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Abstract

Single-frame image super-resolution (SISR) technology in remote sensing is improving
fast from a performance point of view. Deep learning methods have been widely used in
SISR to improve the details of rebuilt images and speed up network training. However,
these supervised techniques usually tend to overfit quickly due to the models’ complexity
and the lack of training data. In this paper, an Improved Deep Recursive Residual Network
(IDRRN) super-resolution model is proposed to decrease the difficulty of network training.
The deep recursive structure is configured to control the model parameter number while
increasing the network depth. At the same time, the short-path recursive connections are
used to alleviate the gradient disappearance and enhance the feature propagation.
Comprehensive experiments show that IDRRN has a better improvement in both
quantitation and visual perception.
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1 Introduction
Remote-sensing applications mainly process and analyze remotely sensed images ex-

tracted by satellites to analyze useful information on the ground, including disaster

monitoring, environmental detection, geology, and resource exploration [1]. As a key

indicator for measuring satellite remote sensing performance, the spatial resolution of

remote sensing images is very important in practical applications. High-resolution

(HR) images are usually desired for remote sensing analysis and processing procedure.

However, remote sensing images always distort due to the limitations of remote sens-

ing image sensors and other factors like optical system aberration, atmospheric dis-

turbance, movement, and noise of imaging system. The simplest way to improve the

resolution is to increase the sensors’ density of remote sensing image acquisition

equipment. However, this will generate shot noise, cause a big amount of hardware

costs, increase the weight and volume of the sensor, and add the difficulty of satellite

launch, which is not conducive to the application and popularization of high-

resolution sensors [2–4]. In this respect, SISR is a better approach. It is an image post-

processing technology, which is based on digital signal processing theory and can
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effectively and conveniently improve image resolution. SISR is mainly divided into two

types: reconstruction-based SISR and learning-based SISR. In remote sensing applica-

tions, without increasing hardware investment, it can obtain high-resolution images of

regions of interest, improve the recognition accuracy of targets of interest in images,

and increase the value of image applications [5].

The reconstruction-based method mainly uses the imaging process of low-resolution

(LR) images to build a model and proposes a series of constraints on the reconstructed

image. The classic algorithms mainly include the iterative backward projection (IBP)

[6], projection onto convex sets (POCS) [7], and Bayesian maximum a posteriori

(MAP) [8], among which, the MAP method is the most widely used, usually with a

regular term [9] to build a MAP solution framework. As for the total variation (TV)

regular method [10], it is believed that the total variation of a noisy image is always

greater than the total variation of a pure image, so the problem of suppressing noise in

reconstruction is solved by constraining the total variation of the image; in general total

variation (GTV) regularization [11], the distance relationship between the point of

interest and the domain is further accurately described. Gradually, more reasonable

and effective regularized [12, 13] image models are used for super-resolution restor-

ation of images. Reconstruction-based SISR algorithms are insufficient in utilization of

the prior information of the image itself. Most of these methods use some prior know-

ledge of the image’s edge and local smoothness to form constraints, and then use itera-

tive algorithms to solve the optimization problem, but when the magnification is large,

the reconstructed image is often too smooth, which lacks sharpness.

The learning-based method mainly learns the mapping relationship between the LR

and HR images by training on the training set in advance and uses the learned mapping

relationship to restore the high-resolution image. Learning-based SISR algorithm was

first developed by Freeman et al. [14] and then applied by Baker et al. [15] to recon-

struct the face image. Super-resolution reconstruction based on clustering [16, 17] has

achieved good results, and the method of learning based on the sparse representation

[18, 19] is the most widely used; reference [20] improves image feature extraction and

dimensionality reduction during dictionary training so that the reconstructed image re-

tains more high-frequency detail information; reference [21] proposes the sparse repre-

sentation of the sample database composed of the low-resolution and high-resolution

sample image blocks, and the over-complete dictionary corresponding to the training

image pair is used. In recent years, super-resolution restoration using deep learning has

begun to appear. Reference [22] proposes that the three-layer convolution corresponds

to the extraction of image blocks, feature non-linear mapping, and final reconstruction.

