
EURASIP Journal on Image
and Video Processing

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22
https://doi.org/10.1186/s13640-021-00562-6

RESEARCH Open Access

Exploiting prunability for person
re-identification
Hugo Masson1†, Amran Bhuiyan1,2*† , Le Thanh Nguyen-Meidine1†, Mehrsan Javan2, Parthipan Siva2,
Ismail Ben Ayed1 and Eric Granger1

*Correspondence:
amran.apece@gmail.com
†Hugo Masson, Amran Bhuiyan and
Le Thanh Nguyen-Meidine
contributed equally to this work.
1LIVIA, Department of Systems
Engineering, École de technologie
supérieure, Montreal, Canada
2SLIQ Labs, Sportlogiq Inc.,
Montreal, Canada

Abstract

Recent years have witnessed a substantial increase in the deep learning (DL)
architectures proposed for visual recognition tasks like person re-identification, where
individuals must be recognized over multiple distributed cameras. Although these
architectures have greatly improved the state-of-the-art accuracy, the computational
complexity of the convolutional neural networks (CNNs) commonly used for feature
extraction remains an issue, hindering their deployment on platforms with limited
resources, or in applications with real-time constraints. There is an obvious advantage
to accelerating and compressing DL models without significantly decreasing their
accuracy. However, the source (pruning) domain differs from operational (target)
domains, and the domain shift between image data captured with different
non-overlapping camera viewpoints leads to lower recognition accuracy. In this paper,
we investigate the prunability of these architectures under different design scenarios.
This paper first revisits pruning techniques that are suitable for reducing the
computational complexity of deep CNN networks applied to person re-identification.
Then, these techniques are analyzed according to their pruning criteria and strategy
and according to different scenarios for exploiting pruning methods to fine-tuning
networks to target domains. Experimental results obtained using DL models with
ResNet feature extractors, and multiple benchmarks re-identification datasets, indicate
that pruning can considerably reduce network complexity while maintaining a high
level of accuracy. In scenarios where pruning is performed with large pretraining or
fine-tuning datasets, the number of FLOPS required by ResNet architectures is reduced
by half, while maintaining a comparable rank-1 accuracy (within 1% of the original
model). Pruning while training a larger CNNs can also provide a significantly better
performance than fine-tuning smaller ones.

Keywords: Deep learning, Convolutional neural networks, Complexity, Pruning,
Domain adaptation, Person re-identification

1 Introduction
Deep learning (DL) architectures like the convolutional neural network (CNN) have
achieved state-of-the-art accuracy across a wide range of visual recognition tasks, at the
expense of growing complexity (deeper and wider networks) that require more train-
ing samples and computational resources. In order to deploy these architectures on

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-021-00562-6&domain=pdf
http://orcid.org/0000-0002-2069-0753
mailto: amran.apece@gmail.com
http://creativecommons.org/licenses/by/4.0/

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 2 of 31

compact platforms with limited resources (e.g., embedded systems, mobile phones,
portable devices), and for real-time processing (e.g., video surveillance and monitoring,
virtual reality), their time and memory complexity and energy consumption should
be reduced [1]. Consequently, there is a growing interest in effective methods able to
accelerate and compress deep networks.
Providing a reasonable trade-off between accuracy and efficiency has become an impor-

tant concern in person re-identification (ReID), a key function needed in a wide range of
video analytics and surveillance applications. Systems for person ReID typically seek to
recognize the same individuals that previously appeared over a non-overlapping network
of video surveillance cameras (see illustration in Fig. 1). These systems face many chal-
lenges in real-world applications that are related to either the image data or the network
architecture. Data-related challenges that affect the ReID accuracy include the limited
availability of annotated training data, ambiguous annotations, domain shifts across
camera viewpoints, limitations of person detection and tracking techniques, occlusions,
variations in pose, scale and illumination, and low-resolution images.
To address these issues, state-of-the-art DL models (e.g., deep Siamese networks) for

person ReID often rely CNNs for feature extraction to learn an embedding in end-to-
end fashion, where similar image pairs (with the same identity) are close to each other,
while dissimilar image pairs (with different identities) are distant from each other [2–10].
While state-of-the-art approaches can provide a high level of accuracy, achieving this per-
formance comes with the cost of millions or even billions of parameters, a challenging
training procedure, and the requirement for GPU acceleration. For instance, the ResNet50
CNN [11], with its 50 convolutional layers, contains about 23.5M parameters (stored in
85.94MB ofmemory) and requires 6.3 billion floating point operations (FLOPs) to process
a color image of size 256× 128× 3. The complexity of these networks limits their deploy-
ment in many real-time applications, or on resource-limited platforms. Consequently,

Fig. 1 Typical person re-identification system

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 3 of 31

there has been a great deal of interest by the computer vision and machine learning com-
munities to develop methods able to accelerate and compress such networks, as well as
other DL architectures, without compromising their predictive accuracy.
The time complexity of a CNN generally depends more on the convolutional layers,

while the fully connected layers contain the most of the parameters (memory complex-
ity). Therefore, the CNN acceleration methods typically target lowering the complexity of
the convolutional layers, while the compression methods usually target reduced complex-
ity of the fully connected layers [12, 13]. State-of-the-art approaches for acceleration and
compression of deep neural networks can be divided into five categories—low-rank fac-
torization, transferred convolutional channels, knowledge distillation, quantization, and
pruning.
Low-rank factorization approaches [14–19] accelerate CNNs by performing matrix

decomposition to estimate information parameters of a network. However, low-rank
approaches suffer from a number of issues—computationally expensive matrix decom-
position, layer-by-layer low-rank approximation that diminishes the possibility of global
compression, and extensive model retraining to achieve convergence. Some network
acceleration and compression approaches [20–23], categorized as transferred convolu-
tional channels, design special structural convolutional channels to reduce the parameter
space, which eventually improves computational efficiency, but transfer assumptions are
sometimes too strong that makes the learning process unstable.
Knowledge distillation approaches [24–27] train a smaller or shallow deep network

(the student) using distilled knowledge of a larger deep network, called teacher. These
approaches can yield improvements in terms of sparsity and generalization of the student
networks, but can only be applied to classification tasks and the bounded assumption of
this approach leads to inferior performance while comparing to other types of approaches.
A deep neural network can be accelerated by reducing the precision of its parame-
ters. Using quantization approaches, each parameter of a network is represented with a
reduced bit rate, either by reducing the precision, employing a lookup table, or combining
similar values. Most of the quantization approaches [12, 28, 29] require extra compu-
tational time to access a look up table, or for decoding such that the original value is
restored. In contrast, pruning seeks to reduce the number of connections or retrain either
the whole or part of the network with a freshly trained replacement. Pruning methods
typically focus on selecting and removing the weights or channels with the least impact
on performance. Thus, in addition to accelerating and compressing the network, pruning
methods can provide the additional benefits such as addressing the overfitting problem
and thus improve generalization. Therefore, pruning approaches have drawn a great deal
of attention from the network compression community. Challenges of pruning include
the lack of data for pruning during the fine-tuning phase, the computational complexity
associated with retraining after a pruning phase, and the reduction of capacity to learn
of a model, which can impact the accuracy when the learning step is done on the pruned
model.
This paper focuses on pruning techniques [13, 30–33] since they are among the most

widely used for acceleration and compression of deep neural networks, and have been
shown their effectiveness on well-known CNNs, and for several general image classifica-
tion problems like CIFAR10, MNIST, and ImageNet. State-of-the-art pruning techniques
can be categorized according to their pruning criteria to select channels, and to their

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 4 of 31

strategy to reduce channels, and are suitable for compressing DL models like Siamese
networks for applications in person ReID. In particular, state-of-the-art techniques can
be categorized using criteria based on weights and on feature maps. We also distinguish
techniques according to pruning strategy; pruning techniques can also be distinguished
among—those that (1) prune once and then fine-tune, (2) prune iteratively on trained
model, (3) prune using regularization, (4) prune by minimizing the reconstruction errors,
and (5) prune progressively.
This paper revisits the pruning techniques that are suitable for reducing the computa-

tional complexity of CNNs applied to person ReID. These techniques are then analyzed
according to their pruning criteria and strategy and according to different design scenar-
ios. Different design pipelines or scenarios are proposed to leverage these state-of-the-art
pruning methods during pretraining and/or fine-tuning. A typical design scenario con-
sists of four stages: (1) training a CNN with a large-scale dataset from the source domain
(i.e., ImageNet), (2) prune the trained large model based on some criterion to select
channels to be eliminated, (3) retrain the pruned network to regain the accuracy, and
finally, (4) fine-tune the retrained network using a limited dataset from the target appli-
cation. A common assumption with this design scenario is that training a large and
over-parameterized CNNs, using a large-scale dataset, is necessary to provide a discrim-
inant feature representation. The pruning process used to select and reduce the network
will yield a set of redundant channels that does not significantly reduce accuracy. Under
this scenario, a CNN for ReID would therefore over-train on a smaller network from
scratch [33–36]. Thus, most of the approaches in literature tend to prune channels of a
fine-tuned network, rather than a pretrained network. This paper presents other design
scenarios that apply when pruning networks that have been pretrained on large dataset,
and that require a fine-tuning to a given target domain.
Finally, this paper presents an extensive experimental comparison of different pruning

techniques and relevant design scenarios on three benchmark person ReID datasets—the
Market-1501 [37], CUHK03-NP [38], and DukeMTMC-reID [39]. Pruning techniques are
compared in terms of accuracy and complexity on different DL architectures with ResNet
feature extractors, with different ReID applications in mind.
The rest of the paper is organized as follows. Section 2 provides some background on

DLmodels for person ReID. Section 3 provides a survey of the state-of-the-art techniques
for pruning CNNs. Finally, Sections 5 and 6 described the experimental methodology
(benchmark datasets, protocol, and performance measures) and comparative results,
respectively.

2 Deep neural networks for person re-identification
State-of-the-art techniques for person ReID mostly rely on two types of losses: met-
ric learning loss and multi-class classification loss. With the first type, a dataset with
images from different individuals is learned using a Siamese network that optimizes a
metric loss function (such as contrastive loss, triplet loss, quadruplet loss, hard-aware
point-to-set (HAP2S) loss) [2, 4, 7, 40, 41] to provide a feature embedding for pairwise
similarity matching. With the second type, ReID approaches based on multi-class clas-
sification loss (such as softmax or cross-entropy loss) [42–46] learn part-based local
features to form more informative feature descriptor, also known as ID-loss in ReID
community.

