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Abstract

Humans can interact with several kinds of machine (motor vehicle, robots, among others) in different ways. One way
is through his/her head pose. In this work, we propose a head pose estimation framework that combines 2D and 3D
cues using the concept of key frames (KFs). KFs are a set of frames learned automatically offline that consist the
following: 2D features, encoded through Speeded Up Robust Feature (SURF) descriptors; 3D information, captured by
Fast Point Feature Histogram (FPFH) descriptors; and target’s head orientation (pose) in real-world coordinates, which
is represented through a 3D facial model. Then, the KF information is re-enforced through a global optimization
process that minimizes error in a way similar to bundle adjustment. The KF allows to formulate, in an online process, a
hypothesis of the head pose in new images that is then refined through an optimization process, performed by the
iterative closest point (ICP) algorithm. This KF-based framework can handle partial occlusions and extreme rotations
even with noisy depth data, improving the accuracy of pose estimation and detection rate. We evaluate the proposal
using two public benchmarks in the state of the art: (1) BIWI Kinect Head Pose Database and (2) ICT 3D HeadPose
Database. In addition, we evaluate this framework with a small but challenging dataset of our own authorship where
the targets perform more complex behaviors than those in the aforementioned public datasets. We show how our
approach outperforms relevant state-of-the-art proposals on all these datasets.
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1 Introduction
The head pose provides rich information about the emo-

tional state, behavior, and intentionality of a person. This
knowledge is useful in several areas such as human-
machine interaction [1], augmented reality [2, 3], expres-
sion recognition [4], and driver assistance [5], among
others.

The task of correctly estimating the head pose with
non-invasive systems might seem easy, and many cur-
rent devices (smartphones or webcams) can detect human
faces from videos or images in real time. Those are good
for recreation, but they cannot handle all the difficulties
in head pose estimation (HPE) such as (self) occlusion,
extreme head poses, facial expressions, and fast move-
ments.

Driver assistance scenario is a particular case where
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the user may exhibit complex behaviors such as zooming
in/out of the steering wheel, wide range of head rotation,
and fast movements. Here, the pose can verify if the user
pays attention to the road allowing an autonomous sys-
tem to assist the driver when necessary. Therefore, HPE
algorithms should provide fast and robust information
because missed detections or spurious estimates can lead
to accidents.

Usually, HPE proposals [6—8] rely in RGB images to find
specific 2D facial features, such as eyes, eyebrows, mouth,
or nose. These heterogeneous features provide accurate
estimations, but those are not available all the time, i.e.,
working with blurry images or light changes. Depth-based
approaches, e.g., Fanelli et al. [4], can overcome some of
the limitations of the 2D estimation allowing a better 3D
HPE. Both methodologies perform well where the tar-
get’s face is nearly frontal, but as mentioned above, this
assumption cannot be guaranteed. Some applications use
3D models [9, 10] to retrieve the pose because they also
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provide semantic information, i.e., gaze estimation and
facial expression.

We propose a framework that takes the best features
of the aforementioned methodologies, combining 2D and
3D cues with a rigid 3D face model. It can handle chal-
lenging situations, such as large head poses, with a high
detection rate and good accuracy for a wide range of ori-
entations. Our approach follows an efficient key frame
(KF) methodology with an offline learning phase and an
online pose estimation step. Our fast and non-invasive
offline step learns target’s appearance and pose using a
RGB-D sensor, in such a way that it creates a set of
key frames (KFs) for that specific person, see Fig. 1.
The KFs could be spurious or inaccurate; therefore, we
propose a global optimization process based on bundle
adjustment that improves the set of KFs and updates
the 3D face model to better fix the target. This infor-
mation is later used to estimate an accurate pose in the
online step.

This process could be seen as a disadvantage because
it needs to learn KFs for each new user, but our pro-
posal incorporates an automatic learning system that only
requires the user to perform simple movements in a short
time before launching the online step. In several contexts,
we can afford to perform this initialization stage. This is
the case for driving assistance where learning could be
done when the vehicle is stopped. Moreover, we might
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even suppose that the offline process conditions the start
of the vehicle, allowing to verify in advance whether the
user is in good conditions to drive.

We show how this key frame-based proposal provides
competitive results to those in the state of the art. We
evaluate our approach using the following: (i) the standard
benchmark BIWI Kinect Head Pose Database [4], (ii) ICT
3D HeadPose Database, and (iii) our own dataset recorded
with a Microsoft Kinect v1.

BIWI and ICT-3DHP datasets are, in the literature, stan-
dard benchmarks for evaluating head pose detectors with
more than 240 and 200 cites, respectively [4, 10-12],
where each target is recorded with neutral expression,
rotating the head at a slow-medium speed. However, these
datasets do not represent complex and challenging move-
ments that a human could do. Therefore, we develop
our own dataset where the targets perform more natural
movements as those expected in real scenarios. It consists
of four sequences where targets show complex behaviors,
such as rapid head movements, self-occlusion, and facial
expression, among others. Although we evaluate several
datasets, all the examples shown in this paper use images
from our “ICU” dataset to describe the different steps of
our proposal. Thanks to quantitative evaluations of these
challenging sequences, we demonstrate that our monoc-
ular RGB-D-based approach offers competitive results to
current approaches in the state of the art.

Learning
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Fig. 1 Pipeline of the proposed head pose estimation method. Top: offline framework. The input is a RGB-D stream of the person to track. Rough
pose estimation is done (red block), and most relevant frames are selected (yellow block). Then, an optimization process improves the pose
accuracy (green block). Bottom: online pose estimation process. The current image is shown at left. The key frame with the best matching score is
selected and depicted at right. Finally, ICP refines the estimation (right image)
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The main contributions of this paper are as follows:

1. A key frame-based framework, with state-of-the-art
accuracy, that consists of an original offline process
with an automatic learning step with global
consistency, a KF optimization step based on error
propagation, and a 3D face model updating
methodology. All the above learned information is
considered during an online head pose estimation
with a formulation that takes into account the
descriptors, normal surface, and self-occlusion.

2. A new dataset exhibiting more complex behaviors to
those present in the aforementioned datasets.

This paper has the following structure: We present the
related work in Section 2. The formulation of our method-
ology for pose detection is given in Section 3. Section 4
presents the quantitative and qualitative results includ-
ing a discussion where we compare our framework with
respect to other two approaches in the state of the art.
Last, Section 5 describes conclusions and future work.

2 Related works

In the fields of mobile robotics and computer vision, there
are works focused on monocular systems for HPE, i.e.,
[13, 14], that can be categorized according to cue used.
Hereafter, we mention a few of the most relevant ones.

2.1 RGB-based approaches

Some approaches tackle the HPE problem by using 2D
deformable models that can approximate the human face
shape [15, 16]. In [6], Kazemi and Sullivan propose a
fast face alignment framework based on a random for-
est where each regression tree is learned by a gradient
boosting-based loss function. This methodology allows to
detect multiple faces with high accuracy at a speed of 1
ms per image even with complex expression (strong facial
deformations) or small head rotations.