The interpolation-enlarged LR image is input to reconstruct the image. A method of

feedback residual network based on deep edge guidance is proposed in reference [23],

and images are trained according to different frequency bands and routes through re-

cursive residual network. Reference [24] puts forward the idea of using residual learn-

ing to implement image reconstruction; Reference [25] conducts a convolution

operation on a low-resolution image and finally performs an upsampling operation at

the end of the network, that is, an operation to improve the resolution; in reference

[26], the idea of generative confrontation is introduced into super-resolution, and a

confrontation network and a discrimination network are used to simulate the confron-

tation. The discrimination network is used to judge the predicted high-resolution image
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generated by the generation network. However, these learning-based SISR techniques

require sufficient HR training examples in order to perform properly and generalize

well. In addition, they usually tend to overfit quickly due to the models’ complexity and

the lack of training data.

To overcome the problems mentioned above, we propose a novel fusion SR method

named IDRRN in this paper. A recursive residual network is introduced into the super-

resolution restoration of remote sensing images. In this network model, global residual

learning and local residual learning are introduced to reduce the difficulty of training

deep networks, and a recursive block composed of residual units is used. To learn the

residual image between high-resolution and low-resolution images, we can boost the

accuracy by increasing the network depth without adding any weight parameters. With-

out loss of image restoration quality, the deep learning model is improved to make its

network structure more concise and compact. By connecting multiple secondary filters

in the deep network, the accuracy is significantly improved. This model uses local re-

sidual learning instead of global residual learning to train deep networks, which is more

conducive to information transmission and gradient flow. The infusion of a recursive

structure in the residual block reduces the parameters and makes the model more com-

pact. Taking the uninterpolated LR image as input, and finally using the deconvolution

layer at the end of the network to directly upsample to the SR output image, the calcu-

lation complexity is greatly reduced.

The algorithm has been adapted to be efficiently executed in parallel and presents

some methodological improvements to make the model more efficient and effective.

Experimental results show that the proposed method performs significantly against

existing methods in evaluation indicators and visual effect.

1.1 Related works

We briefly review the ideas and work progress related to this paper in this section.

Firstly, we discuss the image degradation in remote sensing and get the mathematical

model of LR images. Next, we describe the main idea of deep learning and its applica-

tion in SISR algorithms. Finally, we illustrate the image restoration model of learning

the residual by the convolutional neural network (CNN), in which the corruption is

considered as “residual information.”

1.2 Image degradation in remote sensing

The formation of remote sensing images has gone through several links. In these links,

the problems of image degradation and quality degradation inevitably occur. In order

to obtain high-quality spatial images, the acquired remote sensing images need to be

denoised and deblurred [27]. As shown in Fig. 1, a degradation model is first estab-

lished from the original image to the actual acquired image, where the original image is

a high-resolution image and the actual acquired is a LR image.

When each image is taken by remote sensing, the blurry point spread function in dif-

ferent spatial domains Bi and motion deformation parameters Mi under different effects

Di, a LR image sequence can finally be obtained. After the image degradation model is

established, the mathematical model of the low-resolution image can be expressed as

follows:
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gi ¼ DiBiMi f þ ni; i ¼ 1; 2;…; q ð1Þ

Among them, gi is the vectorized representation of the low-resolution image i, q is

the number of LR image frames, f is a vectorized representation of a HR image, m and

n represent the spatial dimensions of the real image, Mi is the motion matrix, Bi is a

fuzzy matrix, Di is the downsampling matrix, and ni is the vectorized representation of

the (m × n) × 1 dimensional noise.

Make

g ¼
g1
g2
…
gp

2
664

3
775 , H ¼

D1B1M1

D2B2M2

…
DpBpMp

2
664

3
775 , n ¼

n1
n2
…
np

2
664

3
775 , p = 1, 2, …, q (2)

then the degradation model of q LR remote sensing images can be abbreviated as follows:

g ¼ Hf þ n ð3Þ

Among them, g is a vectorized representation of a LR image, His the degradation

matrix, and n is a vectorized representation of noise.

