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Abstract

Perfect image compositing can harmonize the appearance between the foreground
and background effectively so that the composite result looks seamless and natural.
However, the traditional convolutional neural network (CNN)-based methods often fail
to yield highly realistic composite results due to overdependence on scene parsing
while ignoring the coherence of semantic and structural between foreground and
background. In this paper, we propose a framework to solve this problem by training a
stacked generative adversarial network with attention guidance, which can efficiently
create a high-resolution, realistic-looking composite. To this end, we develop a diverse
adversarial loss in addition to perceptual and guidance loss to train the proposed
generative network. Moreover, we construct a multi-scenario dataset for high-
resolution image compositing, which contains high-quality images with different styles
and object masks. Experiments on the synthesized and real images demonstrate the
efficiency and effectiveness of our network in producing seamless, natural, and realistic
results. Ablation studies show that our proposed network can improve the visual
performance of composite results compared with the application of existing methods.
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1 Introduction
Image compositing is a fundamental technique in image editing that focuses on seam-
lessly integrating the foreground region of the source image into another target back-
ground. Ideally, a seamless composite result can trick humans into believing that it is not
a fake image. However, as shown in Fig. 1a, some differences in appearance between the
foreground and background, including illumination, lighting, white balance, and shading,
severely reduce the fidelity of image composition. Therefore, to achieve highly realistic
compositing, it is necessary to eliminate differences in appearance between the original
foreground region and the target background as much as possible.
Early techniques performed gradient-domain blending [1, 5] or alpha matting [6] oper-

ations to refine the foreground region for seamless compositing. However, as shown in
Fig. 1b, they ignored some essential consistency constraints; thus, their composite results
often appear unrealistic. Subsequently, some harmonization methods [7, 8] attempted to
yield seamless and realistic results by transferring the visual appearance, texture, and even

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-021-00550-w&domain=pdf
http://orcid.org/0000-0002-1697-6089
mailto: yubing1989@shu.edu.cn
http://creativecommons.org/licenses/by/4.0/


Yu et al. EURASIP Journal on Image and Video Processing         (2021) 2021:10 Page 2 of 20

Fig. 1 Comparison of compositing methods on real cut-and-paste image. a Cut-and-paste. bMVCC [1]. c RC
[2]. d DIH [3]. e DPH [4]. f Our proposed network

noise patterns between images before gradient-domain compositing [5]. Unfortunately,
they did not take into account global semantic and structure information and produced
unrealistic composite results when the foreground region and target background were
very different.
As a powerful learning method, the deep neural network has been successfully applied

to various fields of image processing, including image compositing. However, tradi-
tional convolutional neural network (CNN)-based methods [2–4, 9] are still tentative and
imperfect for high-fidelity compositing. As shown in Fig. 1c, the realism CNNmethod [2]
generates image composite results with unsatisfactory appearance through simple color
parameter optimization. Deep image harmonization [3] was subsequently able to capture
both the context and semantic information from images through a joint training scheme
in which the scene parsing decoders can control semantic organization and generate
sharp content efficiently in the process of compositing. However, if scene understanding
fails, this method cannot produce a realistic composite result. As shown in Fig. 1d, due
to some semantic errors, the composite effects of the deep image harmonization method
are not sufficiently harmonized between the foreground and background. In addition, as
shown in Fig. 1e, the recent deep painterly harmonization method [4] does not seem to
work well for the adjustment of the appearance of nature images.
Recently, several generative adversarial networks (GANs) [10, 11] have been introduced

to achieve image compositing. Although these GANmodels have the ability to harmonize
composite images, they cannot solve all compositing issues, including appearance arti-
facts and high resolution. Especially for high-resolution compositing, the GAN models
that take context encoders as the generative network can only output composite results
with a low resolution of 64×64. Thus, they cannot directly generate high-resolution com-
posites, and gradient-based optimization is needed as a post-processing step to create
high-resolution images.
In this paper, we propose a stacked generative adversarial network that can create

realistic-looking image composites through an end-to-end network. As shown in Fig. 2,
our model includes two generators, three discriminators, and multiple loss terms. The
inputs to this network are a cut-and-paste composite image and its corresponding mask,
and the output is a harmonized high-resolution composite result. Our new model can
construct stacked generators and discriminators to harmonize the composite image and
determine whether a composite image looks realistic and natural. The generators are
essential components for training and testing, while the discriminators are auxiliary
components used only for training. Furthermore, after building a multi-scenario high-
resolution dataset, our new network can achieve stable training and faster convergence
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Fig. 2 The overview of the proposed stacked generative adversarial network. It consists of two generators
and three discriminators: the output feature map of G1 is concatenated with the input image and serves as
the input of G2. The discriminators D1 and D2 have an identical network architecture but operate at different
image scales. D2 and D3 operate at the same image scales but have distinct architecture

solving in three steps: (1) train generator G1 and all discriminators; (2) fix the parameters
of generator G1, and then train generatorG2; and (3) jointly fine-tune the whole network.
Briefly, to reduce appearance differences between the foreground and background, our

end-to-end network can fully consider the texture and structure information of the back-
ground while effectively preserving the semantic consistency of the composite result. As
shown in Fig. 1f, some appearance artifacts (e.g., illumination, contrast, noise, and texture)
can be effectively eliminated by our newmodel; thus, the composite result is seamless and
realistic. This paper makes four main contributions, summarized as follows:

• We propose a novel stacked generative adversarial network for high-resolution image
compositing. It explores the cascade attention guidance generation strategy and aims
to achieve a realistic-looking composite result. Unlike the state-of-the-art GAN-based
methods, our network generates a harmonized image in an end-to-end manner.