Other proposals seek specific facial features, i.e., eyes
and nose, among others. Valenti et al. 8] learn the location
of the eyes from a set of training images, and assum-
ing that the head follows a geometrical shape, those are
projected in a cylinder. This person-specific model is
used then for detecting and tracking the target. Barros
et al. [7] follow a similar strategy, but including motion
information from optical flow to reinforce the estima-
tion. Drouard et al. [17] propose a learning method
based on histogram of oriented gradients (HoG). HoG
features are mapped (through a Gaussian locally lin-
ear model) onto the head pose space, which is then
used to predict a new head orientation. Chen et al. [18]
achieve good results with RGB images of low resolu-
tion using a Support Vector Regression (SVR) classifier
trained with a gradient-based feature. All these methods
combine the information in a single model and achieve
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state-of-the-art (SoA) results when sufficient training data
is provided.

Learning the appearance of a person with a single shot
is not always possible due to problems such as changes
in lighting or occlusions. Therefore, several works rely on
the information coming from a set of relevant frames,
called key frames (KFs)[19]. In [20], Vacchetti et al. pro-
pose a KF-based method that detects and estimates the
3D pose of static rigid objects using only RGB images.
Each KF consists of a set of key points and a 3D model,
projected to image plane using camera calibration. The
proposal provides SoA results by considering both 2D-3D
key frame matching and 2D-2D temporal matching. The
work of Kim et al. [21] exploits the idea of KF for pose
estimation and tracking of multiple 3D objects from 2D
information. The methodology can obtain results in real
time, i.e., 40 objects within 6 to 25 ms per frame. In the
last two proposals, the camera is moving while the tar-
get remains static. Nevertheless, these methods can work
in the opposite way, i.e., static camera with moving tar-
gets. Morency et al. [22] propose a generalized adaptive
view-based appearance model (extension of the AVAM
algorithm of [23]) that estimates the head pose for a spe-
cific image region. The final pose is inferred by merging
the results of (1) a referential frame, (2) tracking between
current and previous frame, and (3) matching against a KE.

A more recent method [24] uses deep learning to train a
convolutional neural network (CNN) using RGB images.
The results are provided in real time and can handle
challenging issues such as different light conditions.

The 2D-based proposals perform well with nearly
frontal views, but they have difficulty estimating an accu-
rate head pose due to problems such as large poses, (self)
occlusions, and changes in lighting. In this sense, depth
cue is more efficient in such situations.

2.2 Depth-based approaches

Many of nowadays SoA methods are based on the depth
cue because 3D information provides the shape of the
head in a more distinctive way [4, 12, 25] .

In [25], the authors use the depth image to tackle some
of the problem of pose estimation such as partial occlu-
sion and head orientation variations. The proposal rotates
a generic 3D human face model, and each rotation is
transformed in a depth image, which is later used in the
alignment process. This offline-learned set is compared to
the input depth frame, and the best match provides the
pose hypothesis. It achieves real-time results thanks to a
framework based on graphics processing units (GPUs).

Fanelli et al. [4] train a random regression forest that
allows to detect poses in real time through nose tip detec-
tion. The training data is generated in a similar way as
[25] using a 3D face model set with several orientations.
Each leaf of the regression tree votes for a possible nose
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position, and the final pose is inferred by considering all
votes. The high quality of their results has converted it in
a baseline to compare new proposals.

Papazov et al. [12] propose a new 3D invariant descrip-
tor that encodes facial landmarks. The descriptors are
learned in an offline training phase using a group of high-
resolution meshes with triangular paths. A CNN is used in
[26] to estimate head pose from pure depth data with the
use a Siamese network (a couple of CNN) achieving high
accurate results in real time.

2.3 RGB-D-based approaches

The combination of color and depth cues has shown high
performance in challenging situations. In the work of [11],
the pose is inferred by fitting a morphable 3D model on
the target represented by a 3D point cloud. The model is
learned for a specific person in an offline training step.
Saeed and Al-Hamadi [27] use HoG features, extracted
from both RGB and D cues, to train a classifier based
on support vector machine (SVM). In [28], the authors
present a similar method that combines 2D and 3D HoG
features but to train a multi-layer perceptron classificator.
In [29], the authors present an improvement to the con-
strained local model by including 3D information. Then,
they train some SVM classifiers and logistic regressors
using probabilistic features.

Some works enhance classical methods by including
depth information. This is the case with [30], in which the
authors use the depth cue in a visual odometry technique.
Smolyanskiy et al. [31] add a depth-based constraint to an
active appearance model fitting. However, this approach
suffers from drift problems, where the final model is not
well aligned with target’s 3D position. Some other pro-
posals propose to combine depth and color cues using
random forest [32]. Here, tensor-based regressors allow to
model large variations of head orientation.

In [10], Li proposes a method based on an energy min-
imization function that optimizes the distance between a
3D point cloud (current frame) and a rigid template model
of the human face. The optimization is carried out using
ICP algorithm, and the color cue is used in two ways: (1)
to detect 2D facial landmarks, using the method of Viola
and Jones [33], and (2) to remove outliers, using a k-means
clustering algorithm. The detected landmarks, i.e., eyes,
are projected to 3D world through the depth image and
included in the energy function as a weight factor, which
increased the accuracy and convergent speed of ICP. On
the other hand, k-means allows to separate relevant 3D
points (i.e., those belonging to the face) from the spuri-
ous ones (i.e., clutter). The face model is updated online
in a parallel process using only the depth cues allowing
to adapt to different kinds of faces. The proposal relies in
the work of Fanelli et al. [4] to reinitialize the approach
because ICP requires more time to infer a face pose from
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an initial position than from previous frame. Meanwhile,
Fanelli et al’s approach finds a face faster but with less
precision. Yu et al. [9] propose a similar method that
instead learns a 360° 3D morphable model, including a
motion cue, based on optical flow, in the ICP optimization
process.

2.4 Descriptors

Descriptors encode important information about the
visual characteristics of the objects present in images [34],
such as appearance [35, 36], motion [37], or geometry
[38]. Therefore, they have been used in multiple contexts.
Yan et al. [39] propose a FAST-like descriptor which con-
siders the orientation of image intensity. Alioua et al. [35]
propose a 2D head pose estimation framework using a
combination of classic descriptors, e.g., HoG, SURF, and
Haar. Yan et al. [36] uses two CNN features to model
global and local appearance of the target and a 3D CNN
which codify the motion.

The computational cost of some descriptors could be
expensive, e.g., especially those based on deep learning
[36], even using parallelization methods [37]. Therefore,
we rely on robust features with fair computational cost.

2.5 Synthesis

The aforementioned proposals have some qualities that
adapt well in specific scenarios. To mention some out-
standing methods, we have the following: Kazemi and
Sullivan [6] who use a RGB-based method with fast esti-
mation and high accuracy in frontal view, Fanelli et al’s [4]
proposal which relies in depth information and provides
good detection rate, and Li et al. [10] who can achieve
accurate results for head poses with large rotation. A com-
bination of these (or more) methods could face the chal-
lenges of estimating head pose, but a direct combination
could not generate results in real time.