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 5 of 31

Table 1 Common loss functions applied in person ReID

Category Loss function

Metric learning Contrastive loss [4]: LCE = 1
2N

N∑

i=1

[
(1 − yi) d2

(
fi,1, f2,i

) + (yi)
{
max

(
0,m − d2

(
f1,i , f2,i

))}]

Triplet [47]: LT = 1
NT

∑

a,p,n
ya=yp �=yn

[
d

(
fa , fp

) − d
(
fa , fn

)]
+

Triplet loss with margin [7]: LT = 1
NT

∑

a,p,n
ya=yp �=yn

[
m + d

(
fa , fp

) − d
(
fa , fn

)]
+

Semi-hard triplet [41]:LTBH = 1
Ns

Ns∑

a=1

[

m + max
yp=ya

d
(
fa , fp

) − min
yp �=ya

d
(
fa , fn

)
]

+

Quadruplet [5]:

Lquad = 1

N

∑

a,p,n
ya=yp �=yn

[
m1 + d

(
fa , fp

) − d
(
fa , fn

)]
+

+ 1

N

∑

a,p,n,k
ya=yp �=yn �=yk

[
m2 + d

(
fa , fp

) − d
(
fn , fk

)]
+

HAP2S [48]:LHAP2S = 1
Ns

Ns∑

a=1

[

m + max
yp=ya

d
(
fa , Sp

) − min
yp �=ya

d
(
fa , Sn

)
]

+

Magnet [49]:Lmag = − 1
N

N∑

i=1

[

log e
− 1

2σ2
d(fi ,μ(fi))−m

∑C
k=1 e

− 1
2σ2

d
(
fi ,μ

k
i

)

]

+

Classification Cross-entropy [2, 38, 50]:LCE = − 1
N

N∑

i=1
log e

WT
yi
fi

∑C
k=1 e

WT
k fi

Cosine Softmax [49]: LCCE = − 1
N

N∑

i=1
log e

κ .W̃T
yi
f̃i

∑C
k=1 e

κ .W̃T
k f̃i

Part-based cross-entropy [43–46]: LPCE =
P∑

p=1
Lp

CE

Table 1 provides a summary of common loss functions from both categories applied in
person ReID. For all the losses, d represents the Euclidean distance,m,m1,m2 denotes the
margin parameters, and

[
.
]
+ = max(., 0). In this table,X = {x}Ni=1 is a training mini-batch

with labels
{
yi

}N
i=1. For contrastive loss, the network transforms the pair of input images

x1,i, x2,i into feature embeddings f1,i, f2,i. The labels are either yi = 0 for positive pairs or
yi = 1 for negative pairs. For triplet loss, we sample (xa, xp, xn) where the anchor and the
positive xa are two images from the same person, while the negative xn is an image from
another person. The corresponding feature embeddings are (fa, fp, fn). For quadruplet
loss, we sample (xa, xp, xn, xk) where the anchor and positive xa are two images from
the same person, while the negative and xk are the images from different persons. The
corresponding feature embeddings are (fa, fp, fn, fk). For HAP2S loss, Sp and Sn denote the
set of positive and negative samples respectively with respect to the anchor fa; for magnet
loss, C is the number of classes (individual), μ is the sample mean of class y, and σ 2 is
the variance of all samples away from their class mean. Belonging to classification loss
category, in cross-entropy loss,Wyi is the weight vector of the fully connected layer with
feature embedding fi. For cosine softmax loss, W̃yi and f̃i denote the normalized weight
and feature vector, respectively, and for part-based cross-entropy loss, LpCE represents the
cross-entropy loss of individual part, P.

2.1 Metric loss

The idea of using deep Siamese networks for biometric authentication and verifica-
tion originates from Bromeley et al. [51], where two sub-networks with shared weights
encode feature embeddings for pairwisematching between a query and reference (gallery)

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 6 of 31

images. These networks were first used in [40] for ReID that employ three feature extrac-
tion sub-networks for deep feature learning. Then, various deep learning architectures
were proposed to learn discriminative feature embeddings. Most of these architectures
[4, 5, 7, 8, 41, 47–49] employ end-to-end training, where both feature embedding and
metric are learned as a joint optimization problem.
There are a number of metric learning losses that are widely used for optimizing deep

ReID architectures. Contrastive loss is used in [4] to optimize a Siamese network that
minimizes the distance between samples of the same class and forces a margin between
samples of different classes. Triplet loss in ReID is first used in [47] that directly opti-
mizes an embedding layer in Euclidean space which compares the relative distances of
three training samples, namely an anchor image, a positive image sample from the same
individual, and a negative sample from a different individual. In [7], original triplet loss
is modified by adding an additional positive-pair constraint. A different version of triplet
loss, named as quadruplet loss, is proposed in [5], which enlarges inter-class variations
and reduces intra-class variation. Hermans et al. [41] extend the triplet loss by design-
ing a simple semi-hard mining that selects the hardest positive and hardest negative of
each anchor in a mini-batch. In [48], a soft hard-sample mining scheme is proposed by
adaptively assigning weights to hard samples. On the other hand, magnet loss [49] is for-
mulated as a negative log-likelihood ratio between the correct class and all other classes,
but also forces a margin between samples of different classes. A thorough study of all the
state-of-the-art metric learning losses for ReID suggests that triplet loss is themost widely
used loss to optimize the deep ReID architecture. And among all the different versions of
the triplet losses, the semi-hard mining-based triplet loss proposed by Herman et al. [41]
is the simplest and efficient that does not require to change the backbone architecture to
get the final feature embedding.

2.2 Multi-class classification loss

There has been an alternative trend that addresses the ReID problem as multi-class clas-
sification problems, where each ID is considered as a class. The objective of classification
loss is to determine whether each input pair of images are the same or not, which makes
full use of the ReID label with the predicted one from the classification networks. Some
of the state-of-the-art classification-based ReID approaches [2, 38, 50] employ cross-
entropy loss for image pairs in their network that takes pairwise images as inputs, and
output the verification probability. Some other state-of-the-art ReID approaches [52, 53]
used margin-based loss to keep the largest possible separation between the positive and
negative pairs.
Recently, many works focus to learn local part-based feature which adopts the sim-

ple classification loss-based network performed on multiple local parts of a single image.
Most of these approaches take into account the local features either from the human body
part or by diving the global features to obtain discriminative part-based feature represen-
tations. State-of-the-art approaches [44–46] rely on diving the human body parts based
on either external pose estimation or external semantic segmentation that leverage the
semantic partitions for deeply learned part-based features. However, they highly depend
on the efficiency of the external pose estimation or semantic segmentation techniques.
In addition to that, they are suffering misalignment issues. Thus, to address these issues,
state-of-the-art approaches [43] take into account global features and then divide into

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 7 of 31

parts or stripes. The advantage of using global features for local features representations
is two folds: (i) does not suffer from misalignment caused by inaccurate bounding box
detection, human pose changes, and various human spatial distributions and (ii) different
channels of the global feature have different recognition patterns which increase the dis-
criminative ability of the extracted feature by paying weighted attention to different parts
of the human body. Thus, we are focusing on state-of-the-art methods that concentrate
more on partitioning global features to form a local part-based feature representations.

2.3 Multiple losses

Recently, there have been efforts [54–57] to adopt multi-loss training strategies. More
specifically, a combination of cross-entropy and triplet losses has proven to be effective
to optimize ReID networks. The aim of this combination is to increase the discriminant
power of the feature embedding by optimizing different objective functions. In [54], an
omni-scale feature learning scheme is designed to capture the salient features at different
scales that suggest optimizing the ReID network with the combination of cross-entropy
and triplet losses for better performance. To achieve a similar objective of having multi-
scale feature learning, Niki et al. [58] proposed a pyramid-inspired deep ReID architecture
where multi-loss functions combined with curriculum learning strategy to optimize the
network. In [59], an attention-driven Siamese learning architecture is designed to inte-
grate attention and attention consistency by jointly optimizing the cross-entropy loss, the
identification attention loss, and the Siamese attention loss. Chen at el. [60] use a rein-
forcement learning technique to quantify the attention quality and provide a powerful
supervisory signal to guide the learning process. Following the same trend, they use the
combination of cross-entropy and triplet losses to optimize their proposed architecture.
All of these ReID approaches above focus on improving the recognition accuracy

without addressing the scalability issues to reduce computational costs. A few ReID
approaches [61–66] seek to address the issues of computational complexity. Of these
ReID approaches [61, 62], few rely on distillation-based approaches where knowledge is
distilled from a deeper CNN (teacher model) to a lighter CNN (student model). Other
approaches [63, 65, 66] rely on hashing to learn binary representation instead of real-
value features for faster computation. In contrast to these approaches, our proposed ReID
approach relies on the pruning techniques that compresses the deep CNNwith amarginal
reduction of recognition accuracy. Additionally, we propose different design scenarios or
pipelines for leveraging a pruning method during the deployment of a CNN for a target
ReID application domain.

3 Techniques for pruning CNNs
The objective of pruning is to remove unnecessary parameters from a neural network,
while trying tomaintain a comparable accuracy. Currently, pruning techniques operate on
two different levels. First, techniques for weight-level pruning focus on pruning individual
weights of a network. In contrast, techniques for channel-level pruning focus on removing
all the parameters of the output and input channels of convolution layers. While weight
pruning techniques can achieve high compression rate and good acceleration, its perfor-
mance depends on a good sparse convolution algorithm which is unavailable and does
not perform well on all platforms. In this paper, we focus on channel pruning techniques
which do not rely on other algorithms and have been extensively studied in literature. This

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 8 of 31

section presents a survey of channel pruning techniques and summary of experimental
results reported in the literature.

3.1 Channel pruning taxonomy

Table 2 presents the main properties of different pruning techniques according to strategy
used to reduce channels. In order to facilitate the analysis of different pruning meth-
ods, we also categorize techniques according to the type of pruning criterion. In this
table, “prune in one step” refers to techniques that prune the network one time and then
fine-tune the network [33, 34, 67]. “Prune iteratively” is a type of pruning that is done
iteratively on a trained model that alternates between pruning and fine-tuning [32]. Prun-
ing by regularization is usually done by adding a regularization term to the original loss
function in order to leave the pruning process for the optimization [69, 70]. Pruning by
minimizing the reconstruction error is a family of algorithms that tries to minimize the
difference of outputs between the pruned and the original model. “Progressive pruning,”
while very similar to iterative pruning, differs in that it can start directly from a model
that was not trained and progressively prune it during training.
One key challenge of pruning neural networks is selecting the pruning criteria. It should

allow to discern the parameters that contribute to accuracy and the ones that do not.
Another challenge is finding an optimal pruning compression. This compression ratio is
essential to find a compromise between the reduction of complexity for the model and
the loss of accuracy. Finally, one challenge is the retraining and pruning schedule of the
model. Punning can be performed in one iteration but the damage caused to the network
may be considerable. On the counterpart, we could prune and retrain iteratively to reduce
this damage at each iteration, but this will take longer to apply. The retraining of the
pruned network may also cause the model to overfit or get caught in local minimums.

3.2 Description of methods

This subsection presents different pruning algorithms for each pruning family in the
taxonomy. To ease our notation, we refer to a convolution tensor as W with W ∈
Table 2Main properties of different channel pruning techniques

Strategy Methods Criteria

Prune in one step L1 [33] Weights: Sj = ∑ |wk|
Redundant channels [67] Weights: SIMC(Wi ,Wj) = Wi·Wj

‖Wi‖·‖Wj‖
Entropy [34] Feature maps: Ej = −∑m

a=1 (palog(pa))

Prune iteratively Taylor [32] Feature maps:
∣
∣�C(Hi,j)

∣
∣ =

∣
∣
∣ δC
δHi,j

Hi,j

∣
∣
∣

FPGM [68] Weights:Wi,j∗ ∈ argminj∗∈Rnin×k∗×k
∑

j′∈[1,nout] ||x − Wi,j′ ||2
Prune iteratively
with
regularization

Play and Prune [69] Weights: Sj = ∑ |wk|

Auto-Balance [70] Weights: Sj = ∑ |wk|
Prune iteratively,
min
reconstruction
error

ThiNet Feature maps: Hi+1,j = ∑C
j=1

∑K
k=1

∑K
k=1 Wi,j,k,k ∗ Hi,j

Channel pruning [35] Feature maps: argmin
β ,W

1
2N

∥
∥
∥Hi+1,j − ∑n

j=1 βi,jHi,jWi,j

∥
∥
∥
2

F
+ λ ‖β‖1

Prune
progressively

PSFP [36] Weights: Sj = ∑ |wk|2

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 9 of 31

Rnout×nin×k×k , nin the number of input channels, nout the number of output channels, and
k the kernel size. An output channel tensor i is then defined as Wi, and an individual
weight is defined asw. For feature map,H represents an output of a convolution layer and
Hi then represents the output channel of a feature map. For ease of notation, we do not
mention the layer index unless necessary; therefore,W orH can be any convolution layer
or feature map at any index.