• We introduce the shift-connection layer [12] to the image compositing task. The
layer can utilize long-range and multilevel dependencies across different features to
guide generation, improving the structure and texture consistency of the composite
image. By doing so, we can take into account the advantages of learning-based and
exemplar-based methods and obtain a more realistic composite result compared with
the state-of-the-art methods.

• We propose a specialized discriminator for high-resolution image compositing that
can employ diverse adversarial strategies at different scales to strengthen the ability
of detail discrimination.

• We build a multi-scenario dataset for high-resolution image compositing that mainly
contains indoor and outdoor scenes with different styles. To our knowledge, this is
the first high-resolution publicly available dataset for image compositing.

The organization of this paper is as follows. Section 2 briefly reviews the existing
relevant works. Section 3 describes the proposed network and implementation details.
Section 4 verifies the proposed method through a number of comparisons and describes
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ablation studies through experiments. Section 5 briefly summarizes this work and
discusses possible future work.

2 Related works
In this section, we briefly introduce three subdomains, namely, image compositing,
learning-based image editing, and image synthesis using GANs, with particular attention
to related works.

2.1 Image compositing

Gradient-domain compositing [1, 5] can adjust the foreground region and the background
region to be consistent in terms of illumination by blending the transition region between
them. To make the composite image look more realistic, Sunkavalli et al. [7] proposed
transferring the appearance of the target image to the source image before blending
them. Darabi et al. [8] proposed combining Poisson blending [5] with patch-based syn-
thesis in a unified framework (image melding) to produce a realistic composite. To avoid
inconsistent colors and sacrificing texture sharpness, Darabi et al.’s work introduced an
extra gradual transition operation between the foreground and background. Xue et al.
[13] proposed using statistics and machine learning to study the realism of compos-
ites. Recently, deep neural networks have further improved image realism by learning
context and semantic information. Zhu et al. [2] proposed a CNN-based model to dis-
tinguish composite images from realistic photographs. Tsai et al. [9] proposed using a
scene parsing deep network to replace the sky background in a given photograph. These
authors further proposed an end-to-end CNN method [3] for image appearance harmo-
nization that could automatically learn both the context and semantic information of the
input image and could be trained for both compositing and scene parsing tasks. Wu et
al. [11] proposed a two-step method for high-resolution image compositing by combin-
ing Wasserstein GAN with multiscale gradient-based methods. Tan et al. [14] proposed a
model that learns to predict foreground objects from source images before dealing with
appearance compatibility. In contrast to the abovementioned methods, our GAN-based
model can take into account the advantages of both exemplar-based and learning-based
methods for high-fidelity image compositing.

2.2 Learning-based image editing

Many researchers have leveraged deep learning for image editing with the goal of mod-
ifying an image using given image pairs as training data. Zhang et al. [15] proposed a
CNN-based image colorization method in which a color recommender system was used
to help users interactively use the trained model to translate a gray image to a image.
Wang et al. [16] proposed a learning-based image super-resolution method that uses an
improved deep CNN to reconstruct a high-resolution image from a given low-resolution
image. A deep reinforcement learning-based image enhancement method was proposed
by Park et al. [17] that used the MIT-Adobe FiveK dataset [18] to model the stepwise
nature of the human retouching process. Yan et al. [12] introduced a novel image inpaint-
ing model that uses attention-guided U-net [19] as the generator that fills in marked
missing regions with suitable structure and texture. Our method shares a similar concept
with learning-based methods and incorporates the advantages of multiple editing models
to propose a novel trainable GAN architecture for image compositing.
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2.3 Image synthesis using GANs

While GANs [20] can generate photorealistic images from random noise, the generated
results might not be in accordance with the user’s requirements. It is worth emphasiz-
ing some recent works on deep image synthesis using GANs. Conditional GANs [21,
22] are new models that generate images based on particular inputs other than sim-
ple noise, thus providing user-controllable results. Isola et al. [23] proposed a pix2pix
method that explores conditional GANs to translate semantic label maps into photorealis-
tic images. To solve the pix2pix model’s unstable performance during adversarial training
for high-resolution synthesis tasks, Wang et al. [24] synthesized 2048 × 1024 resolution
realistic-looking photos through a robust training objective together with coarse-to-fine
generators and multiscale discriminators. Recently, Xian et al. [25] introduced local tex-
ture loss to train a generative adversarial network that can take the texture patches and
sketches as inputs and output a shoe or bag. Our method is inspired by the above suc-
cessful work and is within the framework of image-to-image translation GANs. With
our adversarial training objective as well as stacked generators and diverse discrimina-
tors, we can not only realize automatic image compositing but also achieve better results
compared to existing methods.