Finally, there are some datasets to evaluate the perfor-
mance of HPE algorithms, such as BIWI dataset [4] and
ICT-3DHP dataset [29], that are the standard benchmark
used in several relevant papers [4, 9-12]. They consist of
multiple sequences, each with a different person, where
the target has a neutral expression, with slow-medium
speed head rotation and (mostly) remaining in the same
position.

From above, we can summarize our contributions as
follows:

1. A robust HPE algorithm based on KF that combines
3D geometry information (point cloud), appearance,
and shape (encoded through SURF and FPFH
descriptors), exploiting all RGB-D channels.

2. A double mechanism consisted of (1) an offline
learning phase that exploits the complementarity of
aforementioned techniques to create a
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person-specific set of KFs and (2) an online
framework based on KF and ICP that estimates
robustly and in real time the head pose.

3. A bundle adjustment process that improves the
accuracy, in terms of performance and CPU cost, of
the learned KFs in order that they are consistent
between them.

4. An online update of both the KFs and 3D face model.

5. A new dataset with more challenging behaviors and
situations that those in the literature consisting of
four sequences with a ground truth generated from a
tion (MoCap) system. It includes rapid head
movements, facial deformation, self-occlusions, and
position displacement, among others.

6. A rigorous and large-scale evaluation and
comparison with relevant existing approaches in the
state of the art.

3 Method

Our key frame-based approach is inspired by some works
like [20, 22], and [25] but for the applicative context of
HPE for human-machine interaction, i.e., human HPE
instead of static objects considering both appearance and
depth cues with a partial 3D face model. Each KF consists
of a set of 3D appearance features (SURF descriptors pro-
jected to 3D world through the depth image), 3D-based
features, and an approximate head pose, represented with
a 3D template model. First, we describe the contents
of each key frame to then show how they are learned
consistently and subsequently used in a pose estimation
system.

3.1 Key frame generation

3.1.1 3D face model

A 3D morphable face model (3DMFM) is a shape rep-
resentation of a human face that can be used to provide
accurate estimations for most of the head poses. Then,
a face model M is a set of 3D vertex/points created as a
linear combination of a mean shape p with a weighted
deformation basis DB as follows:

Vin

M=p+ ) yidDB;.
i=1

(1)

Here, y; and DB; are the eigenvalue and eigenvec-
tor, respectively, learned from a set of 3D scans. In our
approach, we use the Basel Face Model (BFM) [40], which
has learned the DB values from the 3D face scans of
200 subjects, each with different age, gender, height, and
width. Traditionally, 3DMFM fitting is an offline opti-
mization step that finds the ®; values through the min-
imization of the distance between one (or more) 3D
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frame(s) and the model. This allows to create a model with
a facial shape similar to a specific person, i.e., [9, 10].

Our offline key frame learning step uses a generic
human face model M with average characteristics, i.e., age,
weight, and gender. This model fits well in most of the
cases, but it must be updated in order to fit some facial
structures. Section 3.2.3 describes an efficient optimiza-
tion scheme that does not rely in calculating @ of Eq. 1
like other methods, but in an error propagation-based
approach inspired by as bundle adjustment.

Even with a well-fitted model, some HPE algorithms
have problems handling face deformation such as mouth
movements or facial expressions. This is a common situa-
tion when a person is speaking with other one or reacting
to external situations, i.e., music and other people’s move-
ments, to mention a few. We keep this in consideration
and create a partial model with only the part between
nasal base and forehead. This region does not deform
much and provides results as accurate as more complete
models.

In any case, we use Eq. 1 to build a partial face model
M = {p1,...,pm} consisting of m = 1000 3D points
p = {x,7,z}; an example of the model is shown in Fig. 1
represented as the output of the red block.

3.1.2 Facedescriptors

Our proposal relies and is based on natural facial land-
marks encoded through SURF descriptors, which allow
to estimate features invariant to rotation and scale, and
Fast Point Feature Histogram (FPFH) descriptors, which
include 3D information invariant to illumination changes.
These descriptors enhance the robustness of the HPE
and increase both accuracy and detection orientation
range.

SUREF descriptors SUREF is a robust and reliable descrip-
tor that has shown good performance in several topics
such as SLAM, camera pose estimation, and image regis-
tration. In the context of HPE, SURF describes a specific
person’s face in a general way, avoiding the need to search
specific features (e.g., eyes, nose). Therefore, any relevant
characteristic is taken into account, regardless of its ori-
gin, i.e., beard, mustache, glasses, or other. In addition,
these descriptors are invariant to scale and rotation allow-
ing to detect no-static targets, i.e., drivers moving around
in the cockpit and people interacting with robots, among
others.

We use SURF in a similar way as in image registration:
we calculate a set of * interest point in the foreground
of image plane using the good features to track algo-
rithm. Since each RGB pixel has associated a depth value,
we define the background as any point farther than a
threshold ¢/,. Thereby, we have a set of f* features with
their respective 3D position p;" = {x,,z} as follows:
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=) viem )l < e @

From Eq. 2, we have a descriptor that encodes the
appearance of a specific person in 3D world, and by
grouping them, we get the set:

D =ay...dzl. 3)

In practice, the parameters used in SURF get a n® ~
100 — 200 descriptors. SURF descriptors are robust in
cases with little luminosity changes and flat objects, and
in our problem, they have proven to be useful for the
pose estimation. Although certain changes of a 3D object,
due to lighting or rotation, cannot be captured prop-
erly by these descriptors, we use a shape descriptor that
reinforces the estimation.

FPFH descriptors Curvature estimates and surface nor-
mals are a basic representation of the geometry of an
object, easy to compute and compare. Although the level
of detail captured is not much, many points contain the
same (or similar) feature information. Alternatives are the
3D descriptors, and they summarize the object’s geome-
try taking into account the aforementioned features in an
efficient manner.

Fast Point Feature Histogram (FPFH) descriptor, pro-
posed by Rusu et al. [38], captures the normal surface
variations around a point, resulting in a high hyperspace
signature that is invariant to the 6D pose (rotation and
position) and robust against the neighborhood noise. It is
formulated as follows:

(2020) 2020:13 Page 6 of 19
B B B 1 !
7P = EpEH (pj ) — SPFH (pj ) +— 3 = -SPEH(py),
IN;| & k;
ieN;
(4)

where SPFH (Simplified Point Feature Histogram) com-
putes the set of angular features of the PFH descriptor, «; is
the distance between pf and p;, and N; is the set of neigh-

boring points of pf . We build the set point to evaluate by
considering (1) the 3D projection of the points computed
by good feature to track methods, in the same way as in
SUREF, and (2) a downsampling of the target point cloud.
The 3D frame descriptors are formulated in a similar way
as in the previous section:

pf =laf...afl, (5)
where
df:{ﬁﬁ,pf} Vie{l...o®} 1Pl < theg.  (6)

Finally, each KF contains these three elements: appear-
ance and shape signatures and a 3D face model, together
with the depth image. In practice, the number of descrip-
tors nﬂ =~ 200.