1.3 Deep learning for SISR in remote sensing

High-resolution remote sensing images play an important role in agricultural and forestry

monitoring, urban planning, and military reconnaissance. As the smallest size that can be

distinguished by the spatial details of the target in the image, the spatial resolution of the re-

mote sensing image is one of the key indicators for evaluating the image quality. However,

Fig. 1 Degradation model of remote sensing images
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due to the high-cost and time-consuming development of HR remote sensing satellites,

how to obtain HR images economically and conveniently has always been a major challenge

in the field of remote sensing. Super-resolution reconstruction technology is a favorite re-

sort to such problems. The general objective in SR is to improve the image resolution be-

yond the sensor limits, that is, to increase the number of image pixels while providing finer

spatial details than those captured by the original acquisition instrument.

The SISR of remote sensing images is an ill-conditioned inverse problem, so reasonable

image feature expression is particularly important in the reconstruction process. Deep learn-

ing methods, especially CNN, can perform feature transformation and non-linear mapping

on LR images to obtain complex feature expressions of LR images and then build LR images

to HR images complex mapping relationship. The essence of deep learning is a self-learning

method for data representation, replacing manually extracting features by using unsuper-

vised or semi-supervised feature learning and hierarchical feature acquisition methods.

Super-resolution convolutional neural network (SRCNN )[22] has begun the era of

deep convolutional neural networks dealing with super-resolution problems. The algo-

rithm takes the result of LR image interpolation as the network input and obtains a HR

image after three convolutional transformations. After three steps of feature extraction,

nonlinear transformation, and feature restoration, a very good restoration effect is ob-

tained. The first convolution layer is the extraction of image features. Image blocks are

extracted from the LR image and each block is represented as a high-dimensional vec-

tor. Given a low-resolution image x, the process can be expressed as follows:

N1 xð Þ ¼ max 0; f 1xþ d1ð Þ ð4Þ

Among them, f1 is the convolution kernel of the first convolution layer, which can be

regarded as a filter. d1 represents the bias of the first layer.

The second convolution layer is a non-linear mapping between features, mapping

each high-dimensional vector to another high-dimensional vector. Each mapping vector

is a conceptual representation of HR blocks, which can be expressed as follows:

N2 xð Þ ¼ max 0; f 2N1 xð Þ þ d2ð Þ ð5Þ

Here f2 and d2 represent the filter and bias of the second convolution layer.

The third convolution layer is a process of reconstructing an image to generate HR

image. This operation stitches the above HR image blocks to generate a final HR image,

which can be expressed as:

N3 xð Þ ¼ f 3N2 xð Þ þ d3 ð6Þ

Here, f3 and d3 represent the filter and bias of the third convolution layer.

The entire convolutional neural network model continuously reduces the loss of the net-

work through iteration. When the loss value is minimized and stabilized, the corresponding

weight and bias of each layer of convolution are the optimal results of the network.

Accompanying the robust development of deep learning algorithms and great success

of SRCNN, super-resolution recovery algorithm based on deep convolutional networks

developed rapidly, and various improved variants and new network structures appeared

accordingly, such as fast super-resolution convolutional neural network (FSRCNN)

[28], very deep convolutional networks for image super-resolution (VDSR) [24], super-

resolution generative adversarial network (SRGAN) [26], end-to-end deep and shallow
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networks (EEDS) [29], and enhanced deep super-resolution network (EDSR) [30]. This

greatly improves the practical application of deep learning for SISR.

1.4 Deep residual network

Residual network (ResNet) is proposed to solve the problem of network degradation

when the deep neural network has too many hidden layers. Its main idea is to learn the

residual function instead of the original function based on the input, which makes the

training of the deeper network simpler, and can get better performance from the dee-

per network [31–33]. Its network structure is shown in Fig. 2.

Reference [34] pointed out that two weight layers and an activation function ReLu

are regarded as a basic unit, and then, the input and output of the unit are added at the

pixel level through a jump connection, that is, the corresponding pixels in the feature

map are added, and the residual operation is performed as follows:

H xð Þ ¼ F xð Þ þ x ð7Þ

Among them, x represents the input of a basic unit, H(x) represents the result of the

residual calculation, and F(x) represents the basic unit calculation result.

The residual block structure is as follows:

xo ¼ U xð Þ ¼ σ F x;Wð Þ þ h xð Þð Þ ð8Þ

Among them, xo represents the output of the residual block, h(x) is an identity map-

ping and h(x) = x, W is a set of weights, F(x,W) is the residual mapping to be learned, σ

represents Relu activate function, and U represents a residual block function. The re-

sidual mapping is easier to optimize than the original mapping.