3 Proposedmethod
In this section, we first introduce the attention-guided cascaded generative network
and multiple losses. We then describe the training scheme that jointly fine-tunes all
the networks together after two separate training processes. Finally, we introduce the
multi-scenario synthesized dataset collection method.

3.1 Stacked generators

Given a source image ysrc and a target image ytrg , the cut-and-paste composite image y
can be given as follows:

y = ysrc � M + ytrg � (1 − M) (1)

where � is element-wise multiplication. M is a binary mask corresponding to the fore-
ground region with a value of 1 and 0 for the background region. Our goal is to
generate a natural-looking composite result ŷ in which the contents are the same as the
cut-and-paste input but the appearance is more natural and realistic.
Similar to the pix2pix network [23], our generator is based on the U-net architecture

and leverages the property of skip connections between each layer of the encoder and
those of the corresponding layer of the decoder. This architecture maintains the texture
and details of the image that are lost during the compression process in the encoder, which
is important for image compositing [3] and other image editing tasks [26, 27]. Given a
U-net of n layers, we denote �l(y) as the encoder feature of the lth layer and �n−l(y) as
the decoder feature of the (n − l)th layer. In addition, we denote �l(M) as a binary mask
corresponding to the foreground region in both the encoder feature�l(y) and the decoder
feature �n−l(y). �l(M) is computed by an extra network that has the same architecture
as the U-net encoder but with a network width of 1.
The pix2pix framework is designed to generate low-resolution images if applied directly

to 512 × 512 resolution image synthesis. We find that the training is unstable and the
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generated results are unsatisfactory. Since stacked networks can be competent for high-
resolution image synthesis because of their progressive refinement capability [26, 28, 29],
we introduce this concept to our compositing task. Our network consists of two gener-
ators in which the second one is stacked upon the first. We call the first generator G1
and the second generator G2. Given a cut-and-paste image y, generator G1 is trained to
produce a first feature map G1(y). Then, G1(y) is concatenated with the original image y
and serves as the input for the second generator G2. The generator is given by the tuple
G = {G1,G2}, as showed in Fig. 2. The detailed architecture of the stacked generators is
listed in Table 1.

3.2 Attention guidance compositing

As a state-of-art appearance compositingmethod, the deep image harmonizationmethod
[3] adjusts the masked parts conditioned on their surroundings. However, we have found
that this method can produce a distorted appearance or structural inconsistency between
the foreground and background when the appearance of particular scenes is improp-
erly remembered due to the limitation of training samples. In contrast, as a traditional
compositing method, the image melding method [8] uses exemplar-based synthesis to
smoothly transform from the source region to the target region, which avoids obviously
inconsistent appearance. This suggests that matching by patches might lead to a more
harmonious result. Motivated by these observations, our network takes into account the
advantages of learning-based and exemplar-based methods for image compositing. We
introduce the shift-connection attention layer [12] in our generators, which can guide the
generator to obtain global semantic and structural information, improving the structure
and texture consistency of the result.

Table 1 The architecture of G1/G2 network. “IN” represents InstanceNorm, “LReLU” represents Leaky
ReLU activation, “Conv.”/“DeConv.” denotes convolutional/transposed convolutional layer with
kernel size of 4, “st” means stride, “Concat” explains the skip connections, “Guidance” means
guidance loss operation, and “Shift” means shift-connection operation. The different layers of G1 and
G2 are listed separately

The generative model G1/G2

Input G1: Image (512 × 512 × 3)/ G2: Feature (512 × 512 × 6)

Layer 1 G1: Conv. (3, 64), st=2;/ G2: Conv. (6, 64), st=2;

Layer 2 LReLU; Conv.(64, 128), st=2; IN;

Layer 3 LReLU; Conv.(128, 256), st=2; IN;

Layer 4 LReLU; Conv.(256, 512), st=2;IN;

Layer 5 LReLU; Conv.(512, 512), st=2; IN;

Layer 6 LReLU; Conv.(512, 512), st=2; IN;

Layer 7 LReLU; Conv.(512, 512), st=2; IN;

Layer 8 LReLU; Conv.(512, 512), st=2;

Layer 9 ReLU; DeConv.(512, 512), st=2; IN; Concat.(9, 7);

Layer 10 ReLU; DeConv.(1024, 512), st=2; IN; Concat.(10, 6);

Layer 11 ReLU; DeConv.(1024, 512), st=2; IN; Concat.(11, 5);

Layer 12 ReLU; DeConv.(1024, 512), st=2; IN; Concat.(12, 4);

Layer 13 ReLU; DeConv.(1024, 256), st=2; IN; Concat.(13, 3);

Layer 14 ReLU; Guidance; Shift; DeConv.(768, 128), st=2; IN; Concat.(14, 2);

Layer 15 ReLU; DeConv.(256, 64), st=2; IN; Concat.(15, 1);

Layer 16 ReLU; DeConv.(128, 3), st=2; Tanh;

