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Abstract
The autoimmune disorders such as rheumatoid, arthritis, and scleroderma are
connective tissue diseases (CTD). Autoimmune diseases are generally diagnosed using
the antinuclear antibody (ANA) blood test. This test uses indirect immune fluorescence
(IIf) image analysis to detect the presence of liquid substance antibodies at intervals the
blood, which is responsible for CTDs. Typically human alveolar epithelial cells type 2
(HEp2) are utilized as the substrate for the microscope slides. The various fluorescence
antibody patterns on HEp-2 cells permits the differential designation-diagnosis. The
segmentation of HEp-2 cells of IIf images is therefore a crucial step in the ANA test.
However, not only this task is extremely challenging, but physicians also often have a
considerable number of IIf images to examine.
In this study, we propose a new methodology for HEp2 segmentation from IIf images
by maximummodified quantum entropy. Besides, we have used a new criterion with a
flexible representation of the quantum image(FRQI). The proposed methodology
determines the optimum threshold based on the quantum entropy measure, by
maximizing the measure of class separability for the obtained classes over all the gray
levels. We tested the suggested algorithm over all images of the MIVIA HEp 2 image
data set.
To objectively assess the proposed methodology, segmentation accuracy (SA), Jaccard
similarity (JS), the F1-measure,the Matthews correlation coefficient(MCC), and the peak
signal-to-noise ratio (PSNR) were used to evaluate performance. We have compared
the proposed methodology with quantum entropy, Kapur and Otsu algorithms,
respectively.The results show that the proposed algorithm is better than quantum
entropy and Kapur methods. In addition, it overcomes the limitations of the Otsu
method concerning the images which has positive skew histogram.This study can
contribute to create a computer-aided decision (CAD) framework for the diagnosis of
immune system diseases
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1 Introduction
In recent years, much automation machinery was designed for all the most important
steps in the IIf images analysis [1–8]. Classification models and techniques are used to
recognize the mitotic cells, quantify the fluorescence intensity, and categorize the fluores-
cent patterns. Image segmentation is one of the first important and difficult steps during
a computer-system diagnostic system using the IIf images. The approaches of cell HEp-2
segmentation is divided into 3 classes. The first class is the simplest procedure; it is sup-
ported by a thresholding result from morphological operations [9, 10]. This method has
restricted accuracy in the cells detection with non-uniform intensity patterns (e.g., light
and dark areas in the same cell). The second class tries to overcome the limitation of the
first class by splitting segmentation method into two or several steps (see [3, 5, 8]) or by
utilizing the watershed algorithm [6]. In these approaches, there are several parameters
dependent on the data sets, and they do not address the segmentation of complex mod-
els [3, 11]. Finally, the third proposed approach is primarily based on the strategies of
machine learning classification [7]. Generally, the techniques of Cell HEp-2 segmentation
are evaluated on IIf images, which have complete distinct characteristics regarding the
resolution, the contrast, and the level of noise and fluorescent patterns. In [7], the most
significant segmentation techniques are assessed on IIf image database. The results of the
assessments show that the segmentation accuracy of HEp-2 cells with completely distinct
intensity levels and fluorescence patterns remain challenging. Several studies confirmed
that diagnostic responsibility is severely affected by judgment, and also the variability of
human analysis, thus requiring automatic identification techniques [12–14]. Quantum
computing (QC) is a novel field that combines information processing and physics. The
difficult task is the secret writing data of quantum objects (called qubits). Nowadays, the
quantum computer is far from complete. That being said, several existing classical com-
putation algorithms can be improved by quantum computing, as it is. New techniques
for quantum information processing are based on quantum machine learning, such as
quantum state classification. It is one among quantum computing perspective [15]. The
quantum information system (QIS) is a domain which becomes visible from previous the
science of information and physics. Besides, QIS has transformed information science
[16]. Existing algorithms for image processing can be improved by quantum mechanics
of mathematical modeling [17]. The power of quantum computation can help to over-
comemany difficult tasks for classical computers. The information theory can consider as
quantum computation applications [18]. Image processing has been studied extensively in
classical computers [19]. Due to quantum parallelism, quantum computers could reduce
the time complexity of linear, or even exponential algorithms that are run on classical
computers [20–25]
In the literature, most research is concerning the image process operations, such as,

