
The proposed video perceptual hashing method with maximized robustness is show in 
Fig. 2, where hashing is divided into two parts, i.e., learning part and hashing part. In 
the learning part, video sets are composed of original video, together with their vari-
ants under perceptual content preserving and changing operations. After preprocessing, 
we construct features space, including features of original and modified video. We learn 

Preprocessing Features space 
Video

Maximum
Robustness Learning

Features offset

Preprocessing FeaturesVideo

Video Hash 

Learning

Video perceptual Hashing

Hash Function

Fig. 2  Block diagram of video perceptual hashing with maximized robustness. In the learning part, video, 
together with their variants under perceptual content preserving and distorting operations, are preprocessed 
to form the feature space. The maximum feature offset is learned to be regarded as the maximized 
robustness. In the hashing part, a particular video is processed to obtain its feature, and the feature is 
adjusted by the feature offset. Hash function is performed to the feature to generate the final hash
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from those features to achieve maximized robustness, which results in features offset. 
In the video hashing part, when a video is to be perceptually hashed, same operations 
of preprocessing and feature extraction are conducted. The hash function considers the 
learned adjustment and takes video’s feature as input to produce the final hash.

The rest of this paper is organized as follows. In Sect. 2 we formulize the mathemati-
cal problem of video hashing with maximized robustness as a constrained optimization, 
where variables of features offset and robustness are explained. We solve the problem in 
Sect. 3 by Fish School Search algorithm, where two variables are learned simultaneously. 
In Sect. 4 we present simulation results and discussion. Finally, we conclude the paper in 
Sect. 5.

2 � Video perceptual hashing problem formulization
Although various video formats are available, we only consider raw video for perceptual 
hashing method research. A raw video is a temporal sequence of frames, which do not 
undergo compression. If the video to be hashed is a compressed one, we adopt advanced 
multimedia processing tools to transform it into raw format. Considering that video may 
be presented in different color spaces and luminance vector carries the most significant 
perception information, we choose only luminance component for perceptual hashing.

We normalize the input video in terms of frame size and frame rate. Each frame is 
rescaled into width W and height H. Frame rate is re-sampled into F frames per sec-
ond. Then we adopt method of luminance difference between adjacent frames to group 
frames into different sets, where each set denotes a scene [24]. Note that preprocess-
ing operations on the video, i.e., frame size scaling, rate sampling and scene grouping, 
improve the robustness to certain extent.

Let ϒ denote a preprocessed video with ϒ = {v1, · · · , vk} , where vk represents the kth 
group. The ith group consists of a frame set, denoted by {fi1, · · · , fil} . In order to effi-
ciently obtain hash of each group, we adopt TIRI method to represent those frames 
within a group. The TIRI representative frame is a linear combination of frames, which 
is defined as:

where symbol Tk(w, h) denotes value of position (w, h) on the kth TIRI frame with 
1 ≤ w ≤ W  and 1 ≤ h ≤ H , symbol fkp(w, h) denotes luminance value of position (w, h) 
on the pth frame within kth group. Coefficient wp is a weight for the pth frame and it is 
determined by γ p . According to the empirical study, TIRI frame shows the best repre-
sentative performance when γ is set 0.6 [11]. In our method, video hash is made up of 
representative frames’ hash. The hash of a video is the concatenation of hashes of all 
TIRI frames. Note that videos with different number of representative frames have dif-
ferent hash code length. But length of each representative frame is the same.

In regard to find the best features offset for all video, we consider all TIRI 
frames of whole training video. We denote all representative frames by a set 
T,T = {T 1, · · · ,T i, · · · ,Tn} , which means that total n TIRI frames are generated 
for n groups of original video in the training part. For each frame, we extract its 

(3)Tk(w, h) =

l
∑

p=1

wpfkp(w, h)
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feature and denote it by symbol ϕ . Original feature sets is denoted by ΦO , with 
ΦO = {ϕO

1 , · · · ,ϕ
O
i , · · · ,ϕ

O
n } . Then, for each video, we conduct content preserv-

ing and distortion operations. A number of versions for each video are obtained. 
In order to describe the notations more clearly, we allow the number of operations 
on each group to be the same. Assume numbers of content preserving and distort-
ing operations on video are P and Q, respectively, then for each original representa-
tive frame’s feature, there are P and Q features for those operations. We denote 
features under content preserving operations by ΦA , ΦA = {ϕA

1 , · · · ,ϕ
A
i , · · · ,ϕ

A
n } . 