Output G1: Feature (512 × 512 × 3)/ G2: Image (512 × 512 × 3)
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Formally, let � be the foreground region and � be the background region. For each
(�n−l(y))p with location p ∈ �, its nearest neighbor searching in (�l(y))q (location q ∈
�) can be independently defined as [12]:

q∗(p) = argmax
q∈�

〈
(�n−l(y))p, (�l(y))q

〉
∥∥(�n−l(y))p

∥∥
2
∥∥(�l(y))q

∥∥
2

(2)

and the shift vector is obtained by [12]:

up = q∗(p) − p (3)

Then, we spatially rearrange the encoder feature (�l(y))q according to the shift vector to
obtain a new estimate [12]:

(�shift
n−l (y))p = (�l(y))p+up (4)

The shift-connection layer takes�l(y),�n−l(y), and�l(M) as inputs and outputs a new
shift-connection feature �shift

n−l (y). The layer is embedded in the decoders of both G1 and
G2 to guide generation. On the one hand, the layer can thus use the information from the
background region of the feature to generate new appearances in the foreground region.
On the other hand, the layer also helps to model global dependencies across generated
regions, ensuring that the details at each location are carefully coordinated with the details
at a distance.

3.3 Training losses

The choice of GAN discriminator is especially important for learning-based high-
resolution image editing tasks. To obtain realistic-looking generated results, multiple
discriminators at different image scales [24] or different image patches [30] have been pro-
posed. Considering that the shape and size of the foreground region in the cut-and-paste
image are arbitrary and the resolution of the generating task is high, our compositing
network constructs three diverse PatchGAN discriminators [22, 23]. The discriminators
receive the generated composite or the ground truth at different scales and attempt to
classify the content as either “real” or ‘’fake.” We denote the discriminators as D1, D2, and
D3. The discriminator is given by the tuple D = {D1,D2,D3}, as shown in Fig. 2. Specif-
ically, the generated and real high-resolution images are downsampled by a factor of 2
to obtain image pyramids of 2 scales. Then, D1 is trained to differentiate real and gener-
ated images at the finest scale, and D2 and D3 are both trained to differentiate images at
the coarsest scale. The detailed architecture of the discriminators is presented in Table 2.
The discriminatorsD1 andD2 have identical network architectures, whileD3 differs from
them. With the discriminators, our adversarial loss is defined as:

Ladv = min
G

max
D1,D2,D3

∑

k=1,2,3
LGAN (G,Dk) (5)

where k is the number of discriminators. The objective function LGAN (G,Dk) is given by:

LGAN (G,Dk) = Exk∼pdata(xk)[ logDk(xk)]+Eyk∼pdata(yk)[ log(1 − Dk(G(yk)))] (6)

where yk is a cut-and-paste image and xk is the corresponding ground truth image. Specif-
ically, y1 and x1 correspond to the finest scale, and y2, y3 and x2, x3 correspond to the
coarsest scale. Exk∼pdata(xk) represents the mathematical expectation of logDk(xk), where
xk follows the probability distribution pdata(xk). Eyk∼pdata(yk) represents the mathematical
expectation of log(1−Dk(G(yk))), where yk follows the probability distribution pdata(yk).
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Table 2 The architecture of D1/D2/D3 network. Annotations are the same as Table 1. The different
layers of D1, D2, and D3 are listed separately

The discriminative model D1/D2/D3

Input D1: Image (512 × 512 × 3)/ D2,D3: Image (256 × 256 × 3)

Layer 1 D1,D2: Conv. (3, 64), st=2; LRelu;/
D3: Conv. (3, 32), st=2; LRelu;

Layer 2 D1,D2: Conv. (64, 128), st=2; IN; LRelu;/
D3: Conv. (32, 64), st=2; IN; LRelu;

Layer 3 D1,D2: Conv. (128, 256), st=2; IN; LRelu;/
D3: Conv. (64, 128), st=2; IN; LRelu;

Layer 4 D1,D2: Conv. (256, 512), st=1; IN; LRelu;/
D3: Conv. (128, 256), st=1; IN; LRelu;

Layer 5 D1,D2: Conv. (512, 1), st=1; Sigmoid;/
D3: Conv. (256, 1), st=1; Sigmoid;

Output D1: Real or Fake (62 × 62 × 1)/ D2,D3: Real or Fake (30 × 30 × 1)

Recent GAN methods [25, 27] have found it effective to combine the adversarial loss
with other additional multiple loss terms. First, we choose to use the traditional L2 pixel
loss to stabilize the training. It is defined as the mean squared error (MSE) between a
generated image and its reference image:

LL2 = ∥∥G(y) − x
∥∥2
2 (7)

where G(y) is the output of a given cut-and-paste composite using a generator and x is
the corresponding ground truth.
Next, we further include the perceptual loss term, which is used in various editing tasks,

such as image inpainting [27] and image super-resolution [31]. Given a cut-and-paste
input, we would like the composite result to look realistic and the foreground and back-
ground regions to be compatible. The features extracted from the middle layers of the
pretrained very deep network represent high-level semantic perception. We defined the
perceptual loss using the active layer of the pretrained VGG-19 [32] network on the Ima-
geNet dataset [33]. The loss is defined as the MSE between the feature representations of
a generated image and its ground truth:

Lper = ∥∥φ(G(y)) − φ(x)
∥∥2
2 (8)

where φ(·) is the activation map of the selected layer.
Our final loss term is used to encourage the compositing network to focus on the

masked foreground region. We use the guidance loss on the decoder feature of U-
net proposed by Yan et al. [12]. It is defined as the MSE between the masked feature
representations:

Lgui =
∑

j=1,2

∥∥∥(�l(M) � �
j
n−l(y)) − (�l(M) � �

j
l(x))

∥∥∥
2

2
(9)

where j is the generator number, �j
n−l(y) is the decoder feature of cut-and-paste input on

the (n − l)th layer for G1 or G2, and �
j
l(x) is the encoder feature of ground truth on the

lth layer. Note that the guidance loss is only deployed to the decoder feature maps of the
(n − 3)th layer for G1 and G2 in our method.
Our combined loss is defined as the sum of all the above loss functions:
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Ltotal = wadvLadv + wL2LL2 + wperLper + wguiLgui (10)

where wadv, wL2, wper, and wgui are the weight parameters for the adversarial, L2,
perceptual, and guidance losses, respectively.

3.4 Training details

During the training, three discriminators are trained to distinguish the generated results
from the ground truth, while the stacked compositing networks are trained to fake the
discriminators. Since the high-resolution image compositing task itself is very challeng-
ing, we need to train the network carefully to make it converge. The training procedure
is divided into three phases. First, generator G1 and discriminator D are trained for TG1

epochs. Then, generator G1 is fixed, and generator G2 is trained from scratch jointly with
discriminator D for TG2 epochs. Finally, generator G1, generator G2, and discriminator D
are trained jointly until the end of the training. An overview of the training procedure is
shown in Algorithm 1.
In all experiments, we set the weight wadv = 0.002, wL2 = 1, wper = 0.01, and wgui = 1.

Our network is optimized using the Adam algorithm [34] with a learning rate of 0.0002.
We train our models at an input resolution of 512 × 512, and the batch size is 1. Data
augmentation, such as cropping, is also adopted during training.

Algorithm 1 Training of our proposed framework
1: while epochs t1 < TG1 do
2: Initialize generator G1.
3: Initialize discriminators D = {D1,D2,D3}.
4: Sample an image set {y, x,M} from training data.
5: Update D with adversarial loss.
6: Update G1 with combined losses.
7: end while
8: while epochs t2 < TG do
9: Sample an image set {y, x,M} from training data.

10: if t2 < TG2 then
11: Load model G1 and D.
12: Initialize generator G2.
13: Append G2 to the end of G1.
14: Update D with adversarial loss.
15: Fix G1 and update G2 with combined losses.
16: else
17: Update D with adversarial loss.
18: Update G1 and G2 jointly with combined losses.
19: end if
20: end while

3.5 Synthetic datasets

Data acquisition is the foundation of a successful training network. In our experiment, a
masked image pair containing the cut-and-paste and composite result is required as the
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input and ground truth for the network. However, there are currently no public datasets
for our task. To solve this problem, we selected two public datasets (MIT-Adobe FiveK
[18] and Archive of Many Outdoor Scenes (AMOS) [35]) to create our multi-scenario
training dataset for compositing through appearance editing. Two different processes are
described in Fig. 3.
MIT-Adobe FiveK consists of 5000 raw images, each of which is paired with five

retouched images using Adobe Lightroom by 5 trained photographers, A/B/C/D/E. The
6 editions of the same image have different styles. We randomly select one of the 6 ver-
sions of the image as the target image and then randomly select one of the remaining 5
versions as the source image. Therefore, there are 30 sets of 5000 target-source paired
images (i.e., 150,000 paired images). To create more foreground objects or scenes from
the source image, we manually annotate multiple object-level masks for each image in
the dataset using the LabelMe annotation tool [36]. When generating input data, we first
randomly select a mask and manually segment a region from the source image. Then, we
crop this segmented region and overlay on the target image (i.e., ground truth image) to
generate the cut-and-paste composite. We reserve 109 images (i.e., 3270 masked paired
images) for testing, and the model is trained on the remaining 4891 (i.e., 146,730 paired
images) images.
To cover richer object categories and scene styles, we use images from outdoor

webcams, which contain images that are captured at the same location but change dra-
matically with lighting, weather, and season. We construct the compositing dataset using
sequences from 92 webcams (the webcam numbers are the same as the famous Tran-
sient Attributes Database [37]) selected from AMOS by color transfer. First, given a target
image from the camera sequence, we pick 20–30 other images of the same camera taking