3.2.1 Criteria based onweights

The L1 [33] pruning algorithm is a layer-by-layer method which means it will prune the
network one layer at a time. This algorithm’s pruning criteria are simple and could be
implemented using Algorithm 1. The retraining could be done in two different ways:

Algorithm 1 L1 Pruning
1: Input: training data: X
2: Input: pruning rate: Pi
3: Input: the model with parametersM = {M(i), 0 ≤ i ≤ L}
4: Initialize the model parameterM
5: for each convolution layer do
6: Calculate l1−norm for each channel
7: Select the N lowest l1−norm depending on the pruning rate
8: Remove the N selected channels
9: end for

10: Re-Train the pruned network
11: Output: Compact model with parametersM′

1 Prune once over multiple layers and retrain (more adapted for resilient layers)
2 Prune channels one by one and retrain each time (more adapted for layers that are

less resilient)

For this algorithm, we chose to mix the two retraining methods to come up with pruning
N channels before retraining.
The second weight method that will be presented is the redundant channel pruning

[67]. This method’s idea is to pruned channels that are similar to the ones that are kept. To
do so, the authors proposed to regroup each channel of a layer in nf clusters depending on
a similarity score being higher than a preassigned threshold τ . To determine the similarity
between these channels, the authors proposed to use the cosine similarity between the
weights of the channels.

SIMC(Ca,Cb) =
∑

Wi∈Ca,Wj∈Cb
SIMC(Wi,Wj)

|Ca| × |Cb| > τ

a, b = 1, ..., nout ; a �= b; i = 1, ...|Ca|; j = 1, ...|Cb|; i �= j
(1)

With the calculation of SIMC of two output channel given below:

SIMC(Wi,Wj) = Wi · Wj
∥
∥Wi ‖·‖Wj

∥
∥

(2)

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 10 of 31

Equation 2 gives us the ability to determine the similarity between two channels by
calculating the cosine of the angle between two vectors of dimension n. The pruning of
one specific layer could be done in 2 steps:

1 Group the channels in the same cluster if cos(θ) from Eq. 1 is above the threshold τ

2 Randomly sample one channel in each cluster and pruned the remaining ones of
each cluster.

The threshold τ acts as the compression ratio in this pruning algorithm where a low
threshold means a high compression rate and vice versa (see Algorithm 2).

Algorithm 2 SIMC Pruning
1: Input: training data: X
2: Input: pruning threshold τ

3: Input: the model with parametersM = {M(i), 0 ≤ i ≤ L}
4: Initialize the model parameterM
5: for each convolution layer do
6: Calculate the similarity score for each pair of channel
7: Separate the channels into two clusters based on threshold τ

8: Select the N lowest l1−norm depending on the pruning rate
9: Randomly sample one channel in each cluster and pruned the remaining ones of

each cluster.
10: end for
11: Re-Train the pruned network
12: Output: Compact model with parametersM′

The third weight-based method that will be presented is the Auto-Balanced pruning
[70] that uses the same pruning criteria as the L1 algorithm which is a L1 norm of weight
kernels to determine the ranking of the channels. But this method adds a regularization
term during the training to transfer the representational capacity of the channels we want
to prune to the remaining ones. In order to calculate this transfer of representational
capacity, the authors proposed to separate the channels in two subsets at the beginning
of each pruning iteration. In order to assign the channels to their subset, the authors used
the L1 norm of the weights of the channels. The vec function is used to flatten the weight
matrix into a vector and Mi,j the metric measuring the importance. Here, we use the
notation ofWi,j with i representing the layer index and j the output channel index.

Mi,j = ∥
∥vec(Wi,j))

∥
∥
1 (3)

Once the L1 score has been calculated for each channel, they are then assigned to one of
the subsets depending on the threshold θ which is fixed depending on the desired number
of remaining channels per layer.

Mi,j > θi ∀Wi,j ∈ Pi (4)

Mi,j < θi ∀Wi,j ∈ Ri (5)

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 11 of 31

The channels in subset R (remaining) and subset P (to pruned) are then adjusted with an
L2 regularization term. The following equations are used to calculate this L2 adjustment
factor:

λi,j =
{
1 + log θi

Mi,j+ε
if Wi,j ∈ Pi

−1 − log Mi,j
θi+ε

if Wi,j ∈ Ri
(6)

S(Pi) =
∑

Wi,j∈Pi

λi,j
∥
∥vec(Wi,j)

∥
∥2
2 , S(Ri) =

∑

Wi,j∈Ri

λi,j
∥
∥vec(Wi,j)

∥
∥2
2 (7)

S(P) =
n∑

i=1
S(Pi), S(R) =

n∑

i=1
S(Ri) (8)

The cost function for training is changed with Eq. 9 where L0 represents the original
cost function.

L = L0 + αS(P) + τS(R) (9)

τ = −α
S(P)
S(R)

(10)

This enables the model to penalize the weak channels and stimulate the strong ones.
This method adds two hyper-parameters in the training which are α and r. α is the
regularization factor and the vector r is the target of remaining channels in each layer (see
Algorithm 3).

Algorithm 3 Auto-Balance
1: Input: training data: X
2: Input: pruning threshold τ , α, r
3: Input: the model with parametersM = {M(i), 0 ≤ i ≤ L}
4: Initialize the model parameterM
5: for each convolution layer do
6: Divide the channels into R(remain) subset and P(Prune) subset using l1−norm
7: Optimize the Equation 10
8: end for
9: Output: Compact model with parametersM′

The last weight-based method is the progressive soft pruning [36] where their pruning
criterion is the same as the L1method (L2 norm of the weights). The main difference with
this method is they proposed an interesting pruning scheme that allows pruning during
the fine-tuning step. The authors proposed to use soft pruning which means instead of
removing the channels during the pruning, they set the weights to 0 and allow these chan-
nels to be updated during the retraining phase. This pruning scheme is very interesting
since the model keeps its original dimension during the retraining phase. The authors
also proposed to add a progressive pruning scheme where at each pruning iteration, the
compression ratio is increased in order to get a shallower network. Once these iterations
of pruning and retraining are completed, they do a last channel ranking using a pruning
criteria and they discard the lowest channels depending on the compression ratio. Their
pseudo-code for the progressive soft pruning scheme can be viewed in Algorithm 4. In

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 12 of 31

Algorithm 4 Algorithm Description of PSFP
1: Input: training data: X
2: Input: pruning rate: Pi, pruning rate decay D
3: Input: the model with parametersM = {M(i), 0 ≤ i ≤ L}
4: Initialize the model parameterM
5: for epoch = 1; epoch ≤ Nepoch; epoch + + do
6: Update the model parametersM based on X
7: for i = 1; i ≤ L; i + + do
8: Calculate the l2−norm for each channel
9: Calculate the pruning rate P′ at this epoch using Pi and D

10: Select the N lowest l2−norm depending on the pruning rate
11: Zeroize the weightsW of the selected channels
12: end for
13: end for
14: Obtain the compact model with parametersM’ fromM
15: Output: Compact model with parametersM′

the article, they used the L1 or L2 norm of the weights as pruning criteria which means
this method could be categorized as a weight-based method.
The L represents the number of layers in the model, i represents the layer number, W

represents the weights of a channel, andN is the number of channels to prune. The prun-
ing rate P′ is calculated at each epoch using the pruning rate goal Pi for the corresponding
layer i and the pruning rate decay D. To calculate the pruning rate, we can use Eq. 11

P
′
i = a · e−k·epoch + b (11)

The a, b, and k values can be calculated by solving Eq. 12
{
0 = a + b
Pi
4 = e−k·Nepoch·D + b

(12)

FPGM [68] is a new technique that focuses on using a geometric median to prune away
output channels. A geometric median is defined as follows: given a set of n points A =
[a1, a2, ..., an] with ai ∈ Rd, find a point x∗ ∈ Rd that minimizes the sum of the Euclidean
distances to them:

x∗ ∈ argmin
x∈Rd

f (x) wheref (x) �
∑

i∈[1,n]
||x − ai||2 (13)

Using Eq. 13, a geometric median FGM
i for all the filters of a layer i can be found:

WGM
i ∈ argmin

x∈Rnout×k∗×k
g(x)

where g(x) �
∑

j′∈[1,nin]
||x − Wi,j′ ||2

(14)

In order to select, non-important output channels, the author proposed to find the
channels that have the same or similar value ofWGM

i which translates to:

Wi,j∗ ∈ argmin
x∈Rnout×k∗×k

||Wi,j∗ − WGM
i ||2 (15)

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 13 of 31

Since geometric median is a non-trivial problem, it is quite computationally intensive;
therefore, the authors propose to relax the problem by assuming that:

||Wi,j∗ − WGM
i ||2 = 0 (16)

This transforms Eq. 14 to:

Wi,j∗ ∈ argmin
j∗∈Rnin×k∗×k

∑

j′∈[1,nout]
||x − Wi,j′ ||2

= argmin
j∗∈Rnin×k∗×k

g(x)
(17)

The algorithm of FPGM is summarized in Algorithm 5.

Algorithm 5 Algorithm Description of FPGM
1: Input: training data: X
2: Input: pruning rate: P
3: Input: the model with parametersM = {M(i), 0 ≤ i ≤ L}
4: Initialize the model parameterM
5: for epoch = 1; epoch ≤ Nepoch; epoch + + do
6: Update the model parametersM based on X
7: for i = 1; i ≤ L; i + + do
8: Select the nout × P ofWi channels that satisfy Equation 17
9: Set the selected channels to zero

10: end for
11: end for
12: Obtain the compact model with parametersM’ fromM
13: Output: Compact model with parametersM′

Play and Prune [69] is an adaptive output channel pruning technique that, instead of
focusing on a criterion, tries to find an optimal number of output channels that can be
pruned away given an error tolerance rate. This technique is amin-max game of twomod-
ules, The Adaptive Filter Pruning (AFP) module and the Pruning Rate Controller (PRC).
The goal of the AFP is to minimize the number of output channels in the model while the
PRC tries to maximize the accuracy of the remaining set of output channels. This tech-
nique considers a model M can be partitioned into two sets of important channels I and
unimportant channels U.

Ui = σtop α%
(
sort

({|W1|, |W2|, ...|Wnout |
}))

(18)

Ui represents all the unimportant channels of a layer i. It is selected by selecting α% chan-
nels of the result of the sort operation on the L1 norm of each output channel. Once an
Ui is selected, the authors propose to add an additional penalty to the original loss func-
tion in order to prune without loss of accuracy while helping the pruning process. The
original loss function would then become:

� = argmin
�

(C(�) + λA||U||1) (19)

where C(�) is the original cost function to optimize the original model parameters, and
λA is the L1 regularization term. While this optimization helps pushing the channels to

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 14 of 31

have zero sum of absolute weights, it can take some epochs; therefore, the authors propose
an adaptive weight threshold (Wi) for each layer i. Any channels with L1 norm below this
threshold will be removed. While this value is given by the PRC, for the first epoch, it is
found by using a binary search on the histogram of sum of absolute weights. The AFP
minimizes the number of output channels in the model using Eq. 19. The AFP can be
summarized in Algorithm 6, and the loss function of AFP can be written as:

�′ = σ
#w∈�′

[

P
(

argmin
�′

(C (�) + λA||U||1)
)]

(20)

For the PRC, the adaptive thresholdWA is updated as follows:

WA = δw × Tr × W′
A (21)

with δw the constant used to increase or decrease the pruning rate. Tr is calculated as
follows:

Tr =
{
C(#w) − (ξ − ε) : C(#w) − (ξ − ε) > 0
0 : Otherwise

(22)

where ξ is the accuracy of the unpruned network, ε is the tolerance error, and C(#w) is
the accuracy of the model with the remaining filter #w. The regularization constant is also
computed as follows:

λA =
{
C(#w) − (ξ − ε) × λ : C(#w) − (ξ − ε) > 0
0 : Otherwise

(23)

with λ the initial regularization constant. By alternating between the AFP and the PRC,
the authors propose a system that prunes at each epoch in an adaptive and iterative way
(see Algorithm 6).