Similarly, we denote features under content distorting operations by ΦD , 
ΦD = {ϕD

1 , · · · ,ϕ
D
i , · · · ,ϕ

D
n } . Note that we have 

∣

∣ϕA
i

∣

∣ = P and 
∣

∣ϕD
i

∣

∣ = Q , where symbol 
|·| means cardinality.

Now we have the features space of {ΦO ∪ΦA ∪ΦD} in the training part. We denote 
the variables of features offset and robustness by � and ε , respectively. Then the 
question to find the maximized robustness can be written as follows:

where the objective is to maximize the robustness. Variables � and ε define a feature 
space, which provides allowable perceptual content preserving operations’ conse-
quences. The first constraint requires that for every feature belonging to the content dis-
torting video, it should maintain a distance larger than the robustness. The distance is 
measured between the feature � and the improved feature. Thus by comparing the dis-
tance, we are able to detect those content distorting video. The second constraints needs 
that the two variables should be valid for every video group, which states that the result 
of robustness is the consensus of all circumstances.

An interesting point to look at is that we do not include in the constraints the 
distance between the feature of content preserving video and the improved feature. 
Two cases of the distance exist, which are as follows:

The first one implies that for certain feature of space ΦA , its distance to the 
improved feature is larger than the robustness. This scenario means that although 
the feature is indeed an allowable feature from content preserving operations, it 
still would be judged dissimilar because security requirement is more enhanced by 
a newly defined boundary. We call circumstance of (5) unachievable robustness. On 
the contrary, circumstance of (6) says that some feature of space ΦA remains in the 
allowable feature space. This is called achievable robustness. Therefore, we claim 
that our perceptual video hashing is quite conservative and it emphasizes much 
more on the security, which is the requirement for our purpose to authenticate video 
content.

(4)

max �ε�

s.t.
∥

∥

∥
ϕ − (ϕO

i + �)

∥

∥

∥
> �ε� ∀ϕ ∈ ϕD

i

1 ≤ i ≤ n

(5)
∥

∥

∥
ϕ − (ϕO

i + �)

∥

∥

∥
> �ε� ∃ϕ ∈ ϕA

i

(6)
∥

∥

∥
ϕ − (ϕO

i + �)

∥

∥

∥
≤ �ε� ∃ϕ ∈ ϕA

i
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3 � Optimization problem methods
Recall that in the constrained optimization problem of (4), two variables are to be 
found, i.e., features offset and robustness. The robustness variable exist both in the 
objective function and the first constraint, while features offset only appears in the 
constraint. The maximized robustness is obtained once we find the appropriate fea-
ture offset. As for our constrained problem solution, traditional deterministic meth-
ods are not applicable, since derivatives of the objective and inequality constraint are 
hard to find. We look at these two variables from a stochastic perspective. The fea-
tures offset is brought about by human eyes’ adjustment to different types of allow-
able operations with different strengths upon the original video content. To some 
extent the adjustment could be thought of the result of various noises on the original 
feature. A noise represents a kind of operation on the content. Therefore, we use a 
stochastic way to solve the problem.

Considering the specific characteristics of the problem, we adopt fish school search 
algorithm to tackle the optimization. The fish school search algorithm imitates food 
finding behavior of fish schools [25]. The population based algorithm has been widely 
used to find the best solution in various optimization applications. It feeds the fish and 
fish acts both individually and collectively. The fish swim toward the food according to 
the positive gradient of fitness function. Each fish in the school is treated as a poten-
tial solution to the problem. Fish swims based on the local and collective information. 
Because we need to find two variables, we define two kinds of fish school according to 
problem. However, these two schools are correlated by the first constraint. We define 
individual fish �j and εj for features offset and robustness, respectively. Sizes of both 
schools are equal to M. During each of iteration, fish firstly moves as follows:

where rand (− 1, 1) generates a random number within range (− 1, 1), stepind1 and 
stepind2 are two coefficients used to control displacement of the movement. Symbols 
t + 1 and t represent the count after and before the individual movement, respectively. 
The movement is valid on condition that the first constraint is achieved. Otherwise, fish 
needs to remain the position of iteration t.