The proposed residual network breaks the argument that deepening the number of

layers in the network cannot improve performance. Moreover, the structure of the deep

residual network is simple, which solves the problem of performance degradation of

deep convolutional neural networks under extremely deep conditions, and the classifi-

cation performance is excellent.

1.5 Proposed improved method

1.5.1 Recursive structure

Reference [35] proposed deeply-recursive convolutional network (DRCN) algorithm,

which introduced recursive algorithm in residual network. The recursive structure con-

sists of 16 chain structures. DRCN passes the recursive results through the reconstruc-

tion layer each time, generating intermediate results of HR images. DRCN’s recursive

structure allows weight parameters to be shared in the convolutional layer, effectively

controlling model parameters. However, in order to solve the problem that the training

Fig. 2 Network architecture of ResNet
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deep model is prone to vanish or explode gradients, each recursive learning needs to be

supervised, which undoubtedly increases the burden on the network.

In response to the above issues, in this paper, the improved recursive structure is in-

troduced into the residual block to reduce the network scale and make the model more

compact. At the same time, the weights are shared among the residual blocks, reducing

the number of model parameters. The residual block function is defined as:

Hμ ¼ R Hμ−1
� � ¼ F Hμ−1;W

� �þ H0 ð9Þ

Hμ is the μth output of the first residual block, R represents the residual block func-

tion, F(Hμ − 1,W) is the residual mapping to be learned, W is the set of weights, and H0

is the feature image output through the first convolution layer.

A convolution layer and a Relu layer are introduced at the beginning of the recursive

block and then superimpose multiple residual blocks, which forms a recursive struc-

ture. Among them, H0 refers to the identity mapping of each residual block, and B rep-

resents the number of residual blocks contained in the recursive structure. The

algorithmic recursive structure is shown in Fig. 3.

The result of the μth residual block can be obtained by the residual block function R

recursively.

1.5.2 Network structure optimization

The algorithm introduces local residual learning to reduce the difficulty of training the

deep network. First, the high-frequency features of the LR input image are extracted

through the convolution layer, and then after each two-layer convolution layer, the fea-

ture image extracted by the first convolution layer is added. That is, the inputs of all

identity branches in the residual block remain the same. In this way, more image infor-

mation can be transmitted to the deeper layer of the network, and its identity branch

also helps the back propagation of gradients during training, avoiding the overfitting

phenomenon [36]. The improved residual block structure consists of two convolutional

layers and two Relu layers. The residual block structure is shown in Fig. 4.

Recursive structure is introduced in the residual block. The parameters are reduced,

which is more helpful for information transmission and gradient flow. LR input image

goes through a convolutional layer and a Relu layer, extracts features, and then inputs

the extracted features into several residual blocks, and recursively learn the residual

mapping function. Finally, at the end of the network, a deconvolution layer is used to

directly upsample the learned residual image and restore SR output image. The opti-

mized network structure is shown in Fig. 5.

It can be seen from the figure the number of convolutional layers in each residual

network unit. In the improved network, there are more layers of residual network units

at the front part of the network and fewer layers of the residual network units at the

later part. This design can make the entire network contain deeper network branches

while using the same number of parameters, thereby improving the quality of the gen-

erated images. The deep branches of the adjusted network increase, so that the opti-

mized network can work more efficiently. At the same time, in order to avoid gradient

dispersion and overfitting in deep networks, a pooling layer is added to the branches with

deeper network layers, that is, residual network units near the output end.
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Fig. 3 Recursive block structure of DRCN

Fig. 4 Improved residual block structure. It consists of two convolutional layers and two Relu layers
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Fig. 5 Improved network of IDRRN. It consists of three parts: feature extraction, nonlinear mapping of
residual function, and SR image reconstruction
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The whole network is composed of three parts: feature extraction, nonlinear mapping

of residual function, and SR image reconstruction. The LR input image passes through

a convolutional layer and a Relu layer to extract features, and then, the extracted fea-

tures are input into several residual blocks, and the residual mapping function is

learned recursively. Finally, at the end of the network, a deconvolution layer is used to

directly upsample the learned residual image to reconstruct the SR output image.