Algorithm 6 AFP
1: Input: training data: X
2: Input: the model with parametersM = {M(i), 0 ≤ i ≤ L}
3: Initialize the model parameterM
4: for each convolution layer do
5: Select an α% of output channels with the lowest l1−norm
6: Separate the output channels into U(Unimportant) and I(Important) subsets
7: Perform Equation 19 with λA Agiven by PRC
8: Remove unimportant channels using the thresholdWA given by PRC
9: end for

10: Output: Compact model with parametersM′

3.2.2 Criteria based on featuremaps

In the channel-based approach, we are going to present 3 algorithms which are ThiNet
[71], Channel Pruning [35], and Entropy Pruning [34]. The first two algorithms have the
same idea behind their pruning algorithm which is minimizing the difference in the acti-
vation maps but they diverge with their minimization technique. ThiNet’s goal is to find
a subset of channels that minimize the difference in the output at layer i+1 (feature map).
ThiNet uses greedy algorithm to find which subset of channels to eliminate and keep

the input at layer i+2 almost intact. To find the subset of channels to prune, the authors

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 15 of 31

proposed to use a greedy algorithm where they compute the value for each channel in a
layer and assign the lowest value to the subset. They repeat this method until our pruning
subset respects the defined compression ratio. To calculate the input of the feature map
in layer i+2, we can use Eq. 24.

Hi+1,j =
C∑

j=1

K∑

k=1

K∑

k=1
Wi,j,k,k ∗ Hi,j (24)

where i represents the layer, j the channel index, and k the kernel size of the channel. To
compute the value of a channel, the authors proposed to used Eq. 25

m∑

i=1
x̂2i,j, (25)

where x̂ is equal toWi+1,j in Eq. 24. This greedy method is repeated for each layer needed
to be pruned in the model.
The Channel Pruning method also has the goal to minimize the difference in the output

(feature map) but their method is to find a subset of channels with a LASSO regression.

argmin
β ,W

1
2N

∥
∥
∥
∥
∥
∥
Hi+1,j −

n∑

j=1
βi,jHi,jWi,j

∥
∥
∥
∥
∥
∥

2

F

+ λ ‖β‖1
‖β‖0≤n′

0≤n′≤n

(26)

β represents channel mask that decides whether the channel is pruned or not. If β

is zero, then the channel is no longer useful. The compression ratio is defined with λ.
The n represents the number of channels and n′ represents the number of remaining
channels. During the pruning iterations, theW in Eq. 26 is fixed which leaves us with only
one variable to minimize which is β . The LASSO regression is used to find this β mask
that minimizes the difference in the output. As in the ThiNet method, this method also
requires to redo these steps for every layer needed to be pruned.
The entropy pruning [34] method is also a layer-by-layer algorithm but instead of trying

to minimize the difference in the output like the two channel methods above, they used a
different criteria based on the entropy of the feature maps produced by the channels. The
idea behind their criteria is that a low entropy in the feature maps of a channel will most
likely be less important in the decision of the network. With the entropy criterion defined
as:

Ej = −
m∑

a=1
(palog(pa)) (27)

Pruning for layer i is done according to Algorithm 7.
Taylor’s [32] pruning algorithm seeks to minimize the cost function. It approximates

the change in this function if the channel is pruned according to:
∣
∣�C(Hi,j)

∣
∣ = ∣

∣C(D,Hi,j = 0) − C(D,Hi,j)
∣
∣ (28)

where C represents the cost function and D the dataset. C(D,Hi,j = 0) is the cost value if
channel Hi,j is pruned. The idea is to find a subset of channels Hi,j to prune while mini-
mizing the difference with the original cost function were these channels were used. This
is represented in the equation by calculating the difference between cost function with
the channels excluded and the cost function with the channels included. Using a Taylor

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 16 of 31

Algorithm 7 Entropy Pruning
1: Input: training data: X
2: Input: Pruning rate: P
3: Input: the model with parametersM = {M(i), 0 ≤ i ≤ L}
4: Initialize the model parameterM
5: Run all the data through the network and collect features for each convolution layer
6: for each convolution layer do
7: Convert the activationmaps into a vector of dimension nout (number of channels)

using a global average pooling.
8: For each channel j divide the distribution into m bins and calculate the entropy

using 27
9: Remove channels with the lowest entropy value according to the pruning rate

10: end for
11: Output: Compact model with parametersM′

expansion to solve this minimization, the authors found that the difference in the cost
function with the channels pruned could be approximated with the activation (feature
map) and the gradient of the channel which can be calculated during back-propagation.

∣
∣�C(Hi,j)

∣
∣ =

∣
∣
∣
∣

δC
δHi,j

Hi,j

∣
∣
∣
∣ (29)

Each channel ranking value is normalized using a l2-normalization. This normalization
is done on each layer individually in order to facilitate the comparison between layers
since this method ranks channels across all layers (see Algorithm 8):

Algorithm 8 Taylor Pruning
1: Input: training data: X
2: Input: Stopping condition
3: Input: the model with parametersM = {M(i), 0 ≤ i ≤ L}
4: Initialize the model parameterM
5: for epoch = 1; epoch ≤ Nepoch; epoch + + do
6: Evaluate the importance of output channels using X and Equation 29
7: for each convolution layer do
8: Remove channel with the least importance
9: end for

10: Fine-tune the pruned network
11: if Stopping condition is True
12: Break
13: end for
14: Obtain the compact model with parametersM’ fromM
15: Output: Compact model with parametersM′

3.2.3 Output-based

The second output-based method is the Neuron Importance Score Propagation (NISP)
[72] where the pruning is done by back-propagating channel scores across the model to

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 17 of 31

determine which ones to prune. The intuition behind their idea is to use a feature rank-
ing method on the last layer before the classification since this layer is the one to play a
more significant role in our application. Once every feature has an associated score, the
authors propose to back-propagate that score into the network to have an importance
score for each channel in the network. The importance score is then used to determine
which channels we pruned and which one we retain by using a predefined compression
ratio for each layer in the model.
The score is back-propagated using Eq. 30.

Si,j =
∑

i
|W (k+1)

i,j |Si+1,j (30)

whereW is the weights, j is the neuron or channel, i is the layer, and k is the number of
connections from that neuron to the next layer. This equation represents a weighted sum
of the scores in the subsequent layers.

3.3 Critical analysis of pruningmethods

The main difference between methods using a weight-based criteria versus methods
based on feature map criteria is that they are not dependent on a dataset since weight
statistics do not depend on output of a CNN. Methods based on feature maps need a
dataset in order to compute the output of convolution layers or its gradients.
The chosen criteria usually depend on the desire to simplify the pruning steps at the

expense of a lower accuracy—some more complex criteria that require more computa-
tions allow preserving a high level of accuracy. If training and pruning time is an issue, i.e.,
applications with design constraints, and that requires fast deployment, simple criteria
like L1 and L2 norm are more suitable. However, if there are no complexity constraints,
some more complex pruning criteria, like the minimization in the difference of acti-
vation or cost functions, can outperform the simpler criteria, at the expense of more
computations and time.
Some of the techniques also differ in terms of how channels are pruned, some prune

layer-by-layer [33, 36], while others prune across layers [32]. One of the differences
between across layer and layer-by-layer pruning is the imbalance in terms of pruning.
An across layer pruning does not prune each layer evenly, and the method can possibly
prune lower level layers more than higher level layers, and vice versa. Depending on the
CNN architecture and pruning algorithm, pruning across layers may not yield the desired
reduction. Layer-by-layer pruning can guarantee that all the layers will be pruned and
therefore undergo a more even reduction at each layer.
Recently, some techniques [36, 68] also adopt a new soft pruning approach. Soft prun-

ing differs from hard pruning because it only resets pruned channels to zero instead of
completely removing them. Therefore, soft pruned channels have a chance to recover.
These techniques have been shown to have achieved state-of-the-art performance.
Table 3 summarizes a comparative experimental analysis of different pruning tech-

niques. All the results reported in this table have been taken from the corresponding
papers. Experimental performance indicates that VGG16 processing can accelerate by up
to 2.5 times at the expense of increased error of 1% on the ImageNet dataset. Comparing
L1 [33] versus Auto-Balanced [70] techniques, both based on a weight-based criteria, we
observe that the Auto-Balanced techniques can obtain higher compression ratios because

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 18 of 31

Table 3 Performance of pruning techniques from the literature in terms of rank-1 accuracy and
computational complexity (memory(M): number of parameters and time (T): time required for one
forward pass). To ease comparison, we include the out results produced with ThiNet (channel
pruning method)

Dataset ResNet56 trained on CIFAR10

Algorithm Original Pruned

rank-1 T M rank-1 T M

L1 [33] 93.04 0.125 0.85 93.06 0.091 0.73

Auto-Balanced [70] 93.93 0.142 N/D 92.94 0.055 N/D

Redundant channel [67] 93.39 0.125 0.85 93.12 0.091 0.65

Play and Prune [69] 93.39 0.125 0.85 93.09 0.039 N/D

FPGM [68] 93.39 0.125 0.85 92.73 0.059 N/D

Dataset VGG16 trained on ImageNet

Algorithm Original Pruned

rank-1 T M rank-1 T M

ThiNet [71] 90.01 30.94 138.34 89.41 9.58 131.44

Taylor [32] 89.30 30.96 N/D 87.06 11.5 N/D

HaoLi [33] 90.01 30.94 138.34 89.13 9.58 130.87

Channel Pruning [35] 90.01 30.94 138.34 88.10 7.03 131.44

Dataset ResNet50 trained on ImageNet

Algorithm Original Pruned

rank-1 T M rank-1 T M

Entropy [34] 72.88 3.86 25.56 70.84 2.52 17.38

ThiNet [71] 75.30 7.72 25.56 72.03 3.41 138.00

FPGM [68] 75.30 7.72 25.56 74.83 3.58 N/D

of their regularization term. If we compare weight-based and channel-based approaches,
we observe that using channel-based provides a higher compression while maintaining
similar accuracy. For the comparison between output and channel-based approaches,
ThiNet [71] outperforms Taylor [32] in accuracy and complexity.