representation, image retrieval [26], and storage and geometric transformations [27, 28].
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In [29], the author proposed an algorithmic program based on the quantum signal pro-
cess to find the image edge in a medical image. Also, Chenggang Yan et al. [30] proposes
a method for estimating 2D layout and estimating 3D layout. The 2D layout estimation,
is essentially a semantic edge detection based on the Pyramid Scene Parsing Network
(PSPNet) [31]. The 2-layout estimation proposed as a regression problem of three types of
edges. In [30], the authors confirmed that the results of their method are sharper than that
of semantic transfer [32]. In [33, 34], Eldar and Oppenheim are first instructed quantum
signal process systems. The entropy is a tool to measure the data information in a digi-
tal image from the perspective of quantum informatics. In [21] the author proposed an
algorithm for image thresholding using quantum entropy (QE). Additionally, the authors
show that the advantages of quantum entropy than Shannon entropy. Also, QE is more
accurate than Shannon entropy to measure image information.
The authors in [35] developed a new approach to image edge detection based on quan-

tum entropy. When we tested the same methodology to segment the H2p-cells, we had
unsatisfactory results which is clear in our simulations examples. Then, we developed
another methodology based on quantum entropy modified with a new criteria (function)
(equations 20 and 21). The new proposed methodology gave a good result compared to
the other classical methods such as the Otsu and Kapur method . This study is structured
as follows. In Section 2, digital images quantization (quantum entropy measures, optimal
threshold selecting utilizing the proposed criterion, quantum state description for a gray
scale image) was presented. Materials and methods (image segmentation algorithm base
on modified quantum entropy, description of MIVIA HEp2 set, performance measures)
are presented in Section 3. In Section 4, experimental results and discussion (numerical
examples) the optimal are presented. Finally, Section 5 concludes with a summary of our
work.

2 Digital image quantization
Quantum computing manipulates and analyses quantum objects (qubits) to solve compu-
tational problems. Quantum theory explains our observations at the quantum level when
Newton’s mechanics prove to be insufficient. Quantum computing utilizes the electrons,
and photons which allows for more efficient of data handling on a tiny scale [18, 36].
Qubits are quantum objects, which have two distinct states and can also be in both states
at the same time (principle of superposition).A bit in a classical computer is analogous to
a qubit in a quantum system. In the notation of the quantum states, the general noiseless
qubits look like:

|ψ〉 = α|0〉 + β|1〉 (1)

where α and β , are arbitrary complex numbers with |α|2 + |β|2 = 1 α, β are probability
amplitudes and ψ is arbitrary superposition (linear combinations) of the twos states |0〉
and |1〉. Using the Dirac notation, |0〉 and |1〉 states are called kets. There are a number of
quantum image representations that a quantum computer may use. Similar to pixel rep-
resentations on traditional computers, quantum computers use flexible representation of
quantum images (FRQI), multi-channel representation for quantum image (MCQI), and
novel enhanced quantum representation of digital images (NEQR) to convert an image
into quantum representation [36–41]. In [21], the author presents a novel technique that
uses maximum quantum entropy to detect of suspicious regions in digital mammograms;
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in [35], the authors developed a new approach to image edge detection based on quan-
tum entropy. In this paper, we used the FRQI to represent an image. We keep that line of
research and developed a modified of quantum entropy to segment the HEp2 cell images.
This technique helps store classical images in quantum computer representations that
recognize the colors and the corresponding positions of the image’s pixels. A flexible
representation of a quantum image (FRQI) has proposed by the authors [36]. This is an
essential step to being able to use quantum techniques on any classical image. FRQI is
define as:

|ψ〉 = 1
2n

22n−1∑

i=0
|ci〉 ⊗ |i〉

= 1
2n

22n−1∑

i=0
(cos θi|0〉 + sin θi|1〉) ⊗ |i〉

(2)

In this process, the qubits in the quantum image correspond to the pixels by:

‖|ψ〉‖ = 1
2n

√√√√
22n−1∑

i=0

(
cos2 θi + sin2 θi

) = 1, (3)

where θ = (
θ1, θ2, . . . , θ22n − 1

)
and θi ∈[ 0,π/2] is the angle vector that encodes the color

information. The color of each pixel in an image is:

|ci〉 = (cos θi|0〉 + sin θi|1〉) (4)

and the states

|i〉 = |0〉, |1〉, |2〉,↓, ·, ∣∣22n − 1
〉

(5)

represent the position in a sequences of base state of number of qubits. Now, we show how
to use the FRQImodel in a normalized wave function |ψ〉 and obtain the density matrix ρ,
from which we are able to calculate the von Neumann entropy. According to this model,
the wave function is composed of the qubit of color qc characterized by the parameter
θ ∈[ 0,π/2] and the mesh of qubits of position |i >. Using a transformation [ 0, 255] to the
domain [ 0,π/2], we have θi = ( color)i× π

2 × 1
255 and qc = |ci〉 = sin (θi) |1〉+cos (θi) |0〉.