Then fish is updated through collective-instinctive movement. Individual fish is 
moved by an average movement, which is calculated as follows:

where symbol �ε◦j  stands for fitness enhancement achieved and 
�ε◦j =

∥

∥εj(t)
∥

∥−
∥

∥εj(t − 1)
∥

∥ . Symbol �εj stands for movement displacement for the 
jth fish and �εj = εj(t)− εj(t − 1) . Each fish is updated by the average movement as 
follows:

(7)�j(t + 1) = �j(t)+ rand(−1, 1)× stepind1

(8)εj(t + 1) = εj(t)+ rand(−1, 1)× stepind2

(9)I1 =

M
∑

j=1

�εj�ε◦j

M
∑

j=1

�ε◦j
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Accordingly, we define the average movement for features offset fish school as follows:

Each fish �j is updated as:

Also we need to find the collective-volitive movement for both fishes. Barycenters are 
calculated as follows:

where B1 stands for the barycenter of robustness fish school and wj(t) stands for feeding 
weight of the jth fish. The weight is calculated as follows:

where max(
∥

∥εj
∥

∥) represents the maximized value of fitness function variation. Note that 
the weight is bounded by Wscale and it varies from 1 to Wscale. Initial values of all weights 
are set to Wscale. If total robustness fish weight has improved from last iteration, each fish 
is moved towards the barycenter according to (15). Otherwise, each fish is moved away 
from the barycenter according to (16).

where coefficient stepvol1 is used to control the displacement movement like stepind1. 
Similarly, we calculate the barycenter for features offset fish school as follows:

The features offset fish is moved towards or far away from the barycenter on the same 
condition of robustness fish. The movement displacement is as follows:

(10)εj(t + 1) = εj(t)+ I1

(11)I2 =

M
∑

j=1

��j�ε◦j

M
∑

j=1

�ε◦j

(12)�j(t + 1) = �j(t)+ I2

(13)B1 =

M
∑

j=1

εj(t)wj(t)

M
∑

j=1

wj(t)

(14)wj(t + 1) = wj(t)+
�ε◦j

max(
∥

∥εj
∥

∥)

(15)εj(t + 1) = εj(t)− stepvol1rand(0, 1)
εj(t)− B1(t)

∥

∥εj(t)− B1(t)
∥

∥

(16)εj(t + 1) = εj(t)+ stepvol1rand(0, 1)
εj(t)− B1(t)

∥

∥εj(t)− B1(t)
∥

∥

(17)B2 =

M
∑

j=1

�j(t)wj(t)

M
∑

j=1

�j(t)
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After certain number of iterations, the algorithm stops and features offset with the 
maximized robustness is returned as the optimal solution. Note that in our hashing opti-
mization, features of ΦA are not included. However, they provide a valuable clue to ini-
tialization of fishes. In practice, we choose the minimal difference between the original 
feature and the allowable feature to be the initial value of feature offset fish �j . The mini-
mum distance is used to set the the initial value of robustness fish εj . They are calculated 
as follows:

The overall searching algorithm is described in Fig. 3, where the inequality constraint 
of (4) is enforced upon every run of fish updates. The output is the optimal result of fea-
tures offset and robustness. Note that for these two fishes, the robustness fish with the 
maximum fitness value is what we are looking for. Thus this fish is regarded as the maxi-
mized robustness and its corresponding features offset fish is chosen to be the optimal 
features offset. The optimal features offset obtained are then used for features adjust-
ment in the video perceptual hashing part.

4 � Results and discussion
We validate our hashing method based on video which are downloaded from an open 
video database, i.e., open video project. The database is maintained by interaction design 
laboratory of University of North Carolina Chapel Hill. It contains various types of 
video, in terms of contents formats and duration. We download 50 video for our simula-
tion. Contents of downloaded video include education, history, speech and documen-
tary. Formats include MPEG-1 and MPEG-2. Durations include one minute, one to two 
minutes, two to five minutes and five to ten minutes.

Video are first preprocessed before they are input to the hashing method. We normal-
ize video frame size as 320 × 240 and frame rate as 10 frames per second. By comparing 
luminance difference, we divide video frames into various groups. Each group corre-
sponds to a certain perceptual understanding for humans. Then we calculate TIRI frame 
for every group. We randomly choose 25 video for training and the remaining is used for 
testing. We implement the simulation by tool of Matlab with version R2012a on a com-
puter with 8 GB memory and 3.9 GHz CPU.