3.4 Design scenarios with pruning

Most DLmodels for person ReID use pretraining, and then fine-tune themodel to the task
or target application domain. Pretraining is typically performed using a large-scale dataset
in order to prime CNN parameters towards relevant optimization solutions. In many
cases, CNNs are pretrained on ImageNet since this public dataset has a large amount of
diverse training samples from different classes which improves the CNN capacity to gen-
eralize. In person ReID, pretrainedmodels have proven to bemore successful thanmodels
that were trained from scratch directly on the task dataset.
Once the model has been pretrained, the next step is fine-tuning to map the model’s

parameters from our pretraining source domain to our target application domain. It is
crucial that the task dataset be similar to pretraining data. As described in [73], the best
fine-tuning practices depend on the size of the task training dataset, and the difference
in data distribution between pretraining and task domain data. The authors propose to
compute a similarity score between the pretraining and task datasets in order to guide the
fine-tuning from one target domain to another. They proposed measuring their similar-
ity with the cosine distance and the maximum mean discrepancy (MMD). In particular,
they proposed to average the feature embedding of each dataset and calculate the metrics
between the two vectors. Given these metrics and the number of samples per class in the

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 19 of 31

target domain dataset, authors proposed to either train the whole network or freeze the
feature extractor and fine-tune the classifier. We follow their guidelines to determine the
layers to freeze and to fine-tune.
Pruning neural networks can be done in both main training phases—pretraining and

fine-tuning. We concluded that there are four possible scenarios for pruning (as shown
in Fig. 2). The first scenario consists in pruning a CNN on the source pretraining dataset.
The idea behind this scenario is to leverage a large-scale dataset to guide our selection of
the more relevant and discriminant source domain channels. The second scenario con-
sists in pruning on the source pretraining dataset, and then fine-tuning until our model
provides a suitable performance, and then prune again on the target application dataset.
This strategy allows removing additional channels that are not contributing to our task.
The third scenario consists in only pruned on our task dataset after the fine-tuning on
the target application dataset. The objective of this scenario is to accelerate the training
time since pruning and retraining on a large-scale source domain dataset can be time
consuming. Finally, the last scenario consists in pruning on the task dataset before doing
the fine-tuning. This scenario goal also reduces design time of the model. In Section 5,
we seek to determine the best scenario to reduce the computational complexity of CNNs,
while maintaining a comparable level of accuracy on our task.
The progressive soft pruning method is an interesting alternative since the model is

pruned during fine-tuning steps. This pruning scheme can reduce training effort since it
combines the pruning, retraining, and fine-tuning into a single step. In Fig. 2, progressive
soft pruning would be represented by combining the prune and retrain process in one
box for Scenario 1. For Scenarios 2 and 3, the fine-tuning, pruning, and retraining would
be combined into one box. As for Scenario 4, PSFP is not applicable since the pruning,
retrain, and fine-tuning is one step, making it impossible to prune the network by ranking
the channels with the target data and then fine-tuning the network.

4 Experimental methodology
In this section, we present the experimental methodology used to validate the prun-
ing model. Our experiment is divided into two main parts. First, we experiment on a
large-scale dataset, i.e., ImageNet, in order to find the best pruning methods using the
same experimental protocol. The second part of these experiments will be to test the

Fig. 2 Scenarios for pruning and training a CNN

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 20 of 31

pruning algorithms on a person ReID problem to find the advantage of using a pruned
model compared to a smaller model. The following section will present the experimental
methodology such as the datasets, the evaluation metrics, and the experiment algorithm.
The results for the pruning on the ImageNet dataset and ReID datasets will also be
presented.

4.1 Datasets

Four publicly available datasets are considered for the experiments, namely Imagenet [74],
Market1501 [37], DukeMTMC-reID [39], and CUHK03-NP [38]. Imagenet, a large-scale
dataset, is used as a pretrained dataset and the rest of the other datasets (small-scale) are
used for the experiments of person ReIDs.

• ImageNet (ILSVRC2012) [74] is composed of two parts. The first part is used for
training the model and the second part is used for validation/testing. There is 1.2M
images for training and 50k for validation. The ILSVRC2012 dataset contains 1000
classes of natural images.

• Market-1501 [37] is one of the largest public benchmark datasets for person ReID. It
contains 1501 identities which are captured by six different cameras, and 32,668
pedestrian image bounding boxes obtained using the Deformable Part Models (DPM)
pedestrian detector. Each person has 3.6 images on average at each viewpoint. The
dataset is split into two parts: 750 identities are utilized for training and the
remaining 751 identities are used for testing. We follow the official testing protocol
where 3368 query images are selected as a probe set to find the correct match across
19,732 reference gallery images.

• CUHK03-NP [38] consists of 14,096 images of 1467 identities. Each person is
captured using two cameras on the CUHK campus and has an average of 4.8 images in
each camera. The dataset provides both manually labeled bounding boxes and DPM-
detected bounding boxes. In this paper, both experimental results on “labeled” and
“detected” data are presented. We follow the new training protocol proposed in [75],
similar to partitions of the Market1501 dataset. The new protocol splits the dataset
into training and testing sets, which consist of 767 and 700 identities, respectively.

• DukeMTMC-reID [39] is constructed from the multi-camera tracking
dataset—DukeMTMC. It contains 1812 identities. We follow the standard splitting
protocol proposed in [76] where 702 identities are used as the training set and the
remaining 1110 identities as the testing set.

4.2 Pruningmethods

For our experiments, we compare five pruning methods in order to determine which
technique gives the best compression ratio while maintaining a good performance on
person ReID task. Our choice was based on the following criteria: article results, most
of the families of the taxonomy are represented and the complexity for the ranking and
the implementation. We selected L1 [33] and Entropy [34] as they rely on the tech-
niques that prune the network only one time and then fine-tune the network. Although
Taylor [32] uses iterative pruning techniques, we chose this method for our experi-
ments because of its theoretical explanation and requires a single compression ratio. We
choose to experiment with Auto-Balanced algorithm [70] because pruning is done

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 21 of 31

by adding regularization terms to the original loss function in order to leave the prun-
ing process for the optimization. We have also decided to try the Progressive Soft

Pruning [36] method since it directly prunes from scratch and progressively prune
during training which is a suitable test on our target operational domain.

4.2.1 Implementation details

For the Triplet-based ReID method, images are resized to 256 × 128 for all the datasets.
For PCB [43] architectures, images are resized to 384 × 128. Like many state-of-art ReID
approaches [3, 5–8, 43], we use ResNet50 [11] as the backbone architecture, where the
final layer is removed to get a 2048 feature representation.We apply all the pruning meth-
ods on the ResNet50 architecture. In order to be able to compare the four algorithms
more easily, we decided to come up with a pruning schedule that would be similar for all
the methods. First of all, we decided to prune around 5% of the total number of channels
at each iteration.
For the layer-by-layer methods, we chose to use a single compression rate for every layer

in order to simplify our experiments and our comparison between the methods. For each
pruning iteration, we decided to use 1 epoch for the ranking of the channels and 4 epochs
for retraining before moving to the next iteration.
This pruning schedule was used for every method on ImageNet in order to produce our

pruned models that would be used in the person ReID experiments. We have discarded
the pruning iterations where the accuracy was too low since there was no advantage of
using these networks for our task. Once our pruning was done for every method, we
retrained every model on ImageNet to regain the loss of accuracy caused by the pruning.
Each of our pruned models was then fine-tuned on the ReID datasets. We also fine-
tuned pretrained ResNet18 and ResNet34 on these ReID datasets in order to compare the
advantages of using pruned models compared to shallower networks.

4.3 Performance metrics

Following the common trend of evaluation [3, 5–8], we use the rank-01 accuracy of the
cumulative matching characteristics (CMC) and the mean average precision (mAP) to
evaluate the ReID accuracy. The CMC represents the expectation of finding a correct
match in the top n ranks. When multiple ground truth matches are available, then CMC
cannot measure how well the gallery images are ranked. Thus, we also report the mAP
scores.
As the state-of-the-art pruning methods [33–36], the FLOPS’s metric is used to cal-

culate the model’s complexity in terms of computational operations. To compare the
different models during our experiments, we decided to calculate the number of FLOPS
necessary to process one image through the model. We chose to compare the number of
FLOPS since the processing time depends on the material used. The FLOPS is also a bet-
ter metric than the number of pruned channels since a pruned channel at the beginning
of the network will be reduced considerably more the total number of FLOPS than a later
layer channel since the image dimension is reduced throughout the network. We also use
the number of parameter metric to be able to compare models in terms of memory con-
sumption to save the trained model. This metric was calculated by summing the number
of weights needed throughout the model.

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 22 of 31

Table 4 Rank-1 accuracy and complexity (M: number of parameters and T: GFLOPS) of baseline and
pruned ResNet CNNs on ImageNet dataset [77]

Performance measures

Networks rank-1 T M

ResNet50 76.01 6.32 23.48

ResNet34 73.27 6.67 21.28

ResNet18 69.64 3.09 11.12

L1 71.85 2.96 11.90

Taylor 71.65 3.21 12.09

Auto-Balanced 71.97 2.96 11.90

Entropy 71.46 2.96 11.90

PSFP 71.57 2.96 11.90

5 Experimental results and discussion
5.1 Pruning on pretraining data

Table 4 shows the performance of baseline and pruned ResNet CNNs (backbone
ResNet50 and smaller ResNet 18 and ResNet34 networks) on the ImageNet dataset.
Results in this table provide an indication of the benefits of pruning only on a large source
domain pretraining dataset. There are few variations in results among the pruning tech-
niques. The similarity in the results indicates that efficient pruning techniques rely on the
availability of the large-scale datasets. Given the large-scale dataset in this experimen-
tal evaluation, ranking done by each technique is very similar even though the ranking
metrics differ. Pruning results with ResNet50 very similar to the state of the art without
pruning, although half the FLOPS are required. For example, using ThiNet [71] provides
a compressed network that yields rank-1 accuracy of around 72% for half the FLOPS.
Results with pruned networks provide higher accuracy than the smaller ResNet18 while
having similar computational complexity and memory consumption.
For person ReID datasets, we attempt to preserve the same pruning compression ratio

of 50% for comparison. This ratio is the highest compression level while minimizing the
difference in the results between the baseline and the pruned models. We also prune the
same number of filters per layer, use the same number of pruning iteration, and same fine-
tuning iteration, layer-by-layer. Across layers is not the same, 50% filter gone, 5% filter at
iteration, and stopping condition is 50% pruned away.
Table 5 reports the results for Market-1501, DukeMTMC-reID, and CUHK03-NP

ReIDs. The reported results are for all the Scenario. Taylor has higher FLOPS and a
higher number of parameters than the other methods which would probably lead to a
slower model and more consumption in terms of memory. Out of the 5 methods, the L1
method seems to be working the best by having the best or close to the best on the three
datasets.
The pruned models also have shown less performance drop in terms of accuracy while

reducing considerably the number of FLOPS and parameters. Pruned models are faster
than backbone ResNet50 network while having similar performance (around 1%). Plus,
the pruned models have a similar number of FLOPS and parameters to ResNet18 while
having better results on the three performance metrics. This means that pruning a larger
model is more advantageous than using a shallower model like ResNet18.
To get a more global view of these results, the graphics in Fig. 3 depicts visually which

models are better where the optimal placement would be top right and the worse would

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 23 of 31

Table 5 Accuracy (mAP and rank-1:R-1) and complexity (M: parameters and T: GFLOPS) of baseline
and pruning Siamese networks on ReID datasets

Market-1501 DukeMTMC CUHK03-NP

Networks M T mAP rank-1 mAP rank-1 mAP rank-1

ResNet50 23.48 6.32 69.16 85.07 59.46 76.39 47.57 48.43

ResNet34 21.28 6.67 67.44 84.09 58.36 75.45 45.51 47.14

ResNet18 11.12 3.09 61.23 81.18 52.07 71.63 38.27 39.57

L1 11.90 2.96 67.04 84.71 57.51 75.00 44.08 46.50

Taylor 12.09 3.21 66.35 84.44 57.90 75.72 44.40 46.21

Auto-Balanced 11.90 2.96 65.46 83.64 56.45 74.64 41.85 44.21

Entropy 11.90 2.96 65.16 82.39 56.64 74.64 42.44 44.07

PSFP 11.90 2.96 65.92 83.72 56.96 74.66 42.38 45.58

Fig. 3 Comparative ReID performance analysis of the pruning methods for all the ReID datasets: a,c,emAP vs
GFLOPS and b,d,f Parameters vs Rank-01

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 24 of 31

be bottom left. There are two graphics for each dataset where the first one presents the
mAP vs FLOPS and the second one presents Rank1 vs Parameters.