In this process, a qubit in the quantum image corresponds to a pixel by:

|(ψ〉 = cos(θm)|0〉 + sin(θm)|1〉 (6)

where θm ∈ [
0, π

2
]
,m = o, 1, . . . , 2n − 1. The Bloch sphere representation of a qubits.

Suppose f
(
i, j

)
are normalize pixels values of the original gray scale image. f

(
i, j

) ∈ [
0, π

2
]
,

where
(
i, j

)
are pixels coordinates, with θm = π

2 f
(
i, j

)
equation 6 can be rewritten as:

|
(
ψ〉 = cos

(π

2
f
(
i, j

)) |0〉 + sin
(π

2
f
(
i, j

)))
+ |1〉 (7)

We can represent any gray scale image as a two-level quantum system using Eq. 7. This
allows us to use any quantum algorithms on the image.

2.1 Quantum entropy measures

Quantum entropy measures (QEM) estimate the the uncertainty of a quantum state.
Shannon entropy used to measure the amount of information for a variable. Given a
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quantum system, � > that has N states |ψ1〉, |ψ2〉, . . . .|ψN 〉 where the N states have
probabilities P1,P2, . . . ,PN , quantum information system can be communicated as:

|ψ1〉, |ψ2〉, . . . .|ψN 〉 with P1,P2, . . . ,PN (8)

The density operator of a quantum information system is given by:

ρ =
N∑

i=1
Pi|ψi〉〈ψi|. (9)

Quantum entropy for a quantum information system �〉 is given by [42, 43]:

S(ρ) = −tr(ρ log(ρ)) (10)

where | > is the ket of Dirac notations and ρ indicates the density matrix of the quan-
tum |�〉 system. With 0 log 0 = 0 when ρ = 0, quantum entropy (QE) can measure the
non-neighborhood relationship between quantum frameworks or quantum bases. The
Shannon entropy is not as accurate as quantum entropy (QE), where Shannon entropy is
defined by:

H(X) = H(p1, p2, . . . , pN ) =
N∑

j=1
pj log(pj) (11)

where p1, p2, . . . , pN are probabilities of the variable X . We consider the connections
between the pixels in digital images as the cross-correlations of qubits in quantum sys-
tems. The quantum entropy of the digital image can take relationship properties among
pixels into the calculation whereas Shannon entropy is powerless [35, 44]. The quasi-
threshold that leads to maximum quantum entropy converges to the perfect threshold,
where the maximum sum of information obtained under these conditions.

2.2 Optimal threshold selecting utilizing the proposed criterion

Accept that the 8-bit profundity interesting gray-scale image comprises of pixels. The
pixels found at

(
i, j

)
positions with its gray scale value. Probabilities of each gray scale are

calculated as:

pi =
∑L

i=1 fi
MN

(12)

where L,indicate numbers of the pixels and fi are the gray scale values of pixel i . At that
point, 256 angles are characterized as taking after to encode 256 gray scales.

θm = π

2
pm = π

∑m
j=1 fj

2NM
(13)

QE of the jth quasi-segment is gotten by S(ρ) = −tr(ρ log(ρ)) and the esteem of QE of
quasi-segments is:

S(ρ) =
j−1∑

m=1
S(ρm) (14)
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2.3 Quantum state description for a gray scale image

Let us take n is the quasi-segments and the quasi-thresholds are signified by t1, t2, . . . , tn−1
. In this case the quantum state of themth quasi-segment is

|Im(θ)〉 =
m−1∑

j=0
cos(θj)|〉 + | sin (

θj
) |〉 (15)

where m = 1, 2, . . . , 2n − 1 , and density operator of the mth quantum state is calculated
as:

ρm = Pm|Im(θ)〉〈Im(θ)| (16)

where Pm = ∑m
i=1 pi , and pi calculate by Eq. 12. QE of the mth quasi-segment, specifi-

cally, S(ρm) is accomplished by Eq. 13, and gross value of QE of these m quasi-segments
is accomplished as:

S(ρ) =
m∑

j=1
S(ρj) (17)