3.2 Offline key frame learning

In this section, we describe how the KFs are learned from
a RGB-D stream, see workflow in Fig. 1. First, the target
pose is roughly estimated using a robust but computa-
tional expensive system based on three state-of-the-art

Define a 3D point
on tip nose

Last head pose
estimation

Include the estimated
point in the ICP
calculation

New frame

Find, in the 3D point cloud,
the points closest to the
last estimate of the nose

Find the furthest point

in the direction of the

previously estimated
orientation

Fig. 2 Estimation of nose feature. From a previous pose (a), we define a 3D point on the tip of the nose (b). Then, From a new frame (c), we find all
neighboring points from last estimation (d) and select the furthest point in the direction of last pose estimation (e). This point is then included in the
ICP calculation
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Fig. 3 Key frame learning process. Each figure represents the same target observed from three views. The discretized orientation is depicted as the
region of the sphere. The color indicates visited areas (green) from regions without an associated pose (yellow). The set of points in red is the 3D
model of the estimated pose. Target orientation at current frame is shown with the blue line

methods (red block in Fig. 1). Only the most relevant
frames, according to the quality of the estimated pose and
the descriptors, are selected as key frames, yellow block.
Finally, an optimization process (green block) improves
the KF-estimated poses and suppresses spurious frames,
i.e., which are not consistent with any other.

3.2.1 Rough pose estimation
Some methods require the use of other algorithms for
initialization or learning [9, 10]. Our proposal requires a
rough estimation of the pose, or rough pose estimation,
that is computed by combining three HPE systems that
have a good accuracy/CPU-cost ratio: Kazemi and Sulli-
van [6] 2D face detector, Fanelli et al. [4] depth based, and
Li et al. [10] RGB-D based method.

These proposals complement each other and provide
a first good estimate on which we rely to create a more
robust method. Kazemi and Sullivan’s [6] proposal is a
fast-facial feature detector and is part of a public library,
DLib from [41]. Fanelli et al’s [4] approach has over 200

cites and has been included as a module for the Robot
Operating System (ROS) library. Li et al’s [10] method
brings more accurate results than that of Fanelli et al. for
far-reaching orientations.

The work of [10] consists of two independent parts
(computed in parallel): (1) a head pose tracking framework
based on ICP and (2) a 3D model update system. This
method is based on facial features that cannot handle well
large head rotations, and therefore, the accuracy decreases
when the 2D face landmark detector fails. Therefore, we
propose a simple but reliable 3D feature, see in Fig. 2,
that provides additional information for feature-based
systems, i.e., [10].

Let’s assume g;—1 = {x,%,z} as the 3D position of nose
tip estimated from previous frame and 6;_; as the head
orientation, red sphere and blue line in Fig. 2b, respec-
tively. Assuming a slow movement of the target, the next
nose point g; should be close to previous estimation; we
can find this new nose by analyzing the neighboring g;_1
in the current target’ point cloud v;_;:

s

(d)
Fig. 4 Three views: (a, b) frontal, (b, e) profile and (¢, f) side; of the point cloud of all KFs projected to a common frame before (top) and aJer
optimization (bottom)
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sequence. NOTE: panel label only enumerates the sequences

Fig. 5 Example of the 4 sequences of our dataset. The images show the 3D point cloud (on the left) and the RGB image (on the right) for each

Ne={pey:llp—qll <7},

where r = 0.2m is the searching radio. In other words,
N; are the neighboring points of g;—1 and one of those is
a good candidate to be the next nose tip (q; € U), see
yellow area of Fig. 2d. From previous pose estimation, we
define nose as the furthest point in the orientation 6;_;:

P; = argmin {v(p, gs-1,0;-1)},
pENt

where v(-) computes the distance between point p and a
line segment defined through ¢;_; and 6;_,. g, is shown
as the blue sphere in Fig. 2e.

In [10], the authors include the 3D eye positions,
detected with Viola and Jones [33] algorithm and pro-
jected through the depth image, as a weighted factor in the
ICP algorithm. We do the same with this nose feature g;;
the correspondences between g; and a 3D template model
have a weight of 40, as indicated in [10]; and the rests are
set to 1. This process guides the template to zones with
high probability of been the target’s face; Fig. 2f shows the
final estimation.

This feature enhances the accuracy of the original pro-
posal; thus, we use this nose-based framework in the
KF learning. Like other person-specific methods [11], we
must learn the appearance of each new target, but the pro-
cess is worth it because, as detailed below, it improves the
accuracy of the estimations.

3.2.2 Automatic frame selection

In some application context, e.g., driver assistance, we can
take some time to perform the KF learning before start-
ing the vehicle without any danger. Here, robust estimates
of head pose are essential because inaccurate or missed
detections can cause accidents. This could be difficult to

achieve because the target behavior is sometimes com-
plex with random or abrupt movements. We develop our
proposal considering that the KFs can handle well these
scenarios providing high-quality results. Therefore, we
consider that it is justifiable to take a little time in order to
learn a robust person-specific set of KFs.

First, we estimate the rough pose as described in
Sec. 3.2.1 where the methods (Kazemi, Fanelli, and Li)
propose each one a HPE P, = {g, 0.} where g = {x,y,z}
is the nose location and 0 is the head orientation. Thus,
we have at frame ¢ three pose estimation candidates C; =
{Pxazemi» PLi> Pranelli}- In the best-case scenario, all the
methods converge to a similar point, i.e., mean of the three
poses P; = {7, 07} has a small variance Var(C;). If this is
the case, we add P to the set of key frame pose SXF. Oth-
erwise, we select a pose according to the qualities of the
methods. Kazemi is highly accurate with frontal view tar-
gets, Fanelli can detect poses even with rapid motion, and
Li works better with heads that exhibit large orientation
(looking to right/left, full profile). Therefore, we privilege
these techniques according to each situation:

P, if Var(Cy) < th,
Pyazemi if ||ét - qI(azemi,t“ < thy
and 0° < thy
PRE = Py if |lge — quicll <thg
and 0° > thy
Praneli if ||Qt - qFanelli,t“ < thd
and s < thg

Fig. 6 Helmet used for the acquisition of the ground truth
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where thy = 5 cm and thy = 45° are the pose and orien-
tation thresholds, 6 is the existing angle between camera
origin and target pose, and th, = 0.5 is the variance
threshold. We define s = ||P; —Pff 11| as the angular speed
between two consecutive pose estimations with th, =
1rad/s as the speed threshold.