1.6 Evaluation criteria

Objectively, the deviation error between the restored image and the original image is gen-

erally used to evaluate the quality of the image restoration. In this paper, peak signal-to-

noise ratio (PSNR), structural similarity (SSIM), and Erreur Relative Globale Adimension-

nelle de Synthèse (ERGAS) are used as reference evaluation indicators for image quality.

The larger the PSNR value, the smaller the difference between the reconstruction re-

sult and the original image, the better the reconstruction effect. The calculation for-

mula is as follows:

PSNR ¼ 10� log10
max Xið Þ½ �2�MN

Xi−Y ik k2
( )

ð10Þ

Among them, Xi is the high-resolution image of the original reference, Yi is the re-

constructed image, M and N are the height and width of the image, and generally, the

maximum value of max(Xi) is 255, which can be directly substituted in the formula.

PSNR is mainly based on the comparison between pixels, and the evaluation of the

local structure of the image is relatively weak. Sometimes the PSNR values of the two

images are close, but the visual effects of the images are very different. Images generally

have their own structures, and there is more or less correlation between adjacent pixels.

SSIM is a structural parameter between the reconstruction result and the reference

high-resolution image. The calculation formula is as follows:

SSIM X;Yð Þ ¼ 2μXμY þ C1ð Þ 2σXY þ C2ð Þ
μ2X þ μ2Y þ C1ð Þ σ2

X þ σ2Y þ C2ð Þ ð11Þ

Among them, X and Y are the reference HR image and the restored result image, re-

spectively. μX and μY represent the average pixel value of two image pairs, which are de-

fined as follows:

μX ¼ 1
N

XN
i¼1

X ið Þ ð12Þ

μY ¼ 1
N

XN
i¼1

Y ið Þ ð13Þ

N is the number of dimensions to expand the image by column. σX and σY are the

corresponding variance, defined as follows:

σX ¼ 1
N−1

XN
i¼1

X ið Þ−μXð Þ2
 !1

2

ð14Þ
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σY ¼ 1
N−1

XN
i¼1

Y ið Þ−μYð Þ2
 !1

2

ð15Þ

σXY is the covariance, which is defined as:

σXY ¼ 1
N−1

XN
i¼1

X ið Þ−μXð Þ Y ið Þ−μYð Þ ð16Þ

C1 and C2 are normal number whose denominator is not zero. The value of SSIM

ranges from 0 to 1. The closer the value is to 1, the more similar the two images are,

and the better the reconstruction result is.

ERGAS is a quality evaluation method proposed for image fusion research, which re-

flects the degree of spectral distortion between the restored image and the reference

image. It is also commonly used in the super-resolution restoration quality evaluation

of images. The calculation formula is as follows:

ERGAS ¼ 100
h
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK
k¼1

RMSE kð Þ
μ kð Þ

� �2
vuut ð17Þ

l and h represent the resolution before and after image reconstruction, K represents

the number of bands, μ(k) represents the average of k band, and RMSE represents the

root mean square error of the image. The ideal value of ERGAS is 0.

2 Results and discussion
2.1 Experimental environment and settings

The experimental software environment uses Ubuntu 14.04, Python 2.7, TensorFlow

1.4; the hardware environment is Intel Core i7-6700K, RAM 16GB, and the GPU is

NVIDIA GTX1080. We use remote sensing image scene classification data set NWPU-

RESIS45 [37] created by Northwestern Polytechnical University. Data set includes 45

scenes, each scene has 700 images, and each image size is 256×256, ensuring the au-

thenticity and diversity of experimental data.

From each type of remote sensing image, 100 images with obvious features are se-

lected, with a total of 4500 images. These images constitute a training data set to train

the algorithm model. In addition, a total of 450 images of each type are chosen as test

data sets, and different SR algorithms (SRCNN, FSRCNN, DRCN, VDSR, EDSR, and

IDRRN) are used to simulate the test results. There are some of the training images as

shown in Fig. 6, comprising the following scenes: airplane, basketball_court, bridge, cir-

cular_farmland, harbor, industrial_area, intersection, and parking_lot.

For input images, first use the magnification factor n to downsample the original training

image, and it becomes an LR image. Then crop the LR image into a set of sub-images with

stride s and sizefsub × fsub pixel and crop the corresponding size from the corresponding real

image to (nfsub)
2 pixel HR sub-images. These LR/HR sub-image pairs are training samples.