Then values of final thresholds t1, t2, . . . , tn are obtained from quasi-thresholds which
lead to the maximum esteem of S(ρ) , namely, values of final thresholds Tj = tj if and
only if the condition of S(ρ) = max(Sρ) is satisfied. Let IM denote a gray scale image
with M gray levels [0,1,. . . ,M-1]. The number of pixels with gray level i denoted by ni and
N equal to the total number of pixels (N = n0 + n1 + . . . . + nM). The probability of gray
level j showed up within the image is defined as: pj = nj

N , pj > 0,
∑N

j=0 pj = 1 assume
the pixels of the image are separated into two classes O and B by a gray level s. O is the
pixels with levels { 0,1,. . . ,s }, and the rest of the pixels belongs to B, where O and B are
typically corresponding to the object class and the background one PO = p1

W1
, p2
W2

, . . . .. psWs
and PB = ps+1

Ws+1
, ps+2
Ws+2

, .., pM−1
WM−1

whereW1(s) = ∑s
i=0 pi andW2(s) = 1−W1(s) and s is the

threshold value. According to the definition of QEM, the density operator of background
pixels and the object region pixels can characterize as follows:

ρj = |Ij(θ)〉Pj〈Ij(θ)|, where j = O,B (18)

And the quantum entropy measure (QEM) of background pixels and the object region
pixels are

S(ρ) = S(ρO) + S(ρB) (19)

The QEM S(ρ) is parametrically dependent on the threshold value t for the object and
background.When S(ρ) is maximized, the luminance level t is considered as the optimum
threshold value. In this work, we have proposed a new criterion for QEM as the following:

S(ρ) = S(ρO) + S(ρB) + (1 − q)αmax[ 0, S(ρO)S(ρB)] , q ∈] 0, 1[ (20)

S(opt) = argmax[ S(ρ)] (21)

and the maximum value of S(ρ) is the image thresholding.

3 Materials andmethods
In the following, the algorithm as well as the data set used for segmentation are described.
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3.1 Image segmentation algorithm base onmodified quantum entropy

In this section, we define the proposed algorithm as flowing:
Algorithm 1: Segmentation algorithm base on Modified Quantum Entropy
Result: Thresholding
initialization t ← 0 L ← 255;
Assume the optimal thresholdmax ← 0. and S(ρ) defined by equation 20
while t < L do

Compute the S(ρ) function that is corresponds to the gray level t
if S(ρ) < max then

assign S(ρ) to max and set Opt ← t
else

t ← t + 1
end

end
Finally the threshold ← Opt.

3.2 Description of MIVIA HEp2 image data set

We have utilized MIVIA HEp2 image data set consists of 28 images, where the images
have a resolution of 1388× 1038 pixels, a color depth of 24 bits and are stored in stored as
bitmap images. The images were obtained bymeans of a fluorescencemicroscope (40-fold
amplification) coupled with a 50W mercury vapor lamp and with a digital camera. The
camera contains a CCDwith a squared pixel of equal side to 6.45μm. The six type of HEp-
2 (centromere, nucleolar, homogeneous, fine speckled, coarse speckled, and cytoplasmic)
presented and tested [45].

3.3 Performance measures

After reading and reviewing some references related to segmentation evaluation crite-
ria. We can divide it into three groups as following: (1) Subjective methods (observation
methods). It depends on personal vision. (2) Supervised methods (statistical standards)
need a gold standard image (personal expert) to compare with the segmentation result.
This group overcomes the limitations of the observation methods, So it has been used
in many papers. The examples of this group are dice similarity coefficient (DSC), Jaccard
similarity (JS), specificity (SP), sensitivity (SE), F1-measure, and segmentation accuracy
(SA), and they are the most commonly used ones. (3) Unsupervised methods based on
the measure of the similarity between the segmented image and original image, for exam-
ple the peak signal-to-noise ratio (PSNR). In this paper, we have adopted all three types to
assess the proposed method as the following—observation method, segmentation accu-
racy (SA), Jaccard similarity(JS), F1-measure, Matthews correlation coefficient (MCC),
and the peak signal-to-noise ratio (PSNR) [46].

Accuracy(SA) = TP + TN
FN + FP + TP + TN

(22)

Dice similarity coefficient (DSC/F1) = 2 ∗ TP
2 ∗ TP + FP + FN

(23)

it is the measure of degree for overlapping between two images, ifDSc = 1 perfect match,
DSC = 0 no match.
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Jaccard(JS) = Dice
2 − Dice

(24)

it is used to compare similarity and diversity of image, given by the intersection to the
union, JS generally comes between 0 and 1, so, a higher JS is for better segmentation.