Descriptor computation So far, the descriptions D* and
D# are calculated in the foreground and, therefore, may
include irrelevant non-face features. To remove spurious
information, we simply rely in the rough estimate PXF
that defines the position of the 3D face model. We use
this knowledge to filter out the points far enough from
the template. Let us assume g™ as the nose position of
the model zone and Ly(d, p) as the Euclidean distance
(norm Lj) between 3D points. Then, we filter the points
according to a threshold ¢4, as follows:

(7)
(8)

D¥ = {d/“ eD* : L (p]“,qM> < L‘he}

Df = {dlﬁ eD? . L, (pf,qM> < the}

Frame selection The accuracy of the estimation is
related to the number of key frames. More KFs improve
the results, but computational cost is also increased.
We keep the number low by discretizing the orientation
space through spherical coordinates discretized at 20°. An
example is shown in Fig. 3 where a yellow polygon depicts
the discretized orientation.

Once an estimate is close to the center of the discretized
area, we keep the pose PKf' and compute the descriptors

DKF = {f)o‘,f)ﬁ } around it. We change the color of the

visited areas to green in such a way that the user can
observe the missing orientations (Fig. 3). Sometimes an
area is visited more than once; in this case, we keep the
best KF based on a fitting score (given by pose estimation
algorithms) and number of descriptors. Finally, the KF set
is defined as follows:

SKF — {PfF,be} Vik={l...K}. )

In this learning process, target should move its head at
normal speed performing only head rotations, as recorded
in BIWI and ICT-3DHP datasets. We consider around of
30 — 40 KF, covering most of the orientation space, and
100 SURF/FPFH descriptors. The set SXF' can be used as
it is; however, we can enhance the pose estimation of each
KF by applying an optimization step.

3.2.3 Key frame pose optimization

The KFs provide rich information of the pose and appear-
ance of the target. An automatic learning method provides
a good initial estimation, but small errors in the set of
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Table 1 Description of our own head pose sequences

Seq Frames Rot. range (degrees) Mean speed (rad/s)
Seq 1890 =+ 60 yaw =+ 40 pitch 0.94

Seq2 1083 =+ 80 yaw [+ 30, — 65] pitch 0.83

Seq3 1535 =+ 80 yaw = 45 pitch 23

Seg4 1929 =+ 80 yaw [+ 20, — 80] pitch 2.51

KF limit the quality of new estimates. Moreover, it could
include spurious frames (inconsistent estimate), red cir-
cle in Fig. 4. Therefore, we can overcome those issues by
applying an optimization process that provides a global
and simultaneous consistency between all KFs and the 3D
face model.

To achieve this, we need to minimize the error between
the 3D face model and all KFs. Let us assume M as the
template model in a reference position (origin of 3D world
with not rotation) and Ky as the point cloud of the k-th
KE. We need to process only the points corresponding to
the face. This position is known from the estimated poses
PkKF , and therefore, we filter the points p of K; keeping
only those around 20 cm of the pose estimation, i.e., Hy =
p € K : Ly (p, pXF) < 0.2m).

Hence, the goal is to find the transformation parameters
7 = {Ry, tx} that minimize two aspects: (1) the local error
between the paired points of the human face model M and
the KF point cloud H,

Pk = {(h,p) che Hk,p EM},

and (2) the global error between the rest of the KF facial
point cloud H,

Qix = {(hi, hy) + h € Hy, by € Hy}.

This can be achieved by minimizing the following cost
function:

K
. 1 2
argmtmzw Z llp — T(h, )l +

k=1 (hp)ePy
(10)
K I
i 2
> ] > T ) — Tlhi, )|,
i#k (hishr) €Qix
Table 2 Evaluation of our proposal considering the different
elements
) Descriptors Global 3D model Weighted
Variants
SURF FPFH optimization update ICP
(Eg. 10) (Eq.11) (Eq. 15)
KFv1 Yes No No No No
KFv2 Yes No Yes Yes No
kFv3 Yes Yes Yes Yes Yes
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Fig. 7 Mean of the results on the BIWI dataset. Mean orientation error (in degrees)

where T(-) apply the geometric transformation of a point
h with respect to 7, | - | is the cardinality, and 7 =
{t1... 1K} is the set of all transformations. The variable A;
weights the contribution of the ith KF (H]) to evaluate and
is derived from the percentage of paired points between
the face model M and the ith KF point cloud:

11
C MU,

We can observe that A; is close to zero when the num-
ber of paired points(PP;) is small, meaning this KF is not a
good match to work with because it is desalinated or is a
spurious frame. At each iteration, we remove the KFs with
a low weight A; < 0.25 because we cannot guaranty that
those are a real part of the face or point cloud coming from
bad estimates.

We optimize Eq. 10 following an iterative scheme such
as ICP. First, we select a KF k and perform the opti-
mization, and we repeat this process with the rest until
convergence. Figure 4 shows the KFs (projected to a ref-
erence frame) before and after optimization, from which
the target’s face can be seen more clearly. Finally, we
recalculate the poses and filter 3D points of the model.

14%

12.09%
12% +—

10.17%
10% +——

w Fanelli

wli
8% T—

6.95% .
Linose

6% — 5.05% = KFvl
“ KFv2
4% -
KFv3

Missed Detection Percentage

2% A

0% -

Mean

Fig. 8 Mean of the results on the BIWI dataset. Percentage of missed
detections

3D facial model update Some persons could have facial
features more different than generic model, i.e., a person
with mustache or beard, causing a bias in the estimate. We
can overcome this issue by adjusting the model according
to the refined 3D point clouds. Let us assume H as the
union of all 3D mesh projected in the reference position:

K

= T(H, ),
k=1

This point cloud H is seen as a scattered data, and
through an interpolation algorithm based on Delaunay tri-
angulation [42], we create a mesh F = Delaunay(]I:]I) that
describes the facial surface of the target. Then, the new
model M is estimated from the paired vertex (M!, ) by
minimizing the cost function:

S - FP 4+ 2 (11)

> s — M2
ieM |N’|

JEN;

where N; are the neighboring vertex of M’ and y weights
the similarity of the original model. This equation updates
the points of M with respect to F allowing the generic
template to evolve in a model A1 more similar to the target.

3.3 Online head pose estimation

In this section, we present our original framework that
exploits the characteristics of the KFs, in comparison with
other existing approaches. We have a set S with appear-
ance and shape descriptors (associated to 3D points) and
a robust pose estimation. As mentioned above, descrip-
tors are computed only on the area around the 3D model,
so we have Dy = {d1,..., dy, } for each k KE. We apply a
similar process for the current frame.

3.3.1 Pose estimation

Initialization For a new frame ¢, we first compute
the descriptors following the steps as mentioned in
Section 3.1.2, sampling over the whole foreground images
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Table 3 Results on BIWI dataset in Euler angles
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Method Yaw Pitch Roll Mean
Fanelli et al. [4]* 93+£88 74+ 81 85+£99 840 4+ 893
Lietal [10]* 55+46 3.7+59 477 £52 466 +5.23
Li Nose* 5335 3655 466 £49 452 +£4.63
Saeed and Al-Hamadi [27]F 39+42 5058 43 +46 44 £49
Baltrusaitis et al. [29]F 14.80 12.03 23.26 16.69
Venturelli et al. [26] 28+33 23+27 21422 24+273
Yang et al. [28]* 89+£82 91+£74 74+49 85+69
Papazov et al. [12]" 30£96 25+£74 38+160 40£110
Ahn et al. [24]F 28+£24 34£29 26+£25 29+£26
Yuetal. [9] 2.54 1.45 2.10 2.03 +£30
KFv1 43+£28 28 +29 415+£3.19 391 +£3.19
KFv2 32114 25+15 275+277 2.82+£208
KFv3 228+ 17 212117 2.1+ 146 218+ 1.44

Results with the best performances are presented in bold
*Estimation that we calculated
*Results taken from author's papers

because we do not know the location of the target.
Thus, we have extracted the descriptors D; = {D‘;‘,Dé3 }
Although in some cases it may not be necessary to use
both types of descriptors, the use of both allows to com-
pensate any problem that the other has, for example,
drastic changes in the lighting affect SURF.