Fig. 3 Data acquisition methods for our multi-scenario dataset. aMIT-Adobe FiveK. b AMOS
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pictures at other times as transfer reference images. Second, instead of using the simple
color and illumination histogram statistics method in Tsai et al. [3], we use a patch-based
matching method [38] to transfer the appearance between two images with similar con-
tent. In this way, we produce 20–30 images of different styles from the given target image
while maintaining the same content and scene. Third, for each camera sequence, we
repeat the above steps to select 3–10 target images and produce multiple images of dif-
ferent styles. Fourth, all original targets and color transfer results are manually reviewed
to ensure that there will be no artifacts or noise. Fifth, we obtain multiple object-level
masks for each target image using the LabelMe tool. We use the original target image
as the ground truth and crop a segmented foreground from its corresponding produced
image in a different style to overlay on the original image. We reserve 1365 masked paired
images from 7 webcams for testing and train the model on the remaining 21,658 paired
images from another 85 webcams. To distinguish them from the original datasets, we call
our compositing datasets FiveK and AMOS in the following experimental discussion.

4 Results and discussion
In this section, we first describe the experimental setup. We then provide comparisons of
synthesized images and real images with several metric methods, including user studies.
Finally, we conduct five ablation studies on our network design.

4.1 Experimental setup

Our model is implemented on PyTorch v0.3.1, CUDNN v7.0.5, and CUDA v9.0 and run
on hardware with an NVIDIA TITAN X GPU (12GB). We separately train and test on
our two synthesized datasets. Since the GAN loss curve does not reveal much informa-
tion in training image-to-image translation GANs [23], we check whether the training has
converged by observing L2 and perceptual loss curves. On the one hand, the L2 term can
reflect how close the results are to ground truth images at the pixel level. On the other
hand, the perceptual term can reflect the perceptual similarity between generated images
and ground truth images. Figures 4 and 5 show the L2 and perceptual loss convergence
curves of different training phases on the two datasets, respectively. For FiveK, we set
TG1 = 6 (880,380 iterations), TG2 = 1 (146,730 iterations), and TG = 3 (440,190 itera-
tions). For AMOS, we set TG1 = 16 (346,528 iterations), TG2 = 10 (216,580 iterations),
and TG = 30 (649,740 iterations). For each dataset, the training takes approximately
3 weeks. Compositing a single cut-and-paste image of 512 × 512 takes less than 0.7 s.

4.2 Comparison with existing methods

For synthesized images, we compare our results with MVCC [1], IM [8], DIH [3], and
GP [11] at 512 × 512 resolution. For DIH [3] and GP [11], we use the pretrained models
provided by the authors. Note that DIH [3] uses a combination of three public datasets,
including MIT-Adobe FiveK, to train the model, and GP [11] uses the transient attributes
database as the training dataset.
The images shown in Figs. 6 and 7 are taken from the FiveK and AMOS test datasets.

Although the foreground appearances of the MVCC results are well blended using mean-
value coordinates, some obvious artifacts can be found, as shown in Figs. 6c and 7c.
IM results showed no significant improvement in visual appearance. DIH is effective in
semantic compositing, and the visual appearance of the results shows better performance
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Fig. 4 Training convergence curves of L2 loss. a FiveK. b AMOS

than MVCC and IM. However, the boundary between the foreground and background of
the DIH results is not seamless enough, and there are obvious jagged edges. In addition,
DIH models the dependencies between the scene semantics and its surface appearance,
but these kinds of semantic priors do not always work well; for example, the yellow flower
foreground in the composite of the three rows of Fig. 6e is adjusted to green, and the result
is far from the ground truth (GT). GP adopts a multistage scheme to combine a deep net-
work and Poisson blending, while its GANmodel generates poor results at low resolution
and leads to incorrect enlargement in the subsequent high-resolution optimization step,

Fig. 5 Training convergence curves of perceptual loss. a FiveK. b AMOS
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Fig. 6 Example results on synthesized FiveK dataset. a GT. b Cut-and-paste. cMVCC [1]. d IM [8]. e DIH [3]. f
Our proposed network. Our composite results obtained the highest PSNR value scores

resulting in unrealistic images, as shown in Fig. 7e. Overall, the proposed method per-
forms favorably in generating realistic, seamless, and harmonious images. The foreground
appearance of our results is most consistent with the corresponding background.
In addition, we use three quantitative criteria to evaluate the proposed and other meth-

ods. First, the peak signal-to-noise ratio (PSNR), which is used by Tsai et al. [3], can reflect
how close the result is to GT. Second, the structural similarity index (SSIM) attempts
to quantify the visibility of structural differences between the result and GT. Third, the
learned perceptual image patch similarity (LPIPS) [39], which agrees surprisingly well
with human judgment, is used to assess the perceptual similarity between two images.
Note that unlike PSNR and SSIM, smaller values mean greater perceptual similarity for
LPIPS. Tables 3 and 4 show the quantitative scores between GT and composite results for
FiveK and AMOS, respectively. The scores are calculated based on the mean values of a
random subset of 300 images selected from each of the two test datasets. Our proposed

Fig. 7 Example results on synthesized AMOS dataset. a GT. b Cut-and-paste. cMVCC [1]. d IM [8]. e GP [11]. f
Our proposed network. Our composite results obtained the highest PSNR value scores
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Table 3 Comparisons of methods on the FiveK test dataset