Precision = TP
TP + FP

(25)

Sensitivity − Recall − True positive rate (TPR) = TP
TP + FN

(26)

where, for a given class A (foreground or background),
True positive (TP) : pixels correctly segmented as A.
False positive (FP): pixels falsely segmented as A.
True negative (TN) : pixels correctly detected as not A.
False Negative (FN) : pixel classified incorrectly as not A.
Finally, the peak signal-to-noise ratio (PSNR): [11, 20].

PSNR = 20 log
255

RMSE
(27)

where the RMSE is the root mean-squared error that is defined by: RMSE =√∑M
i=1

∑N
j=1 |S(i,j)−IM(i,j)|2

MN where S and IM are the segmented and the input images,
respectively. A higher PSNR value indicates a better threshold image quality. We chose

Fig. 1 a Original image. b Its gray level. c Expert segmentation. d Image histogram
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Fig. 2 F-measure [0.0865 0.5371 0.4275 0.0160 0.7707] for quantum entropy, modified quantum entropy
(proposed), Otsu, Kapur, and hybrid of the proposed with Otsu methods, respectively

F-measure over precision and recall since it is the harmonic mean of precision and recall
(TPR/sensitivity). The JS is very similar to dice as they are positively correlated, where Jac-
card = dice/2-dice. One disadvantage of the F-measure, a function of precision and recall,
is that it is only interested in the positive class. All three measures (F-measure, recall and
precision) use only 3 values (TP, FP, FN) without the 4th (TN).

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

(28)

Fig. 3 a Original image. b Its gray level. c Expert segmentation. d Image histogram
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Fig. 4 F-measure = [0.0067 0.8039 0.5159 0.0695 0.8039] for quantum entropy, modified quantum entropy
(proposed), Otsu, Kapur, and hybrid of the proposed with the Otsu methods, respectively

The Matthews correlation coefficient treat the true class (expert image) and segmented
image class as two binary variables and find their correlation coefficient. The higher the
correlation between true and segmented image, the better the segmentation. MCC con-
siders all four values TP, TN, FP, and FN of confusion matrix and is belonging to [− 1, 1].
The closer the MCC value is to 1, the better is the classification of both classes (object
and background).

4 Experimental results and discussion
In the following, the numerical examples as well as the figures are described.

4.1 Numerical examples

For all examples, each example have two figures. For the first figure, we used the fol-
lowing notation: (a) original image, (b) its gray level, (c) expert segmentation, and (d)
image histogram, while for the second figure, (e) quantum entropy, (f ) quantum entropy
modified (proposed), (g) Otsu method, (l) hybrid method, (h) Kapur method, and (m)
segmentation by experts, where the hybrid method threshold is the average between
the quantum entropy modified threshold and the Otsu threshold. In the segmentation
by expert image, we write the number of the image in the data set. The values of F1-
measure of quantum entropy, quantum entropy modified (proposed),Otsu, Kapur, and
hybrid methods, respectively, are written under the figures. In addition, the value of q
in (20) is shown in each figure with the value of threshold T. All the images of data set
are tested.
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Fig. 5 a Original image. b Its gray level. c Expert segmentation. d Image histogram

4.1.1 Example 1

(image no3): Figures 1 and 2. Histogram shape: Positive skew, QEM (proposed method)
is better than QE, Kapur, and Otsu.

4.1.2 Example 2

(image no 4 ): Figures 3 and 4. Histogram shape: Bi modal, QEM (proposed method) is
better than QE, Kapur, and Otsu.

4.1.3 Example 3

(image no 16 ): Figures 5 and 6. Histogram shape: Positive skew, QEM (proposed method)
is better than QE, Kapur, and Otsu.

Fig. 6 F-measure= [0.0635 0.4441 0.3109 0.0117 0.6981] for quantum entropy, modified quantum entropy
(proposed), Otsu, Kapur, and hybrid of the proposed with the Otsu methods, respectively
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Fig. 7 a Original image. b Its gray level. c Expert segmentation. d Image histogram

4.1.4 Example 4

(image no 19 ): Figures 7 and 8. Histogram shape: Bi modal, QEM (proposed method) is
better than QE, Kapur, and Otsu, and it is very near to expert segmentation.

4.1.5 Example 5

(image no 21): Figures 9 and 10 Histogram shape: Positive skew with double peaked, QEM
(proposed method) is better than QE, Kapur, and Otsu.