Key frame selection We need to find the KF Sia: =
{Py, Dy} that matches better with the current frame. Let
us assume f is a vector with the feature part of the
SURF D* and D? FPFH descriptors. Then, for paired fea-

tures [ fk(j), ft(/)} (KF and current frame, respectively), we

compare D; against each KF descriptor lA)fF as follows:

1 e .
argmin — Zdist ( k(j), t(j)) s (12)
k Pk 7

2.5% -

15.36%

w Fanelli

1.5% - wli
Linose

“KFvl

1.0% -
“KFv2
KFv3

Missed Detection Percentage

0.5% -

0.0% -

Mean

Fig. 9 Mean of the results on the ICT dataset. Percentage of missed
detections

where dist computes the distance between two features
and py is the number of correspondences. After optimiza-
tion, we set the k-th KF as the best candidate for the
current ¢ frame, i.e., S{fF = SkKF . Finding the best KF is a
time-consuming process, but our proposal achieves real-
time results by considering the previous estimation. We
evaluate first those KFs close to the last estimated pose,
and we accept it as the best frame if the number of corre-
spondences is enough (i.e., > 20). This selection reduces
considerably the computational cost.

Nevertheless, the correspondences between D; and D,
could be inconsistent due to the symmetry of the face
(i.e., eyes) or matching between different parts with sim-
ilar appearance (i.e., mustache and eyebrow). Coherent
matches must share similar geometrical characteristics
such as distance and orientation in 3D coordinates.

Descriptor filtering Let us assume M, as the correct
match set between Dy, and Dy, and p as a vector containing
the 3D position of both appearance (D%) and shape (D)
descriptors. We compute the mean and variance between
the KF points p; and current frame py in terms of distance
and orientation, and then, we remove atypical points as
follows:

Mb,t’ = {I’I’Ib't S Mz,l :
Mah(mp,t, jua, 04) < thy (13)
Mah(mb,t) MG,UG) < thm};
where Mah(-) calculates the Mahalanobis distance, th,,, <
1. is its associated threshold, and u, and o, are the
mean and variance, respectively, of (1) Euclidean distance
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Fig. 10 Mean of the results on the ICT dataset. Mean orientation error (in degrees)

between py and pj, and (2) orientation of pj with respect
to p}.

Initial pose We use the points p of the correspondences
M, ; to compute a rigid transformation from Dy, to D; in
order to get an initial head pose Pj. The relative transfor-
mation 7, = {R;, &} is estimated by minimizing the cost
function:

arg min Z c?)j||f{tfag) +t —iaﬁ”||2, (14)
Ryt j

where w; is the confidence weight of the matched pair,

calculated based on the distance between their corre-

sponding features as follows:

- A\ 2
—dist (k(])’ t(])>

01

w;j = €xXp

Thus, reliable features contribute more in the estimate
of the transformation 7;. This pose is enhanced by con-
sidering additional information such as occlusion of cur-

after applying this rigid transformation. We improve the
pose by aligning now the points p,, of the model M;
with the corresponding p; points of the current frame,
which is done by minimizing the next point-to-plane cost
function:

wj ((Rt”y;B)T (Rtpyr? +t —P?)>>2’
(15)

where ny,,) is the normal surface of point py,,). The weight
wj encodes the affinity between correspondences based on
their normals, distance, and orientation with respect to

the camera. We formulate it as follows:

L 1 2 3
wj = C10; + C20; + oy,

st.ci+cy+c3=1,

rent frame. Now, let us assume M; as the model M  where

Table 4 Results on ICT-3DHP dataset in Euler angles

Method Yaw Pitch Roll Mean
Fanelli et al. [4]* 10804738 1483+ 94 703485 1089 + 8.1
Lietal [10]* 83+80 544 +£43 471£52 6.15£585
Li Nose* 831+£73 510£52 474+54 6.05£592
Saeed and Al-Hamadi [27]+ 51454 49+53 44 +£46 48+ 5.1
Baltrusaitis et al. [29]" 6.9 7.06 1048 8.15
Venturelli et al. [26]F 9.8410.1 45446 44+£45 623+64
KFv1 813+£87 601 £58 593452 6.69 £ 649
KFv2 540+ 64 474 £4.1 509457 507 + 544
KFv3 419448 3.88+42 433449 414+ 447

Results with the best performances are presented in bold
*Estimation that we calculated
*Results taken from author's papers
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Fig. 11 Mean of the results on the ICU dataset. Percentage of missed
detections

ang (ny,,), ny))
(,()j1 = exp 071 ) (16)
a
ang (n?,?,o,»)
a)j2 = exp , (17)
Oa2
1 (50.09)
a)]?’ =exp| ————= |, (18)
043
ang(ai, az) = acos (M) . (19)
llaill |lazll

Equation 16 measures the angle between the normals
of points pﬁ’n) and pi’ ), respectively. Equation 17 considers

that the model itself could occlude some correspondences,

which happens when the normal of the point p,S’} and

its orientation with respect to the camera (i.e., a normal
vector centered at py,,) pointing to the camera) o; have a
large angle. Finally, Eq. 18 weights the correspondences
according to their distances.

Sometimes it is not possible to find a suitable KF for a
given frame, i.e., the number of matches is not enough. In
this case, we use the last KF-based estimation as a tempo-
ral KF, and thus, we continue the pose estimation without
interruptions.

We optimize Egs. 10, 14, and 15 through an ICP scheme
with classic termination criteria, i.e., maximum number
of iteration (10) and mean square error in terms of trans-
lation and rotation. Thus, we obtain the final pose P; =
{p+, 6}, which corresponds to the nose tip and orienta-
tion, respectively, of the model after the transformation
7 = {Ry, te}.

3.3.2 Key frame updating

Our system does not require to learn all the 50 dis-
cretized orientation in order to be launched, but it benefits
the more KFs there are. Therefore, the online system
begins when it has 20 frames, and then, new KFs could
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be added from the current estimates of our proposal.
This is done by checking the current estimated pose
Py; if the orientation 6; does not have a KF associated
in discretized space, we include it in the set following
the considerations of Section 3.2.2. Otherwise, we com-
pare the fitness score of current frame with the clos-
est KF. The score checks the average distance between
the model and point cloud, the number of descriptors,
and the feature distance, and we keep the one with
more descriptors and smaller distance. The optimization
described in Section 3.2.3 is carried out when enough
KFs have been added or modified, i.e., 5 frames. Since
this operation is performed in parallel and only when
necessary, no additional time is added to the online
estimate.