To ensure that the image size does not change during the mapping process, the convolu-

tional layers are filled with “0.” When training IDRRN, the deconvolution filter will generate

a size of (nfsub − n + 1)2 output image. Therefore, we need to crop the n − 1 pixel boundaries

of HR sub-image.
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2.2 Quantitative results of SR methods

The network depth of the IDRRN algorithm proposed in this paper has 12 layers. The

filter size should be odd so that it has a center, such as 3×3, 5×5, or 7×7. The use of

smaller convolution kernels is one of the current trends to reduce parameters while en-

suring network accuracy.

The parameter setting of the convolution layer is the same as VDSR [24]. All convolu-

tional layer filters are 3×3 in size and the number of filters is 64. The deconvolution uses

the mean value of 0, the standard deviation is 0.001 random initialization of Gaussian distri-

bution, and take Relu function as activation function. The size of the filter refers to the

DRCN algorithm [35], which is 5×5. The step is equal to the amplification factor n. During

training, the size of the image batch is 128, the momentum is 0.9, and the weight attenu-

ation parameter is 0.0001. The initial learning rate is set to 0.1, then the learning rate is

halved every 15 generations; the learning stops after 120 generations, and the loss function

is the MSE (mean square error) function.

The performance of the proposed approach has been compared with the results obtained

by six different SR methods available in the literature (Bicubic, SRCNN [22], FSRCNN [28],

DRCN [35], VDSR [24], and EDSR [30]). Three different scaling factors, ×2, ×3, and ×4,

have been tested over the considered image data set (airplane, bridge, harbor, intersection,

and parking_lot). All the tested methods have been used considering the default settings

suggested by the methods’ authors for each particular scaling ratio. Table 1 provides a brief

PSNR/SSIM description of the SR techniques.

As shown in Table 1, the average PSNR and SSIM values of the images generated by

the method in this paper are higher than other current mainstream SISR algorithm.

The PSNR values are optimal in 5 types of scenarios. The maximum boost value is

Fig. 6 Scenes used in the experiments. a Airplane, b basketball_court, c bridge, d circular_farmland, e
harbor, f industrial_area, g intersection, and h parking_lot
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5.19dB, when under ×2 magnification, the maximum boost value is 3.99dB when under

×3 magnification, and the maximum boost value is 2.74dB when under ×4 magnifica-

tions. In terms of value, except for the ×4 magnification conditions of harbor and inter-

section, the rest are optimal. The algorithm in this paper reaches maximum boost value

0.1088 at ×2 magnification, maximum boost value 0.1839 at ×3 magnification, and

maximum boost value 0.0759 at ×4 magnification.

Because of the particularity of remote sensing images, this paper uses ERGAS value

in Formula (17) to compare the SR effect in order to further verify the effectiveness of

the improved algorithm. From Table 2, we can get that among the 15 ERGAS data re-

sults, the IDRRN algorithm obtained 11 optimal values.

By analyzing and comparing the SR results of Tables 1 and 2, we find that the recursive

residual learning can transfer more effective image information to the depth of the net-

work, learn more image features, and make the image restoration quality improve greatly.

Furthermore, the proposed IDRRN approach from inherent parameter sharing ob-

tains higher parameter efficiency compared to other learning-based methods. In Fig. 7,

we illustrate the parameters-to-PSNR relationship of our model and several state-of-

the-art methods, including SRCNN, FSRCNN, DRCN, VDSR, and EDSR. Our method

represents a favorable trade-off between model size and SR performance and has mod-

est processing time.

The addition of improved recursive structure does not need to increase the number

of parameters. In addition, it improves the restoration quality of the image. The net-

work structure is more compact and the objective performance is better.