(18)�j(t + 1) = �j(t)− stepvol2rand(0, 1)
�j(t)− B2(t)

∥

∥�j(t)− B2(t)
∥

∥

(19)�j(t + 1) = �j(t)+ stepvol2rand(0, 1)
�j(t)− B2(t)

∥

∥�j(t)− B2(t)
∥

∥

(20)ĩ = arg min
i

∥

∥

∥
ϕO
i − ϕA

i

∥

∥

∥

(21)�j = ϕO
ĩ
− ϕA

ĩ

(22)εj =

∥

∥

∥
ϕO
ĩ
− ϕA

ĩ

∥

∥

∥
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In order to mimic the operations video may undergo over the network, we con-
duct content preserving operations and content distorted attacks on the video. TIRI 
frames are generated for the changed video. The content preserving operations are 
listed as follows.

•	 Rotation with clock-wise 2, 5, 10 and 15 degrees
•	 Scaling with factor of 0.6, 0.8, 1.2 and 1.5
•	 Translation by first scaling the frame with factor of 0.5 and then shifting it hori-

zontally and vertically with coordinates adjustment of (− 10, 0), (10, 0), (0, 10), 
(0, − 10) and (10, 10)

•	 Gaussian noise adding with mean zero and variance of 0.01, 0.03 and 0.05
•	 Salt and pepper noise adding with density of 0.01, 0.02, 0.03, 0.04 and 0.05
•	 Average filtering with filter size of 2 × 2, 4 × 4 and 6 × 6.
•	 Intensity changing with value of 0.90, 0.95, 1.10 and 1.20
•	 Median filtering with filter size of 2 × 2, 4 × 4, 5 × 5 and 6 × 6.

Input: Features space }O A D{ U UΦΦ ΦΦ ΦΦ , number of TIRI frames n, distinctive 

displacement control coefficients stepind1 and stepind2, volitivie displacement control 
coefficients stepvol1 and stepvol2, size of fish schools M, maximum number of iterations 
T, weights boundary Wscale.

Step 1. Initialize features offset fish jλλ and robustness fish jεε according to (21)

and (22), iteration variable t=0.
Step 2. Refresh individual fish movement. Update features offset fish and 

robustness fish according to (7) and (8). If for certain fish the inequality constraint does 
not hold, then update is invalid. Fish equals to that of last iteration.

Step 3. Refresh collective-instinctive fish movement. Calculate the average fish 
movements I1 and I2 according to (9) and (11). Update the fishes according to (10) and 
(12). If for certain fish the inequality constraint does not hold, then this round of update 
is invalid. Fish equals to that of last iteration.

Step 4. Refresh collective-volitive fish movement. Calculate the barycenters 
according to (13) and (17). Update the features offset fish according to (15) and (16). 
Update the robustness fish according to (18) and (19). If for certain fish the inequality 
constraint does not hold, then update is invalid. Fish values remain the same as that of 
last iteration.

Step 5. Increase the iteration variable t=t+1.
Step 6. If t<T, then go to step 2. Otherwise stop fish school searching.

Output: Optimal features offset jλλ with maximum value of jεε .

Fig. 3  Algorithm for finding optimal features offset and robustness. Here show the main steps for 
optimization problem solving. Inputs are features space and some coefficients. Outputs are the optimal value 
for feature offset and maximum robustness. The steps include fish initialization, fish individual refresh, fish 
collective-instinctive movement and fish collective-volitive movement
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Attacks that deliberately change the perceptual contents of video are as follows.

•	 Block overlaying on original frames by three types, i.e., white, black and Mosaic 
blocks, each type has two blocks of 50 × 50, two blocks of 100 × 100 and one block of 
200 × 200, respectively.

•	 Pasting on original frames by a totally different image, with randomly chosen posi-
tion and size of content being pasted to be 10%, 20%, 30% and 40%.

•	 Block shuffling by dividing a frame into blocks of equal size and randomly rearrang-
ing them to form a new frame, with number of blocks to be 2, 4, and 16.