4 Experimental evaluations

We evaluate our KF-based proposal, Fanelli’s method, and
Li’ approach with the variant of the 3D nose feature,
see Section 3.2.1, on two public benchmarks: ICT-3DHP
dataset [29] and BIWI Kinect Head Pose Database [4].
Also, we create a more realistic dataset with complex
behaviors that challenge these pose estimation frame-
works.

4.1 Datasets

The BIWI Kinect Head Pose Database [4] is a baseline
for evaluating HPE algorithms. It consists of 24 sequences
with 20 persons of different gender, age, and facial charac-
teristics. It has over 15K RGB-D images aiming to frame-
by-frame detection and not tracking because there are
many sequences with some missed frames. Each sequence
has a single target rotating his/her head, with a range of
=+ 75 and + 60° for yaw and pitch, respectively, slowly with
a neutral expression. Head pose annotations are estimated
using a tracking system.

The ICT-3DHP Dataset is proposed in [29]. It is divided
into 10 sequences containing about 14K RGB-D frames
with both color and depth images. The targets perform
a similar head motion as in BIWI dataset, but some tar-
gets present facial expressions, self-occlusion (e.g., hair),
and small change of position. The ground truth is gener-
ated through a Polhemus FASTRAK flock of birds tracker,
which is a commercial system that estimates head pose
from sensors located over a white sport cap.

Our ICU-Head Pose Dataset consists of 4 sequences
each with a unique person, see Fig. 5. The targets have
different facial morphology and features, i.e., glasses,
mustaches, or beards. The sequences are created to
test the performance of HPE algorithms under chal-
lenging scenarios. Therefore, targets perform complex
behaviors including change of head position, large range
head orientation, self-occlusions, fast motion, and facial
deformation.
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Fig. 12 Mean of the results on the ICU dataset. Mean orientation error (in degrees)

We collect the sequences with a Microsoft Kinect v1
under controlled conditions with a resolution of 640 x 480.
The ground truth is automatically annotated through a
commercial motion caption (MoCap) system with a total
of 6 marks (reflective spheres) fixed over a bicycle helmet
using metallic bars of 10cm, see Fig. 6. The MoCap detects
these markers as a rigid object and estimates the location
and orientation of the helmet and therefore the target’s
head, with high precision.

Each target performs a different set of behaviors with
unique characteristics such as speed. A summary of the
sequences is presented in Table 1. The details of each
sequence are as follows: In Seql, the target performs sim-
ple actions at slow speed. It presents small range over the
head orientation with a complexity similar to the public
BIWI and ICT-3DHP datasets. We rate Seq2 as medium
difficulty because it presents a large orientation range and
fast motions. Also, the target changes its head position
several times, approaching and moving away to the cam-
era. Seq3 and Seq4 are the most challenging of the whole
set. In Seq3, the target performs extreme head orientation
and multiple self-occlusion. Finally, Seq4 depicts fast head
movements in orientation and position. Throughout the
article, we show several examples using our dataset.

4.2 Evaluation criteria
We evaluate the performance of the HPE algorithms

through standard metrics such as missed detection, Euler

Table 5 Results on ICU dataset in Euler angles

Method Yaw Pitch Roll Mean
Fanellietal. [4]* 16.19+85 802446 1829£121 1417 +£84
Lietal. [10]* 621£69 465+26 1359+67 815+£54
Li Nose* 623+£66 43121 12204+£48 758 £45
KFv1 623+6.1 402+266 948+£847 658+6.2
Kfv2 617+55 3.83£19 908£41 6.36 + 338
KFv3 4.08+4.6 383+21 3.74+3.6 3.90+3.5

Results with the best performances are presented in bold
*Estimation that we calculated

angle error (roll, pitch, and yaw), and mean angular error.
A head pose is labeled as missed detection whether the
estimation algorithm does not converge to a solution,
according to the termination criteria, or the proposed
pose has an error of more than 45°. We learn the KFs for
each sequence using the system described in Section 3.2.2,
and those frames are not considered in the evaluation step.

We evaluate and report the results of three proposals:
(1) Fanelli’s method [4], using the open source code; (2) an
implementation of Li’s proposal [10]; and (3) Li Nose that
includes our nose-based feature in the approach of Li. We
analyze different parts of our proposal separately creating
three variants; an overview is shown in Table 2. Recall that
KFv1 is our a basic version, published in [43], which only
uses the SURF descriptors.

We only report the results with respect to the orienta-
tion because an incorrect position estimate is reflected in
the orientation error as well.

4.3 Results

First, we analyze the BIWI dataset, Fig. 7 reports the mean
error in all sequences per proposal, and Fig. 8 shows the
missed detection percentage. The mean error in the Li-
based approaches (red and green columns) is almost the
same, but the number of missed detection has decreased
substantially when we incorporate the nose feature (green
column). The last three columns (purple and cyan) depict
the results of our proposal. The performance, in both
accuracy and detection rate, is improved after we apply the
optimization process over the KFs. Also, Table 3 reports
the results and compares them against other methods in
the state of the art. Our proposal has the best accuracy
in terms of pitch and yaw; meanwhile, Venturelli et al’s
approach [26] has a similar performance for roll. Never-
theless, the variance of our KFv3 proposal is smaller in all
cases, making this approach more stable.

Similarly, we evaluate the proposals with the ICT-3DHP
dataset and we show the results in Figs. 9 and 10. The
mean error is almost the same for both Li’s approach and
KFvl proposal, but we can observe that the optimized
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approach KFv3 is more accurate with a missed detection
rate of less than 0.5%. We compare our results with other
approaches in Table 4. KFv3 method gives the best results,
with a smaller variance of all the techniques, meaning it is
more stable.

Figures 11 and 12 and Table 5 show the results using
our dataset. Fanelli’s approach has the biggest error, Li-
based proposals have a similar mean error around 8°, and
KF-based approaches have the smallest error. By observ-
ing Fig. 11, we point out a great improvement with respect
to missed detection because our KF-based approach han-
dles better fast motions and occlusions. In Fig. 13, we see
a qualitative example for Seq3 where, for a given frame,
we estimate the pose depicted with a blue line and the
3D template model in green. We observe that Fanelli and
Li have limitations detecting the pose; meanwhile, our
approach can detect a sufficient part of the face to infer a
correct pose.

From all the results, we observe that Fanelli’s approach
has the bigger error in most of the cases. This is because
it is difficult to find the point of the nose when the face
is in full profile, which makes the nose barely distinguish-
able. A better training could improve this aspect, but that
requires more pre-processing.