Fig. 8 F-measure = [0.0287 0.7988 0.7178 0.01869 0.7988] for quantum entropy, modified quantum entropy
(proposed), Otsu, Kapur, and Hybrid of the proposed with the Otsu methods, respectively
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Fig. 9 a Original image. b Its gray level. c Expert segmentation. d Image histogram

Fig. 10 F-measure= [0.0485 0.5941 0.3518 0.0194 0.8438] for quantum entropy, modified quantum entropy
(proposed), Otsu, Kapur, and hybrid of the proposed with Otsu methods respectively
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Fig. 11 This figure represents the average of accuracy for quantum entropy, modified quantum entropy
(proposed), Otsu, Kapur method, and the hybrid of the proposed and Otsu, respectively

Based on the subjective (observation), supervised and unsupervised evaluation
methods. In all examples and figures we observed that (1) the proposed method quan-
tum entropy modified (QEM) is best than QE and Kapur over all data set. In addition, it
is best than Otsu over 40% of data set. (2) Our observation is that the Otsu method has a
problem to find a good thresholding for the image which has positive skew histogram. On
the contrary, the QEM finds the best thresholding for the same images. (3) The quantum
entropy modified is better than Otsu, for certain class of images which has positive skew
histogram. See Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

4.2 Summarize table

In the following, one table summarize all measurement PNSR, accuracy, F-measure,
Jaccard, and Mcc.

4.3 Summarize figures

In the following, four figures to summarize the average of accuracy, F-measure, Jac-
card, MCC, and PNSR measures over all data set images, which are correspond to the
quantum entropy, modified quantum entropy (proposed), Kapur Otsu, and hybrid meth-
ods (Figs. 11, 12, 13, 14, and 15)

4.3.1 Accuracy

The following Fig. 11, represent the accuracy average of all images in the data set with all
methods.

4.3.2 F1-measure

The following Fig. 12, represent F1-measure of all images in the data set with all methods.

4.3.3 Jaccard

The following Fig. 13, represent Jaccard measure of all images in the data set with all
methods.
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Fig. 12 This figure represents the average of the F-measure for quantum entropy, modified quantum
entropy (proposed), Otsu, Kapur method, and the hybrid of the proposed and Otsu, respectively

4.3.4 MCC

The following Fig. 14, represent average of the Matthews correlation coefficient (MCC)
of all images in the data set with all methods.

4.3.5 PNSR

The following Fig. 15, represent PNSR measure of all images in the data set with all
methods.

Fig. 13 This fig represents the average of the Jaccard quantum entropy, modified quantum
entropy(proposed), Otsu, Kapur method, and the hybrid of the proposed and Otsu, respectively
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Fig. 14 This figure represents the average of the Matthews correlation coefficient (MCC) for quantum
entropy, modified quantum entropy (proposed), Otsu, Kapur method, and the hybrid of the proposed and
Otsu, respectively

The experiments and Figs. 11, 12, 13, 14, and 15 of the average of accuracy, F1, Jaccard,
MCC, and PNSR show that the QEMmethod is better than quantum entropy, and Kapur
methods. See Table 1; it is very comparable to the Otsu method.

5 Conclusion
We developed an efficient methodology for HEp2 cell segmentation from IIf images based
on maximum of new criterion quantum entropy modified and an adaptable representa-
tion of the quantum image (FRQI). Themethod was tested on all the images of theMIVIA
HEp 2 image data set. The results showed that the proposed method is most accurate

Fig. 15 This figure represents only the average of decimal part of the PSNR for quantum entropy, modified
quantum entropy(proposed), Otsu, Kapur method, and the hybrid of the proposed and Otsu, respectively
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Table 1 average of PSNR, accuracy, F-measure, Jaccard and MCC for quantum entropy, quantum
modified entropy(proposed), Otsu, Kapur method, and the hybrid methods respectively

Avg QE QEM O K AOM

PNSR 54.19561 54.20799 54.22972 54.19427 54.22237

Accuracy 0.746429 0.821304 0.292297 0.737946 0.874832

F-measure 0.086522 0.537096 0.427464 0.016042 0.770693

Jaccard 0.045217 0.367144 0.271831 0.008086 0.62693

Mcc 0.016 0.596 0.60 0.22 0.67

of quantum entropy and Kapur methods in all examples. The proposed method over-
comes the limitations of Otsu method Concerning the images which has positive skew
histogram. The QEM finds the best thresholding than Otsu for the images which has pos-
itive skew histogram. Also, the experimental results show that the proposed methodology
entropy outperforms the other strategies and gives superior segmentation output.The
study can be improved by a new function with good parameters. This study can be utilized
in creating a computer-aided decision (CAD) framework for the diagnosis of immune
system diseases
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