We show an example of video perceptual content changing manipulations in Fig. 4, 
where (a) is the original frame, (b) is the result of block overlaying by one Mosaic of 
200 × 200, (c) is the result of pasting by an image with 20% content being pasted and 
(d) is the result of block shuffling with 16 equal blocks.

In regard to frame feature representation, we choose Radon transformation to form 
feature vector for each TIRI frame. Radon transformation has superior advantage 
to describe image feature, which shows strong robustness over rotation, scaling and 
translation operations [5, 26]. We apply discrete Fourier transform to these coeffi-
cients and choose norm of transform as TIRI frame feature. In our experiment, angle 
is chosen to be 0 to 179 degrees with one degree step and order is chosen to be one to 
six. Length of our TIRI feature vector is 546 with each element being a real number. 
We also adopt median filtering method to generate binary hash value. Therefore, our 
hash length for TIRI frame is 546 bits.

Fig. 4  Example of attacks of content distortion manipulations. a is original frame, b is block overlaying, c is 
pasted and d is reshuffled. Here shown are the examples of attacks on the frames. The upper left panel is the 
original frame; the upper right panel is the result of block overlaying attack. The lower left panel is the result 
of being pasted and the lower right panel is the result of reshuffling attack



Page 12 of 17Ma and Xing ﻿EURASIP Journal on Image and Video Processing         (2021) 2021:36 

We choose metrics of true positive rate (PT) and false positive rate (PF) to compare the 
performance of methods. Definitions of PT and PF are as follows.

The claimed authentic or unauthentic TIRI frames mean that those frames are judged 
secure or insecure by hashing methods. On the contrary, the correctly claimed authen-
tic or incorrectly claimed unauthentic TIRI frames mean that those frames judged by 
hashing methods secure or insecure are actually secure, whose understanding is sup-
ported by a priori knowledge. PT numerically shows the robustness to some extent, while 
PF shows the security of hashing methods correspondingly. In the simulation we adopt 
ROC (Receiver Operation Curve) to demonstrate performances of robustness and secu-
rity simultaneously.

We choose for performance comparison three related hashing methods, i.e., Radon-
based [5], TIRI + DCT [11] and LSH-core method [7]. Since our hashing method adopt 
Radon feature as TIFI feature vector, we chose a hashing method also based on Radon 
feature to evaluate. The chosen Radon-based method utilized the third order moment of 
Radon transformation to obtain frame’s statistical feature and adopted the first 15 DFT 
coefficients to construct final hash. Its hash length was 150 bits. We include TIRI + DCT 
method here because it also used TIRI representative frames to deal with large redun-
dant video frames. It differs from ours in that DCT was conducted on TIRI frame blocks 
and two coefficients of each block are concatenated to form final hash with 640 bits. 
LSH-core method was distinguished in that its object function neglected the strict first 
priority of security as in the proposed maximized robustness. It adopted learning to find 
best feature core and applied LSH to reduce the dimensionality, resulting a hash length 
of 350 bit.

4.1 � Experimental results

We show performance comparisons in Fig. 5, where ROC curve for all fours methods are 
drawn. The x-axis and y-axis denote PF and PT, respectively. Note that although 32 simi-
lar and 16 dissimilar versions of TIRI frames exist, we show the averaged values under all 
operations in Fig. 4 to understand the whole performance. Note that in ROC compari-
son the higher the curve, the better the performance. For example, when we set value 
of PT at 0.95, values of PF for our method, LSH-core, Radon-based and TIRI + DCT are 
0.03, 0.06, 0.07 and 0.10, respectively. When we constrain PF to be value of 0.05, we can 
achieve PT value of 0.97. Values for the others are 0.93, 0.91 and 0.90, respectively. Thus 
it demonstrates that our method has maximized robustness when security is limited.

In order to analyze the effects of various perceptual content preserving operations 
upon the robustness and sensitivity, we present brief results in Table 1, where true posi-
tive rate and false positive rate performances of four methods are shown. For each type 
of operations, we show the averaged results across different coefficients settings. Val-
ues of PF and PT are obtained when optimal thresholds are used for each type. It can be 

(23)PT =
number of correctly claimed authentic TIRI frames

number of claimed authentic TIRI frames

(24)PF =
number of incorrectly claimed unauthentic TIRI frames

number of claimed unauthentic TIRI frames
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noted that our method has much higher true positive rate than those of the other three 
methods as for each operation. Moreover it has lower false positive rate. This implies 
that our method can achieve more robustness but still can preserve strong sensitivity.