5.2 Pruning on target application data with weak ReID baseline

The objective of this experiment is to analyze and compare the pruning techniques with
weak ReID baseline such as Trinet [3]. Table 6 reports the experimental evaluations of
all the scenarios. For fair comparison, we chose to keep the compression ratio to 5% of
the total number of channels. Our Scenario 2 results are produced using the HaoLi
Iteration 3 model as the model pruned on the pretraining dataset. Using the same model
for the considered techniques gives us a better idea on which pruning technique is the
best when we pruned directly on our task dataset.
As we can observe in Table 6, the results with pruning directly on the target opera-

tional domain are not performing as good as the performances of the same pruned model
with large-scale pretraining dataset. We can make the following observations from these
results: (1) pruning and fine-tuning should be done on the same domain as in the case of
Scenario 1 and Scenario 3, no matter whether it is source or target operational
domain; (2) lack of data in target domain affects the pruning accuracy to regain the infor-
mation loss by the pruning of the weak channels; (3) with the large-scale source dataset
and the L1 method, we were able to prune our model to the same number of FLOPS
as Scenario 2 (2.09 GFLOPS) but our Rank1 accuracy was 81.95% instead of 70.67%.
The L1method also seems to be better suited to prune directly on the task dataset com-
pared to Taylor and Entropy. This might be explained by the fact that we do not have
many samples per person since Taylor and Entropy approach uses a subset of sam-
ples to determine which channels to prune compared to the L1 method that ranks the
channels with their weights; (4) Scenario 4 is not viable since all methods’ perfor-
mance drop drastically. (5) As for the Auto-Balanced and the PSFP techniques,
they seem to outperform the othermethods. This could be explained by the fact that auto-
balanced modifies the loss in order to transfer the information of the pruned channels to
the remaining one. This scheme seems to help considerably when our number of samples
is limited. The PSFP seems to be the best suited algorithm to pruned models on a lim-
ited dataset. This can probably be explained by the fact that we only zeroized the pruned
channels which keep the model architecture which allows the recovery of certain soft-
pruned channels during the fine-tuning phrase. Our results with the PSFP are also very
similar to the ones obtained with the Scenario 1 scheme where we prune our mod-
els on the large-scale source dataset and then fine-tune on our task domain dataset. The
great advantage of this method is the fact that we can prune and fine-tune our models in
the same step. Plus, we are skipping the slow step of pruning on the very large ImageNet
dataset.
To compare the scenarios further, we used two compression ratios which are around

half the FLOPS (C1) and around one-third (C2) of the FLOPS of the original ResNet50
model. The Scenario 2 model for the first compression is using the second iteration
L1model as the model pruned on ImageNet. As for the second compression, we are using
the third iteration. The results for the following experiments are found in Table 7.
Table 7 shows us that Scenario 1 is truly the best one since all the results outper-

form the other ones for any method and any dataset. As for the comparison between
Scenario 2 and 3, the conclusion to determine which one is better is hard to make

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 25 of 31

Ta
b
le

6
C
om

pa
ris
on

of
ne

tw
or
k
ac
cu
ra
cy

(m
A
P
an
d
ra
nk
-1
)a
nd

co
m
pl
ex
ity

(m
em

or
y:
M
(p
ar
am

et
er
s)
an
d
tim

e:
T
(G
FL
O
PS
))
w
ith

di
ffe

re
nt

pr
un

in
g
sc
en

ar
io
s
on

al
lt
he

pe
rs
on

Re
ID

da
ta
se
ts

M
ar
ke

t-
15

01
D
uk

eM
TM

C
-r
eI
D

C
U
H
K
03

-N
P

M
et
h
od

s
Sc
en

ar
io

m
A
P

ra
n
k-
1

T
M

m
A
P

ra
n
k-
1

T
M

m
A
P

ra
n
k-
1

T
M

L1
1

67
.0
4

84
.7
1

2.
96

11
.9
0

57
.5
1

75
.0
0

2.
96

11
.9
0

44
.0
8

46
.5
0

2.
96

11
.9
0

Ta
yl
or

66
.3
5

84
.4
4

3.
21

12
.0
9

57
.9
0

75
.7
2

3.
21

12
.0
9

44
.4
0

46
.2
1

3.
21

12
.0
9

En
tr
op

y
65
.1
6

82
.3
9

2.
96

11
.9
0

56
.6
4

74
.6
4

2.
96

11
.9
0

42
.4
4

44
.0
7

2.
96

11
.9
0

A
ut
o-
Ba
la
nc
ed

65
.4
6

83
.6
4

2.
96

11
.9
0

56
.4
5

74
.6
4

2.
96

11
.9
0

41
.8
5

44
.2
1

2.
96

11
.9
0

PS
FP

65
.9
2

83
.7
2

2.
96

11
.9
0

56
.9
6

74
.6
6

2.
96

11
.9
0

42
.3
8

45
.5
8

2.
96

11
.9
0

L1
2

49
.1
8

70
.6
7

2.
09

8.
95

40
.9
1

61
.6
7

2.
09

8.
95

26
.2
9

27
.3
6

2.
09

8.
95

Ta
yl
or

32
.0
3

53
.9
2

2.
11

8.
31

23
.5
4

40
.4
4

2.
02

7.
99

13
.6
1

13
.1
4

2.
05

8.
09

En
tr
op

y
7.
38

17
.3
1

2.
09

8.
95

2.
34

6.
78

2.
09

8.
95

7.
83

7.
29

2.
09

8.
95

A
ut
o-
Ba
la
nc
ed

47
.3
6

68
.7
4

2.
09

8.
95

43
.1
9

64
.1
4

2.
09

8.
95

26
.6
9

27
.3
6

2.
09

8.
95

PS
FP

65
.0
3

80
.8
5

2.
09

8.
95

53
.0
5

73
.2
0

2.
09

8.
95

42
.1
9

43
.8
6

2.
09

8.
95

L1
3

67
.4
4

84
.2
3

5.
08

19
.1
7

57
.1
6

74
.2
8

5.
08

19
.1
7

44
.7
3

47
.8
6

5.
08

19
.1
7

Ta
yl
or

63
.2
9

81
.3
8

5.
28

19
.6
0

44
.1
4

63
.3
3

4.
98

18
.5
3

36
.9
1

38
.8
6

4.
96

18
.4
6

En
tr
op

y
60
.2
7

79
.9
9

5.
08

19
.1
7

52
.6
2

71
.7
2

5.
08

19
.1
7

38
.5

40
.1
4

5.
08

19
.1
7

A
ut
o-
Ba
la
nc
ed

67
.4
9

84
.2
6

5.
08

19
.1
7

58
.1
4

75
.2
7

5.
08

19
.1
7

46
.5
4

48
.0
7

5.
08

19
.1
7

PS
FP

67
.6
8

84
.7
8

5.
08

19
.1
7

57
.5
1

74
.8
7

5.
08

19
.1
7

46
.2
5

48
.2
0

5.
08

19
.1
7

L1
4

31
.4
1

55
.7
0

5.
08

19
.1
7

27
.9
4

48
.7
9

5.
08

19
.1
7

14
.9
7

16
.0
7

5.
08

19
.1
7

Ta
yl
or

6.
39

12
.8
9

5.
14

19
.1
0

1.
18

2.
29

4.
80

17
.8
9

6.
28

5.
71

4.
93

18
.3
5

En
tr
op

y
25
.4
1

46
.3
5

5.
08

19
.1
7

21
.0
8

41
.1
6

5.
08

19
.1
7

11
.3
1

11
.6
4

5.
08

19
.1
7

A
ut
o-
Ba
la
nc
ed

59
.2
7

78
.8
0

5.
08

19
.1
7

49
.6
4

67
.7
7

5.
08

19
.1
7

36
.6
7

38
.7
9

5.
08

19
.1
7

PS
FP

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 26 of 31

Table 7 Comparison of network accuracy (mAP and rank-1) and complexity (M: memory
(parameters) and time: T (GFLOPS)) with different pruning compression ratios of different scenarios
on all the ReID datasets

Datasets Scenario M T L1 Auto-Balanced PSFP

(compression) mAP rank-1 mAP rank-1 mAP rank-1

Market-1501 1 (C1) 11.90 2.96 67.04 84.71 65.46 83.64 65.92 83.72
2 (C1) 11.90 2.96 47.46 69.36 47.57 70.46 65.55 82.69
3 (C1) 11.90 2.96 53.22 72.21 54.73 74.05 65.88 82.19

1 (C2) 8.95 2.09 63.63 81.95 63.16 81.29 63.58 82.47
2 (C2) 8.95 2.09 49.18 70.67 47.36 68.74 65.03 80.85
3 (C2) 8.95 2.09 41.93 62.62 48.30 69.00 65.88 82.91

Duke-MTMC 1 (C1) 11.90 2.96 57.51 75.00 56.64 74.64 56.96 74.66
2 (C1) 11.90 2.96 40.60 59.47 41.09 61.09 53.71 71.90
3 (C1) 11.90 2.96 46.88 65.93 45.54 66.16 56.62 74.09

1 (C2) 8.95 2.09 55.35 74.69 55.10 72.94 55.22 73.57
2 (C2) 8.95 2.09 40.91 61.67 43.19 64.14 53.05 73.20
3 (C2) 8.95 2.09 39.17 58.71 34.80 54.58 56.77 73.38

CUHK03-NP 1 (C1) 11.90 2.96 44.08 46.50 41.85 44.21 42.38 45.58
2 (C1) 11.90 2.96 27.23 28.43 27.44 29.57 40.47 45.00
3 (C1) 11.90 2.96 33.57 36.07 33.34 35.29 40.66 44.57

1 (C2) 8.95 2.09 37.83 39.71 38.51 40.57 38.76 40.52
2 (C2) 8.95 2.09 26.29 27.36 26.69 27.36 42.19 43.86
3 (C2) 8.95 2.09 26.79 28.29 26.50 27.14 40.31 40.14

since Scenario 2 can be done using many configurations to get to a model similar to
the one in Scenario 3. We could either prune more on the large-scale source dataset
or prune less. Scenario 2 results are also affected by the choice of the pruned model
on the large-scale source set. Our first compression results using the second iteration of
the L1 method perform less in terms of recognition accuracy than pruning only on the
target operational dataset (Scenario 3). But using the third iteration as shown in the
second compression results, our Scenario 2 results are better than our Scenario 3

results.

5.3 Pruning on target application data with strong ReID baseline

The results shown in Table 7 indicate that PSFP so far is the best performing prun-
ing approach in most scenarios. Additionally, since PSFP is suitable for deploying
a compressed model—training can be done while the pruning is applied—we apply
this technique on a strong ReID baseline. Therefore, the aim of this experiment is
to analyze the effectiveness of the pruning techniques using a strong ReID baseline
PCB [43]. We show two experimental analyses with PSFP pruning of PCB architec-
tures. The first experiment shows the effect of ReID accuracy while pruning only
backbone feature extractor (indicated as PCB (BFE)), while the second one considers
all the layers (i.e., local convolutional layers and fully connected layers) after back-
bone architectures those perhaps use for feature compression and for classification
tasks. In addition to the original ResNet [11], we also performed experiments with
SE-ResNet [78] to see the effectiveness of pruning methods on different backbone
CNNs.