2.3 Visual results and discussion

In order to demonstrate the effectiveness of our approach more fully, we also show

some of the visual comparisons on three scales ×2, ×3, and ×4. Figures 8, 9, and 10

Table 2 ERGAS values of state-of-the-art SR methods. The bold number indicates the best
performance

Scene Scale Bicubic SRCNN FSRCNN DRCN VDSR EDSR IDRRN

Airplane ×2 3.1462 2.6994 2.4515 2.3379 2.2613 2.2075 2.1987

×3 2.9942 2.6364 2.3988 2.4103 2.3015 2.2889 2.2044

×4 2.6828 2.4634 2.4077 2.3345 2.1613 2.0481 1.9985

Bridge ×2 6.5783 6.0234 5.9902 5.6359 5.2230 5.5834 5.1681

×3 5.7809 5.5293 5.4437 5.2569 5.1571 4.9849 4.9901

×4 4.8862 4.6293 4.6128 4.5153 4.3820 4.4121 4.3815

Harbor ×2 9.4446 8.1335 8.3982 9.0341 7.0818 7.9539 6.3731

×3 11.2215 10.0231 9.9025 8.9336 8.0004 8.0349 8.1795

×4 12.9885 11.3769 10.5539 10.2495 10.5594 10.5104 9.5517

Inter-section ×2 14.2147 11.2275 11.0060 12.4054 11.1685 11.7313 10.8496

×3 13.4601 12.7299 12.0232 11.9441 11.5986 12.7035 11.0287

×4 15.1112 13.0236 12.7750 13.6313 11.0426 11.0405 11.4467

Parking_lot ×2 7.7762 7.4731 7.5994 6.9825 6.9904 7.5398 6.8247

×3 6.3143 6.1019 5.7282 5.5627 5.1651 5.0154 5.3081

×4 5.8401 4.6099 4.5310 6.7772 5.5812 4.8773 4.5238
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show the qualitative evaluation results of various algorithms. By enlarging the details of

the image, the quality of image restoration of several SISR methods can be intuitively

evaluated from the visual effect.

It can be seen from the figures that our method has a significant improvement in

both image sharpness and clarity. After image processing, it is easier to identify mul-

tiple image categories in the remote sensing image. IDRRN overcomes the shortcom-

ings of the overall smooth reconstruction result of the traditional method, and the

reconstruction result restores more high-frequency details.

In addition, from the comparison of the enlarged parts of the tail of the aircraft in

Fig. 8, the ships in the port in Fig. 9, and the vehicles on the bridge in Fig. 10, it can be

seen that the image after the SR reconstruction by the IDRRN generation network is

sharper compared with other mainstream algorithms. It has a better performance in

the restoration of remote sensing image details, and it is more effective in repairing

complex textures in damaged images. After repairing, the details in the image are richer

Fig. 7 Average PSNR and number of parameters for scale factor ×3 of various SISR methods

Fig. 8 Comparison of restored HR images of “airplane_061” obtained via various methods with a scale
factor of ×2. a Bicubic, b SRCNN, c FSRCNN, d DRCN, e VDSR, f EDSR, g IDRRN, and h original
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and more consistent with the visual characteristics of the human eye. With the SR res-

toration of the remote sensing image, the texture and edges are clearer, and the objects

in the output image are easier to recognize.

3 Conclusion
In this paper, we propose a new type of residual network that introduces an improved

recursive structure in the residual block. The jump connection and recursive structure

can effectively reduce the burden of carrying characteristic information on the network,

achieving high-quality SR remote sensing image recovery. Experiments were performed

using the NWPU-RESISC45 remote sensing image data set, and PSNR, SSIM, and

ERGAS are the objective quality evaluation index of image SR. Experimental results

show that compared with other super-resolution methods based on CNN, the method

Fig. 9 Comparison of restored HR images of “harbor_342” obtained via various methods with a scale factor
of ×3. a Bicubic, b SRCNN, c FSRCNN, d DRCN, e VDSR, f EDSR, g IDRRN, and h original

Fig. 10 Comparison of restored HR images of “bridge_142” obtained via various methods with a scale
factor of ×4. a Bicubic, b SRCNN, c FSRCNN, d DRCN, e VDSR, f EDSR, g IDRRN, and h original
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in this paper has more compact network structure and fewer model parameters, and

the reconstruction details are more abundant. Moreover, the restoration results have

better visual effects and are more conducive to further remote sensing image analysis.

In the next work, we will try to generalize the proposed IDRRN method to color im-

ages by designing a more compact network structure and improving the loss function

of the model. In addition, we hope to further improve the details of super-resolution

images and the repair effect of complex textures.
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