Because video content authentication is the primary goal for hashing method, it is 
quite meaningful to compare the false positive rate performance under various attacks. 
We show the results in Fig. 6, where values of PF are obtained when optimal thresholds 
are set for all methods. Figure  6a–c are for blocks overlapping attacks of white, black 
and Mosaic type, respectively. The x-axis for them denotes index of block size, i.e., No. 
1, 2 and 3 representing two blocks of 50 × 50, two blocks of 100 × 100 and one block 
of 200 × 200, respectively. Figure  6d is for pasting attacks, where x-axis denotes past-
ing type, i.e., No. 1 ~ 4 representing pasting content of TIRI image being 10%, 20%, 30% 
and 40%, respectively. As for the block reshuffling attacks, all four methods can detect 
manipulations with value PF of zero.

PF

PT

0 0.1 0.2 0.3 0.4
0.6

0.7

0.8

0.9

1

Our method
LSH-core
Radon-based
TIRI+DCT

Fig. 5  ROC curves of performances for four hashing methods. Here shown are the performance comparison 
of four hashing methods in form of ROC curves. The false positive rates and true positive rates are the x-axis 
and y-axis, respectively. Besides our method, three other methods, i.e., LSH-core, Radon-based and TIRI + DCT, 
are included. The higher the curve is, the better the hashing method in terms of robustness and security

Table 1  Robustness and sensitivity performances of the perceptual content preserving operations

Here shown in this table are the false positive rates and true positive rates for all four methods under various operations. The 
listed each operation has the averaged results for each method at each row. The higher the true positive rate, the better the 
robustness; likewise, the lower the false positive rate, the better the sensitivity the method has

Methods Our method LSH-core Radon-based TIRI + DCT

PF (%) PT (%) PF (%) PT (%) PF (%) PT (%) PF (%) PT (%)

Rotation 2.17 100 2.28 100 2.51 100 2.64 100

Scaling 2.31 100 2.35 100 2.47 99.72 2.49 98.17

Translation 2.25 100 2.41 99.85 2.61 98.15 2.81 97.16

Gaussian noise 2.31 99.80 2.51 99.11 2.63 98.04 2.71 97.12

Salt and pepper 2.34 99.84 2.61 98.99 2.68 97.85 2.83 97.56

Average filtering 2.51 99.15 2.71 98.14 2.78 96.62 3.12 96.10

Intensity changing 2.43 98.84 2.54 98.17 2.58 97.84 2.65 97.27

Median filtering 2.48 98.57 2.98 97.16 3.08 95.10 3.47 94.02
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It is observed that our method has the lowest value of PF among all methods, which 
states that our method is superior to others when video content security is required. 
For instance, our method has false positive rate of 0.06 for two 100 × 100 white block 
overlapping, while LSH-core, Radon-based and TIRI + DCT need 0.11, 0.14 and 0.16, 
respectively. From Fig. 5a–c it is seen that curves for these three types block overlap-
ping are not fundamentally different, which means that types of blocks do not have 
distinct effects on the false positive rates.

4.2 � Discussion

From Fig. 5 it can be seen that our method is the most secure under same robustness 
requirements. In other words, robustness is maximized in our hashing method com-
pared with other methods. Note that TIRI + DCT has the lowest ROC curve in Fig. 4, 
which means it has the highest false positive rates given the robustness requirement. 
The reason may be that this method only chooses low frequencies of DCT coefficients 
and those coefficients could capture quite coarse perceptual information. When this 
method is used for content authentication, large useful information cannot be implied 
in the hash value, leading to higher value of false positive rates.
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Our Method
LSH-core
Randon-based
TIRI+DCT
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Type of white block overlapping attacks
(a)
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PF PF

Type of black block overlapping attacks
(b)

Type of Mosaic block overlapping attacks
(c)

Type of pasting attacks
(d)