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 27 of 31

Table 8 Comparison of network accuracy (mAP and rank-1) and complexity (M: Parameters and T:
GFLOPS) with different pruning scenarios on all the person ReID datasets. BFE backbone feature
extractor; LC, local convolutional layer; FC, fully connected layer

Market-1501 DukeMTMC-reID

Methods Backbone mAP rank-1 T M mAP rank-1 T M

PCB (Baseline) 77.3 92.4 6.1 27.2 65.3 81.9 6.1 27.2

PSFP + PCB (BFE) ResNet50 69.4 90.4 2.6 12.0 60.7 78.5 2.6 12.0

PSFP + PCB (BFE+ LC + FC) 69.1 89.1 2.6 11.16 59.4 77.8 2.6 11.16

PCB (Baseline) 77.3 91.7 5.9 27.7 65.3 81.2 5.9 27.7

PSFP + PCB (BFE) SE-ResNet50 70.0 88.4 2.59 14.5 61.9 78.9 2.59 14.5

PSFP + PCB (BFE+ LC + FC) 69.2 87.2 2.58 13.69 59.4 77.4 2.58 13.69

Experimental results for the strong baseline PCB are reported in Table 8 both for
Market-1501 and DukeMTMC-reID datasets. Our results show a consistency with the
initial claims—the number of FLOPS and parameters required by PCB’s ResNet and
SE-ResNet architectures are reduced by half, while maintaining a comparable rank-1
accuracy for both ReID datasets. Results also suggest that PSFP pruning of local convolu-
tional layers and FC layers have little effect on ReID accuracy as the margin of differences
between PSFP+PCB(BFE) and PSFP+PCB(BFE+LC+FC) is small. This analysis implies
that it is worth pruning backbone architecture rather with local convolutional and FC
layers since it allows more memory and parameter reduction. It is worth noting that
the margin of decline in mAP accuracy is higher than that of rank-1 accuracy for both
backbones, and on all ReID datasets.

5.3.1 Filter selection criteria

As a part of ablation study, this experiment aims to analyze the effect of magnitude-based
filter selection criteria such as lp-norm on ReID accuracy. We conducted this experiment
with PSFP+PCB(BFE) on ReNet50. We show a comparative ReID performance analy-
sis between l1-norm and l2-norm on Table 9. It can be observed from Table 9 that the
ReID performance of l2-norm criteria is marginally better than that of l1-norm crite-
ria. This is due to the effect of the largest element that has been dominant in l2-norm.
As a consequence, the filters with largest weights preserved while pruning provide more
discriminative features for better recognition accuracy.

5.3.2 Varying pruning rates

The objective of this experiment is to observe ReID performance when varying pruning
rates. It was performed with PSFP+PCB(BFE). Figure 4a and b show the mAP and rank-
01 accuracy obtained with varying pruning rates, respectively. With both measures, the

Table 9 Comparison of network accuracy (mAP and rank-1) and complexity (M: Parameters and T:
GFLOPS) with different pruning criteria of the PSFP approach on all the person ReID datasets. BFE,
backbone feature extractor

Market-1501 DukeMTMC-reID

Methods Criteria mAP rank-1 T M mAP rank-1 T M

PSFP+PCB(BFE) l1-norm 68.7 90.0 2.6 12.0 60.6 78.8 2.6 12.0

PSFP+PCB(BFE) l2-norm 69.4 90.4 2.6 12.0 60.7 78.5 2.6 12.0

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 28 of 31

Fig. 4 Comparative ReID performance analysis of the PSFP+PCB(BFE) methods with different pruning rates
for Market-1501 dataset: amAP vs pruning rates and b Rank-01 vs Pruning rates

accuracy of the pruned model drops exponentially with growing pruning rates. For prun-
ing rates between 0 and 25%, the accuracy of the pruned model drops marginally. The
pruning rate above 50% leads to drastic decline in ReID performance. When pruning a
larger number of filters, the loss of information affects accuracy considerably.
To further analyze the pruning on target operational domain, we apply the best fine-

tuning practices proposed in [73], as presented in Section 3.4. We have calculated their
metrics for ImageNet andMarket11501 and got 0.005 for the cosine distance and 2.45 for
MMD. With these metrics and the fact that Market1501 has fewer than 20 samples for
each class, the authors proposed to freeze the feature extractor during the fine-tuning to
avoid overfitting since our task dataset is small and close to our large-scale pretraining
dataset. Since our problem of a small dataset was showing during the retraining phase
of the pruned network, we decided to try prune one layer at a time and freeze the oth-
ers during the retraining phase. The goal of this strategy is to force the pruned layers to
relearn the loss information while maintaining the other layers in the same optimal region
as the baseline model. This method was tried for Scenario 2 with the L1 method.
We decided to prune layer 5 of the ResNet50 while freezing the rest of the network. The
model was pruned to 2.61 GFLOPS and the rank1 accuracy was 76.10%. This experiment
shows that we could limit the effects of pruning by using a layer-by-layer approach and
freezing the other layers to regain the accuracy. The problem with this scheme is that it
is not very effective time-wise since it is a long and fastidious task to prune and retrain to
the desired compression ratio for each layer instead of doing the whole model in one pass.

6 Conclusions
In this paper, we exploit the prunability of the state-of-the-art pruning models that are
suitable for compressing deep architecture for person ReID application in terms of cri-
teria to select channels and of strategies to reduce channels. In addition to that, we
propose different scenarios or pipelines for leveraging a pruning method during the
deployment of a network for a target application. Experimental evaluations on multiple
benchmarks source and target datasets indicate that pruning can considerably reduce net-
work complexity (number of FLOPS and parameters) while maintaining a high level of
accuracy. It also suggests that pruning larger CNNs can also provide a significantly better
performance than fine-tuning smaller ones. One key observation of the scenario-based

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 29 of 31

experimental evaluations is that pruning and fine-tuning should be performed in the same
domain.
Future experiments could explore a reduction in pruning iterations in order to reduce

the impact of pruning on knowledge corruption. Retraining of the pruned networks could
also be improved by adding a learning rate decay. Using layer-by-layer methods, with
different compression ratios for each layer, can improve the results since some layers
are more resilient to pruning than others. Techniques for freezing parts of the net-
work can also improve accuracy, but drastically increase the time complexity for pruning
and retraining phases. The soft pruning method could also benefit from better selec-
tion criteria, e.g., using a gradient-based approach instead of the norm of the channel
weights. Finally, another interesting future experiment would be to avoid costly pruning
on large pretraining dataset and only use the progressive soft pruning scheme to see if
it can achieve similar results with higher compression ratios. While pruning approaches
have proven to be effective in person ReID, we realized that it is focused on the same
domain, which can limit its usage. In addition, work on pruning in the unsupervised
learning settings is still quite limited. Future work could extend such pruning methods to
unsupervised domain adaptation in person ReID.

Acknowledgements
The authors would like to thank all the state-of-the-art works for sharing their code which help us to validate our
approach by setting their approaches as baselines.

Authors’ contributions
All the authors contributed by participating in the discussion, experimentation, and drafting the manuscript of the work
described in this paper. All authors read and approved the final manuscript.

Funding
This work was supported by the Mitacs Accelerate Master’s Fellowship, Elevate Postdoctoral Fellowship Program, and the
Natural Sciences and Engineering Research Council of Canada.

Availability of data andmaterials
The re-identification datasets used to validate the findings of this work are publicly available that can be downloaded
following the given references of each dataset.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 26 September 2020 Accepted: 3 June 2021

References
1. J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, K. Murphy, in

Proc. IEEE Conf. Vis. Pattern Recognit. (CVPR), Speed/accuracy trade-offs for modern convolutional object detectors,
(Honolulu, 2017), pp. 7310–7311

2. E. Ahmed, M. Jones, T. K. Marks, in Proc. IEEE Conf. Vis. Pattern Recognit. (CVPR), An improved deep learning
architecture for person re-identification, (Boston, 2015), pp. 3908–3916

3. A. Hermans, L. Beyer, B. Leibe, In defense of the triplet loss for person re-identification. arXiv preprint
arXiv:1703.07737 (2017)

4. R. R. Varior, M. Haloi, G. Wang, in Proc. European Conf. Comput. Vis. (ECCV), Gated siamese convolutional neural
network architecture for human reidentification (Springer, Amsterdam, 2016), pp. 791–808

5. W. Chen, X. Chen, J. Zhang, K. Huang, in Proc. IEEE Conf. Vis. Pattern Recognit. (CVPR), Beyond triplet loss: a deep
quadruplet network for person reidentification, (Honolulu, 2017), pp. 403–412

6. M. Geng, Y. Wang, Y. Shi, K. Yan, M. Geng, Y. Tian, T. Xiang, in Proc. IEEE Conf. onMultimedia Big Data (BigMM), Deep
transfer learning for person reidentification, (Xi’an, 2018), pp. 1–5

7. D. Cheng, Y. Gong, S. Zhou, J. Wang, N. Zheng, in Proc. IEEE Conf. Vis. Pattern Recognit. (CVPR), Person re-identification
by multi-channel parts-based cnn with improved triplet loss function, (Las Vegas, 2016), pp. 1335–1344

8. H. Liu, J. Feng, M. Qi, J. Jiang, S. Yan, End-to-end comparative attention networks for person re-identification. IEEE
Trans. on TIP. 26(7), 3492–3506 (2017)

9. A. Bhuiyan, Y. Liu, P. Siva, M. Javan, I. B. Ayed, E. Granger, in Proc. IEEE/CVFWinter Conf. on Applications of Computer
Vision, Pose guided gated fusion for person reidentification, (Aspen, 2020), pp. 2675–2684

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 30 of 31

10. A. Bhuiyan, A. Perina, V. Murino, in Proc. European Conf. Comput. Vis. (ECCV), Person re-identification by
discriminatively selecting parts and features (Springer, Zurich, 2016), pp. 147–161

11. K. He, X. Zhang, S. Ren, J. Sun, in Proc. IEEE Conf. Vis. Pattern Recognit. (CVPR), Deep residual learning for image
recognition, (Las Vegas, 2016), pp. 770–778

12. S. Han, H. Mao, W. J. Dally, in International Conference on Learning Representations (ICLR), Deep compression:
Compressing deep neural networks with pruning, trained quantization and huffman coding, (San Juan, 2016).
Conference Track Proceedings

13. S. Han, J. Pool, J. Tran, W. Dally, in Proceedings of the 28th International Conference on Neural Information Processing
Systems (NIPS), vol. 1, Learning both weights and connections for efficient neural network, (Montreal, 2015),
pp. 1135–1143

14. Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, R. Feris, in Proc. IEEE Conf. Vis. Pattern Recognit. (CVPR), Fully-adaptive feature
sharing in multi-task networks with applications in person attribute classification, (Honolulu, 2017), pp. 5334–5343

15. R. Rigamonti, A. Sironi, V. Lepetit, P. Fua, in Proc. IEEE Conf. Vis. Pattern Recognit. (CVPR), Learning separable filters,
(Portland, 2013), pp. 2754–2761

16. E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, R. Fergus, in Proceedings of the 27th International Conference on Neural
Information Processing Systems (NIPS), vol. 1, Exploiting linear structure within convolutional networks for efficient
evaluation, (Montreal, 2015), pp. 1269–1277

17. M. Jaderberg, A. Vedaldi, A. Zisserman, in Proceedings of the British Machine Vision Conference, Speeding up
Convolutional Neural Networks with Low Rank Expansions (BMVA Press, Nottingham, 2014)

18. V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, V. Lempitsky, in 3rd International Conference on Learning
Representations, ICLR, Speeding-up convolutional neural networks using fine-tuned CP-decomposition, (San Diego,
2015). Conference Track Proceedings 2015

19. C. Tai, T. Xiao, Y. Zhang, X. Wang, E. Weinan, in 4th International Conference on Learning Representations, ICLR,
Convolutional neural networks with low-rank regularization, (San Juan, 2016). Conference Track Proceedings 2016

20. T. Cohen, M. Welling, in International conference onmachine learning (ICML), Group equivariant convolutional
networks (PMLR, New York City, 2016), pp. 2990–2999