PSNR SSIM LPIPS

Cut-and-paste 24.40db 0.9547 0.0410

MVCC [1] 27.23db 0.9487 0.0363

IM [8] 22.95db 0.8349 0.0945

DIH [3] 29.96db 0.9368 0.0401

Ours (w/o G2) 33.22db 0.9628 0.0298

Ours (w/ D1 only) 33.66db 0.9517 0.0248

Ours (w/o Shift) 32.46db 0.9504 0.0252

Ours (w/o Lper) 33.41db 0.9512 0.0422

Ours (w/o Lgui) 34.42db 0.9580 0.0217

Ours 34.74db 0.9692 0.0209

image compositing network performs better than other methods in terms of PSNR, SSIM,
and LPIPS metrics.
For real images, we compare our results with MVCC [1], IM [8], RC [2], GP [11], and

DIH [3]. To demonstrate that the models trained on our multi-scenario dataset can be
generalized to real cut-and-paste composite images, we created a test set of 30 high-
resolution real composite images and combined 50 public high-quality images collected
by Xue et al. [13] and Tsai et al. [3], resulting in a real cut-and-paste composite set that
contains 80 images. Since Xue et al.’s statistical method has no public code, our results are
not compared with it.
Figure 8 shows some experimental comparisons selected from the real composite set.

The MVCC and IM can solve some of the inconsistencies between two parts of inputs,
but the results are not satisfactory. RC’s realism prediction model is effective in handling
easily distinguishable cut-and-paste composite input; nevertheless, it generates unsatis-
factory results, especially the transition region between foreground and background (e.g.,
there are distinct jagged outlines at the boundary of the foreground in the results of the
second, third, and fifth rows). For GP, it generates visually poor results. For DIH, because
the model utilizes semantic information to adjust cut-and-paste input, it is limited by the
training dataset. If the scene semantics are incorrectly judged, this will lead to unrealis-
tic outputs (e.g., the fourth, sixth, and eighth rows). Compared with others, the proposed
model can better predict the global structure and thus maintain the consistency of the
context, resulting in realistic-looking composites.
Figure 9 illustrates one example where the same foreground (i.e., the zebra) is copied

to different backgrounds (i.e., a street in dim light and a zebra herd in the sun). For RC,
the discriminative model cannot correctly predict the degree of perceived visual realism
of the given inputs, so the appearance of the foreground is almost never adjusted. For
DIH, regardless of the scene, the context-aware encoder-decoder recovers the fur color

Table 4 Comparisons of methods on the AMOS test dataset

PSNR SSIM LPIPS

Cut-and-paste 17.66db 0.7616 0.1423

MVCC [1] 17.64db 0.8382 0.1617

IM [8] 17.49db 0.6885 0.1908

GP [11] 16.90db 0.5635 0.2697

Ours 29.15db 0.9048 0.0878
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Fig. 8 Example results on real images. a Cut-and-paste. bMask. cMVCC [1]. d IM [8]. e RC [2]. f GP [11]. g DIH
[3]. h Our proposed network

constrained by the trained prior knowledge to almost invariable results. In contrast to
the two methods mentioned above, with the proposed network, the foregrounds can be
adjusted according to the surrounding scene and luminance.
To better understand the performance of our methods, we conducted quantitative

assessment studies with users, similar to Tsai et al. [9]. Participants were shown an input

Fig. 9 Real example with same foreground and different backgrounds. a Cut-and-paste. b Partial enlarged
details in a. c RC [2]. d Partial enlarged details in c. e DIH [3]. f Partial enlarged details in e. g Our proposed
network. h Partial enlarged details in g
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cut-and-paste composite and six results fromMVCC, IM, RC, GP, DIH, and the proposed
method. Each participant was asked to rate each group according to the realistic nature
of the images using a 5-point Likert scale (1 for worst, 5 for best). We asked 20 users to
provide feedback by giving users 30 tuples of images selected from our real cut-and-paste
composite set. The average scores of individual images in the evaluation set are shown in
Fig. 10. Most of our scores are above 3.0. Our scores outperform MVCC in 80%, IM in
80%, RC in 80%, GP in 100%, and DIH in 73%.

4.3 Ablation studies

The main differences between our compositing method and other methods are the
stacked generative adversarial network architecture and the combined loss function.
Thus, five groups of experiments in the FiveK dataset were conducted to analyze the effect
of stacked generators, diverse discriminators, shift-connection operations, perceptual
loss, and guidance loss on composite results. Table 3 shows that the proposed network
achieved better scores in terms of PSNR, SSIM, and LPIPS metrics compared to the other
five strategies.
To evaluate the effectiveness of stacked generators for high-resolution compositing, we

trained our network without using generatorG2. The number of training epochs was con-
strained to be the same as the original model. As shown in Fig. 11, the results generated
by a single (non-stacked) generator may not be satisfactory and have obvious artifacts. In
addition, the consistent improvement in the quantitative assessment scores of our models
clearly demonstrates the benefits of the cascaded refinement approach.
To evaluate the effectiveness of our specialized discriminator for high-resolution com-

positing, we trained our network only with discriminator D1. Visually, as shown in
Fig. 12, we observed that the model using the combination of three diverse PatchGAN
discriminators could reduce artifacts and improve appearance in terms of realism.
We trained a model without using the shift-connection layer. As shown in Fig. 13, the

operation helps to obtain representation for the foreground (i.e., the man or the flower)
from the background region, resulting in composites with consistent regions.