Fig. 6  False positive rate comparisons across different types of attacks. Here shown are the comparisons 
of false positive rate for four methods under different types of attacks. The upper left panel is for the type 
of white block overlapping attacks with block size growing; the upper right panel is for the black block 
overlapping attacks with block size growing; the lower left panel is for the white Mosaic overlapping attacks 
with block size growing; the lower right panel is for the pasting attacks with pasting area growing
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It can also be observed that our method has 3% security improvement compared 
with LSH-core method when PT is 0.95. This is due to that our hashing is more con-
servative on security criteria. As is stated in the constrained problem optimization, 
security requirement is the first priority. However, it can be seen from Fig.  5 when 
we allow no false positive rates, we could obtain nearly similar values of PT for our 
method and LSH-core method. This can be understood that although we strengthen 
the security requirement for perceptual hashing, loss of robustness does not happen. 
On the contrary, since we try to achieve the best feature offset to adjust final hash, we 
obtain slightly improved robustness.

With regard to performances comparisons of perceptual content preserving opera-
tions in Table 1, it is meaningful to analyze different types of operations in terms of 
robustness and sensitivity. Overall it can be noted that operations of Rotation, Scaling 
and Translation exhibit much better true positive rate performances than the remain-
ing operations for all four methods. This can be understood that these superior per-
formances result from the Radon feature, which has strong robustness against the 
three operations. However, false positive rate performances across the four methods 
have much more obvious differences. For instance, as for Translation, our method has 
about 7%, 16% and 24% improvements for LSH-core, Radon-based and TIRI + DCT, 
respectively. It means that our method dose not loss much sensitivity compared with 
the other methods. As for the Gaussian noise and the Salt & Pepper, they have slightly 
similar effects on the performance, because these two methods cause similar conse-
quences on pixels values of TIRI frames. Similarly, all four methods show good results 
as for the Intensity changing. As for the Average and Median filtering, our method 
and LSH-core show much better results than the other two. This is due to that the fea-
ture to be considered as center indeed needs to be adjusted in order to maintain the 
best differentiation degree of feature space.

From Fig. 6, it can be seen that our method exhibits more effective when it comes 
to content altering manipulations. It can detect more unauthentic TIRI frames than 
other methods. Some interesting phenomenon can be observed here. First, when sizes 
of blocks or pasting contents grow, false positive rates decrease for all four methods. 
This can be understood that when overlapping blocks become larger, more perceptual 
contents of frames are distorted and it is much easier for hashing methods to detect 
those manipulations. In other words, when attacks on frames become fiercer, effects 
of those attacks surpass the thresholds of hash value comparison and unauthentic 
frames results are triggered. Second, our method has relatively lower false positive 
rates. The reason is that we take into consideration the robustness and security prior 
knowledge when we form the perceptual content hashing problem. Moreover, we put 
the security as the constraint condition. Robustness is divided into achievable and 
unachievable ones as in (5) and (6). Thus it shows much better performance when we 
authenticate video content.

Note that in all four methods, only our method and LSH-core need training to 
obtain optimal coefficients. In our simulation, we record the training and testing time 
for all video of four methods. The average testing time for one TIRI frame is 1.41 s, 
1.35  s, 1.14  s and 1.09  s for our method, LSH-core, Radon-based and TIRI + DCT, 
respectively. Average training time is 2.84 s and 2.45 s for our method and LSH-core. 
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Although our method performs well in terms of security and robustness, it is slightly 
more time consuming, especially when real-time hashing requirement is needed.

5 � Conclusion
In this paper we have proposed a video perceptual hashing method to authentication 
video content based on maximized robustness idea. The proposed maximized robustness 
means that video hashing should obtain its largest robustness property only the security 
requirement is first met. We have addressed the ambiguous problem between security and 
robustness properties in video hashing. First, we formulate the mathematical problem as a 
constrained optimization, where two coefficients, i.e., features offset and robustness should 
be decided. The optimization utilizes a priori knowledge of to what extent similar or dissim-
ilar video under content preserving or manipulating operations should be. The constraints 
in the optimization strictly define the security characteristics of video hashing, which tells 
how robustness the hashing could achieve. The optimization is learned by a population 
based solving method. Two coefficients are learned simultaneously. We evaluate the pro-
posed method on a video set and comparisons are conducted in terms of robustness and 
security. Experimental results show the superiority of our hashing method when it comes 
to video content authentication. Future work would be focused on video perceptual hashing 
based on deep learning, which takes into consideration the relationship between low-level 
and high-level semantics to enhance robustness and security.
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