21. H. Van Hasselt, A. Guez, D. Silver, in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30, No. 1, Deep
reinforcement learning with double q-learning, (Phoenix, 2016)

22. W. Shang, K. Sohn, D. Almeida, H. Lee, in international conference onmachine learning (ICML), Understanding and
improving convolutional neural networks via concatenated rectified linear units (PMLR, New York City, 2016),
pp. 2217–2225

23. S. Dieleman, J. De Fauw, K. Kavukcuoglu, in International conference onmachine learning (ICML), Exploiting cyclic
symmetry in convolutional neural networks (PMLR, New York City, 2016), pp. 1889–1898

24. C. Buciluǎ, R. Caruana, A. Niculescu-Mizil, in Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and DataMining, Model compression, (2006), pp. 535–541

25. G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
26. P. Luo, Z. Zhu, Z. Liu, X. Wang, X. Tang, et al, in AAAI, Face model compression by distilling knowledge from neurons,

(2016), pp. 3560–3566
27. T. Chen, I. Goodfellow, J. Shlens, Net2net: accelerating learning via knowledge transfer. arXiv preprint

arXiv:1511.05641 (2015)
28. Y. Gong, L. Liu, M. Yang, L. Bourdev, in 6th International Conference on Learning Representations, ICLR, Compressing

deep convolutional networks using vector quantization, (Vancouver, 2018). Conference Track Proceedings 2018
29. W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, in International conference onmachine learning (ICML),

Compressing neural networks with the hashing trick (PMLR, Lille, 2015), pp. 2285–2294
30. Y. Le Cun, J. S. Denker, S. A. Solla, in Proceedings of the 2nd International Conference on Neural Information Processing

Systems (NIPS), Optimal brain damage (MIT Press, Cambridge, 1989), pp. 598–605
31. B. Hassibi, D. G. Stork, in Proceedings of the 5th International Conference on Neural Information Processing Systems

(NIPS), Second order derivatives for network pruning: optimal brain surgeon, (Denver, 1992), pp. 164–171
32. P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning Convolutional Neural Networks for Resource Efficient

Transfer Learning. CoRR abs/1611.06440 (2016)
33. H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning Filters for Efficient ConvNets. CoRR abs/1608.08710 (2016)
34. J.-H. Luo, J. Wu, An Entropy-based Pruning Method for CNN Compression. CoRR abs/1706.05791 (2017)
35. Y. He, X. Zhang, J. Sun, in Proceedings of the IEEE International Conference on Computer Vision, Channel pruning for

accelerating very deep neural networks, (2017), pp. 1389–1397
36. Y. He, X. Dong, G. Kang, Y. Fu, Y. Yang, in Proceedings of the Twenty-Seventh International Joint Conference on Artificial

Intelligence (IJCAI), Progressive deep neural networks acceleration via soft filter pruning, (Stockholm, 2018),
pp. 2234–2240

37. L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, Q. Tian, in Proceedings of the IEEE international conference on computer
vision, Scalable person re-identification: A benchmark, (Santiago, 2015), pp. 1116–1124

38. W. Li, R. Zhao, T. Xiao, X. Wang, in Proceedings of the IEEE conference on computer vision and pattern recognition,
Deepreid: Deep filter pairing neural network for person re-identification, (Columbus, 2014), pp. 152–159

39. E. Ristani, F. Solera, R. Zou, R. Cucchiara, C. Tomasi, in Proc. European Conf. Comput. Vis. (ECCV), Performance measures
and a data set for multi-target, multi-camera tracking (Springer, Amsterdam, 2016), pp. 17–35

40. D. Yi, Z. Lei, S. Liao, S. Z. Li, in IEEE 22nd International Conference on Pattern Recognition, Deep metric learning for
person re-identification, (Columbus, 2014), pp. 34–39

41. A. Hermans, L. Beyer, B. Leibe, In Defense of the Triplet Loss for Person Re-Identification. arXiv e-prints arXiv-1703
(2017)

42. L. Zheng, Y. Yang, A. G. Hauptmann, Person re-identification: Past, present and future. arXiv preprint
arXiv:1610.02984 (2016)

43. Y. Sun, L. Zheng, Y. Yang, Q. Tian, S. Wang, in Proceedings of the European conference on computer vision (ECCV),
Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline), (Munich,
2018), pp. 480–496

Masson et al. EURASIP Journal on Image and Video Processing (2021) 2021:22 Page 31 of 31

44. C. Su, J. Li, S. Zhang, J. Xing, W. Gao, Q. Tian, in Proceedings of the IEEE international conference on computer vision,
Pose-driven deep convolutional model for person reidentification, (Venice, 2017), pp. 3960–3969

45. H. Yao, S. Zhang, R. Hong, Y. Zhang, C. Xu, Q. Tian, Deep representation learning with part loss for person
re-identification. IEEE Trans. Image Process. 28(6), 2860–2871 (2019)

46. L. Zhao, X. Li, Y. Zhuang, J. Wang, in Proceedings of the IEEE international conference on computer vision, (CVPR),
Deeply-learned part-aligned representations for person re-identification, (Honolulu, 2017), pp. 3219–3228

47. S. Ding, L. Lin, G. Wang, H. Chao, Deep feature learning with relative distance comparison for person
re-identification. Pattern Recog. 48(10), 2993–3003 (2015)

48. R. Yu, Z. Dou, S. Bai, Z. Zhang, Y. Xu, X. Bai, in Proceedings of the European conference on computer vision (ECCV),
Hard-aware point-to-set deep metric for person reidentification, (Munich, 2018), pp. 188–204

49. N. Wojke, A. Bewley, in 2018 IEEE winter conference on applications of computer vision (WACV), Deep cosine metric
learning for person re-identification, (Lake Tahoe, 2018), pp. 748–756

50. L. Wu, C. Shen, An entropy-based pruning method for cnn compression. arXiv preprint arXiv:1706.05791 (2017)
51. J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah, in Advances in neural information processing systems (NIPS), vol. 6,

Signature verification using a “Siamese” time delay neural network, (Denver, 1992), pp. 737–44
52. R. R. Varior, B. Shuai, J. Lu, D. Xu, G. Wang, in European Conference on Computer Vision, A siamese long short-term

memory architecture for human re-identification (Springer, Amsterdam, 2016), pp. 135–153
53. F. Wang, W. Zuo, L. Lin, D. Zhang, L. Zhang, in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Joint learning of single-image and cross-image representations for person re-identification, (Las
Vegas, 2016), pp. 1288–1296

54. K. Zhou, Y. Yang, A. Cavallaro, T. Xiang, in Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Omni-scale feature learning for person re-identification, (Seoul, 2019), pp. 3702–3712

55. H. Luo, Y. Gu, X. Liao, S. Lai, W. Jiang, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, Bag of tricks and a strong baseline for deep person reidentification, (Seoul, 2019)

56. Z. Dai, M. Chen, X. Gu, S. Zhu, P. Tan, in Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Batch dropblock network for person re-identification and beyond, (Seoul, 2019), pp. 3691–3701

57. Y. Shen, T. Xiao, H. Li, S. Yi, X. Wang, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), End-to-end deep kronecker-product matching for person reidentification, (Salt Lake City, 2018),
pp. 6886–6895

58. N. Martinel, G. L. Foresti, C. Micheloni, Deep pyramidal pooling with attention for person re-identification. IEEE Trans.
Image Process. 29, 7306–7316 (2020)

59. M. Zheng, S. Karanam, Z. Wu, R. J. Radke, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Re-identification with consistent attentive siamese networks, (Long Beach, 2019), pp. 5735–5744

60. G. Chen, C. Lin, L. Ren, J. Lu, J. Zhou, in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
Self-critical attention learning for person re-identification, (Seoul, 2019), pp. 9637–9646

61. A. Wu, W.-S. Zheng, X. Guo, J.-H. Lai, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Distilled person re-identification: towards a more scalable system, (Long Beach, 2019), pp. 1187–1196

62. F. Hafner, A. Bhuiyan, J. F. Kooij, E. Granger, A cross-modal distillation network for person re-identification in
rgb-depth. arXiv preprint arXiv:1810.11641 (2018)

63. Z. Liu, J. Qin, A. Li, Y. Wang, L. Van Gool, in 2019 IEEE International Conference onMultimedia and Expo (ICME),
Adversarial binary coding for efficient person re-identification, (Shanghai, 2019), pp. 700–705

64. D. Mekhazni, A. Bhuiyan, G. Ekladious, E. Granger, in European Conference on Computer Vision, Online, Unsupervised
domain adaptation in the dissimilarity space for person re-identification (Springer, 2020), pp. 159–174

65. W. Fang, H.-M. Hu, Z. Hu, S. Liao, B. Li, Perceptual hash-based feature description for person re-identification.
Neurocomputing. 272, 520–531 (2018)

66. S. Gong, J. Cheng, Z. Hou, et al., in European Conference on Computer Vision, Online, Faster person re-identification
(Springer, 2020), pp. 275–292

67. B. O. Ayinde, J. M. Zurada, Building efficient convnets using redundant feature pruning. arXiv, 2018 (2018)
68. Y. He, P. Liu, Z. Wang, Y. Yang, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), Filter pruning via geometric median for deep convolutional neural networks acceleration, (Long Beach, 2019)
69. P. Singh, V. K. Verma, P. Rai, V. P. Namboodiri, in 28th International Joint Conference on Artificial Intelligence (IJCAI), Play

and Prune: Adaptive filter pruning for deep model compression, (Macao, 2019), pp. 3460–3466
70. X. Ding, G. Ding, J. Han, S. Tang, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, No. 1,

Auto-balanced filter pruning for efficient convolutional neural networks, (New Orleans, 2018)
71. J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, W. Lin, Thinet: pruning CNN filters for a thinner net. TPAMI, 2018 (2018)
72. R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y. Lin, L. S. Davis, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Nisp: Pruning networks using neuron importance score propagation,
(Salt Lake City, 2018), pp. 9194–9203

73. B. Chu, V. Madhavan, O. Beijbom, J. Hoffman, T. Darrell, Best practices for fine-tuning visual classifiers to new
domains. Proc. European Conf. Comput. Vis. (ECCV), 435–442 (2016)

74. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

75. Z. Zhong, L. Zheng, D. Cao, S. Li, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Re-ranking person re-identification with k-reciprocal encoding, (Honolulu, 2017), pp. 1318–1327

76. Z. Zheng, L. Zheng, Y. Yang, in Proceedings of the IEEE International Conference on Computer Vision (CVPR), Unlabeled
samples generated by gan improve the person re-identification baseline in vitro, (Honolulu, 2017), pp. 3754–3762

77. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, in 2009 IEEE conference on computer vision and pattern recognition
(CVPR), Imagenet: A large-scale hierarchical image database, (Miami, 2009), pp. 248–255

78. J. Hu, L. Shen, G. Sun, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Squeeze-and-excitation networks, (Salt Lake City, 2018), pp. 7132–7141

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Abstract
	Keywords

	Introduction
	Deep neural networks for person re-identification
	Metric loss
	Multi-class classification loss
	Multiple losses

	Techniques for pruning CNNs
	Channel pruning taxonomy
	Description of methods
	Criteria based on weights
	Criteria based on feature maps
	Output-based

	Critical analysis of pruning methods
	Design scenarios with pruning

	Experimental methodology
	Datasets
	Pruning methods
	Implementation details

	Performance metrics

	Experimental results and discussion
	Pruning on pretraining data
	Pruning on target application data with weak ReID baseline
	Pruning on target application data with strong ReID baseline
	Filter selection criteria
	Varying pruning rates

	Conclusions
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