Fig. 10 Average evaluation scores for each image, sorted by our score. The proposed method performs
better than others in most cases
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Fig. 11 Effect of stacked generators. a GT. b Cut-and-paste [PSNR = 26.19 db, LPIPS = 0.0750]. c Ours (w/o G2)
[PSNR = 30.91 db, LPIPS = 0.0986]. d Ours [PSNR = 32.48 db, LPIPS = 0.0387]. e GT. f Cut-and-paste
[PSNR = 19.00 db, LPIPS = 0.06326]. g Ours (w/o G2) [PSNR = 33.30 db, LPIPS = 0.0428]. h Ours
[PSNR = 35.00 db, LPIPS = 0.0274]

We trained a model without perceptual loss. As shown in Fig. 14, the composites gen-
erated by the model without Lper have ghosting. In addition, the significant advantage in
LPIPS scores for the model with Lper shows that the perceptual loss can greatly improve
visual perception.
We trained a model without guidance loss. As shown in Fig. 15, guidance loss is help-

ful in preserving better visual appearance. We observed that the color and luminance of
foregrounds with Lgui were closer to GT.

4.4 Limitations

Our model trained on the proposed multi-scenario dataset can handle the composition
of high-resolution real cut-and-paste images in most cases. However, if the input image is
significantly different from the training data, it may still fail. Figure 16 shows two exam-
ples of our failure case, where the appearance of foregrounds and backgrounds is not
sufficiently natural and harmonious.

5 Conclusion
In this paper, we proposed a stacked GAN method for high-resolution image composit-
ing. Given a cut-and-paste composite, the proposed network can adjust the foreground
appearance and output a harmonized image that looks realistic. We have shown that by
using stacked generators, diverse discriminators, and multiple loss constraints, it is pos-
sible to train a good performance model. In addition, we demonstrated that our network
can be implemented in three steps to achieve stable training and faster convergence. Our
method utilizes a cascade attention guidance generation strategy and generates more har-
monious and consistent results than state-of-the-art methods. Future studies will focus
on improving the speed of high-resolution compositing of the proposed network and
expanding the training dataset.

Fig. 12 Effect of diverse discriminators. a GT. b Cut-and-paste [PSNR = 23.06 db, LPIPS = 0.0669]. c Ours (w/
D1 only) [PSNR = 24.75 db, LPIPS = 0.0518]. d Ours [PSNR = 28.15 db, LPIPS = 0.0444]. e GT. f Cut-and-paste
[PSNR = 20.27 db, LPIPS = 0.0873]. g Ours (w/ D1 only) [PSNR = 28.66 db, LPIPS = 0.0685]. h Ours
[PSNR = 32.10 db, LPIPS = 0.0495]



Yu et al. EURASIP Journal on Image and Video Processing         (2021) 2021:10 Page 18 of 20

Fig. 13 Effect of shift-connection layer. a GT. b Cut-and-paste [PSNR = 27.17 db, LPIPS = 0.0592]. c Ours (w/o
Shift) [PSNR = 29.59 db, LPIPS = 0.0548]. d Ours [PSNR = 33.82 db, LPIPS = 0.03167]. e GT. f Cut-and-paste
[PSNR = 28.40 db, LPIPS = 0.0422]. g Ours (w/o Shift) [PSNR = 29.90 db, LPIPS = 0.0402]. h Ours
[PSNR = 32.71 db, LPIPS = 0.0257]

Fig. 14 Effect of perceptual loss. a GT. b Cut-and-paste [PSNR = 33.82 db, LPIPS = 0.0196]. c Ours (w/oLper)
[PSNR = 31.64 db, LPIPS = 0.0580]. d Ours [PSNR = 35.83 db, LPIPS = 0.0167]. e GT. f Cut-and-paste
[PSNR = 31.66 db, LPIPS = 0.0100]. g Ours (w/oLper) [PSNR = 34.33 db, LPIPS = 0.0464]. h Ours
[PSNR = 36.37db, LPIPS = 0.009]

Fig. 15 Effect of guidance loss. a GT. b Cut-and-paste [PSNR = 28.65 db, LPIPS = 0.0257]. c Ours (w/oLgui)
[PSNR = 27.98 db, LPIPS = 0.0281]. d Ours [PSNR = 29.86 db, LPIPS = 0.0248]. e GT. f Cut-and-paste
[PSNR = 17.12 db, LPIPS = 0.0921]. g Ours (w/oLgui) [PSNR = 21.72 db, LPIPS = 0.0424]. h Ours
[PSNR = 33.19 db, LPIPS = 0.0247]

Fig. 16 Failure cases. a Cut-and-paste. b Ours. c Cut-and-paste. d Ours
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