In general, Li’s basic approach has a better performance
than Fanelli’s, but in our dataset, Li’s proposal has prob-
lem detecting the pose. Figure 14 shows more detailed
results of each sequence. We can observe how sequences

(2020) 2020:13 Page 15 of 19

1 and 2 have a performance similar to those of the pre-
vious public datasets; nonetheless, in sequences 3 and 4,
the missed detection rate of Li is higher than the rest.
These sequences present fast motion with both targets
wearing glasses; therefore, the images are blurred, and
in some occasions, the light is reflected in the glasses.
This makes it difficult for the 2D face landmark detector
to find the eyes, forcing Li’s proposal to use ICP with-
out any additional information. If we compare the red
and green column, we observe an improvement, meaning
that the addition of the 3D nose feature overcomes the
aforementioned problems.

In Figs. 15 and 16, we analyze the results in terms of
missed detection. These figures are 2D histograms of the
discretized orientation for pitch and yaw. When a frame
is labeled as missed detection, we use the ground truth
and increase a counter of the corresponding pose. The
histograms are normalized considering the number of
frames, so each cell (for a specific orientation) depicts the
percentage of missed detections. The histogram center,
highlighted with the green and blue arrows, represents
a target in frontal view (looking to the camera). Follow-
ing over x-axis means the head is moving from left to
right (blue arrow) or from up to down with the y-axis.
In Fig. 15, we report the results of sequence 14 of BIWI
dataset where we can observe how Fanelli’s proposal (left
image) cannot detect well a pose at full profile. In other
words, it has problems to handle a target looking up on

Fig. 13 Qualitative results. Head pose estimated by 4 different proposals using the same frame
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Fig. 14 Results of ICU sequences using (blue) Fanelli, (red) Li's simple approach, (green) Li's proposal including of nose detection heuristic, and
(purple) our descriptor-based method without and with optimization (cyan). The first row shows the mean angular error, and the second the missed

Seq3 Seqd

the right. The rest of the proposals (Li, Li with nose fea-
ture, and KFv3) perform well in this sequence. Figure 16
shows other cases but with BIWT dataset using sequence
24. Both approaches based on Li (first two images at the
left) do not detect well the head when it is looking a lit-
tle to the upper right corner. The third figure shows the
results with our KF-based method without optimization
(KFv1). Most of the undetected frames happen when the
target is looking upward. On the contrary, this does not
happen with the KFv3 because it improves the detection
rate in that orientation.

The previous results show how our approach improves
the HPE performance under challenging scenarios. In
some cases, other proposals provide a little more accurate

result, but in all cases, the KF-based approach is more sta-
ble, and it does not require a specific architecture (i.e.,
GPUs) with a reasonable computation time. This makes
the approach more reliable and robust.

4.4 Discussion

Our learning step uses the output of two state-of-
the-art HPE methods, e.g., Fanelli and Li, but several
proposals in Tables 3 and 4 outperform them. The
intuitive question is why we privilege those instead
of more accurate proposals. This can be answered by
observing Table 6 that summarizes some features of
the most relevant approaches. The proposals of Ahn,
Saeed, and Venturelli [24, 26, 27] are more accurate
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075 085
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Fig. 15 2D histogram of the missed detection distribution on sequence BIWI 14. Results using a Fanelli, b Li's approach, ¢ Li's proposal including of
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Fig. 16 2D histogram of the missed detection distribution on sequence BIWI 24. Results using a Li's approach, b Li's proposal including of nose
detection heuristic, and ¢ our KF-based method without optimization (KFv1) and d our KFv3 proposals

and faster, but they require the use a GPU card. This
makes them more expensive and complex to use in
embedded systems. The other proposals, e.g., [9, 12, 28],
require more computational time with high variance in
their estimate, i.e., [12] has a variance of 16 and 9.6° for
yaw and pitch, respectively.

Our proposal has a computational cost of ~ 10 fps,
which is reasonable for most applications. One character-
istic is that most of our proposal is highly parallelized, so
we can improve calculation times if necessary.

When comparing the results of each dataset, we observe
that in the simplest sequences, our proposal obtains
results with equivalent precision. Also, the results with the
most complex sequences (i.e., ICU dataset) show that our
proposal has a better performance both in accuracy and
missed detection percentage.

If we compare the three versions of KF, we observe how
the versions with global optimization (KFv2 and KFv3),
described in Section 3.2.3, improve the stability of the per-
formance in comparison with the KFvl. The accuracy is
further improved in KFv3 by including (1) the descriptor
distance as weighting factors in the optimization process
and (2) an adaptive model to the target’s face.

We give a qualitative evaluation of the tested methods
in Table 7, based on our personal experience. Here, we
grade them according to our impression in each aspect as
follows: (+) low, (++) good, and (+++) excellent.

As shown in the first row, Li does not handle well fast
motions. In this case, blurry images affect directly two
appearance-based aspects of the proposal: the 2D (eye)
landmark detector and the color-based k-means, which
remove no-face correspondences of the ICP algorithm.
This makes it unstable in fast situation, and therefore,
it gives a low detection rate. On the other hand, it can
detect poses in a wide range of orientations with a good
precision.

Li’s proposal improves when more features are available.
The inclusion of the nose feature enhances the accuracy
of the estimations and reduces the missed detection rate.
This is because the 3D feature is based on depth infor-
mation, which is not much affected by blurry images.

In general, the orientation range and accuracy are bet-
ter than the classic implementation but still need more
improvement.

Fanelli’s approach deals better with fast motions because
depth information is not distorted by movement. In con-
trast, it has a more restricted detection range because the
nose tip, the key element of Fanelli's method, is undis-
tinguished at images of full profile. In other words, there
is not enough evidence to distinguish the nose tip from
the edge of the face. The rest of the time, it has no prob-
lem detecting a pose in short time and this is why Li used
this method to initialize its proposal. Nevertheless, the
accuracy of the results is low.

In most of the fast motions, our proposal could find
enough features to estimate the pose. Also, it estimates the
pose even with targets at full profile (i.e., looking to the left
of right) with an excellent orientation range. From these
two aspects, it has less problems detecting the target most
of the time with competitive results to those in the state of
the art.

From the results, we observe how the use of KF-
based approach improves the estimation, and those are

Table 6 Evaluation of computational cost of each pose proposals

Method Time (ms per frame) Architecture
Kazemi and Sullivan [6]* 12041 CPU
Fanelli et al. [4]* 20.1+£2 CPU
Lietal [10]* 624+£5 CPU
Li Nose* 642 +5 CPU
KFv3* 899+ 10 CPU
Papazov etal. [12]+ 122 CPU
Yang et al. [28]" ~ 100 CPU
Yuetal [9]F ~ 250 CPU
Ahn et al. [24]t 0.98 GPU
Venturelli et al. [26]1 10 GPU
Saeed and Al-Hamadi [27]F > 45 GPU

Results with the best performances are presented in bold
*Time that we calculated
FResults taken from author's papers
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Table 7 Evaluation summary of each head pose estimator

Method Fast motion Orient.range Detection rate  Precision
Lietal. [10] + ++ + ++
Li Nose ++ ++ ++ ++
Fanellietal. [4] +++ + +++ +
KFv3 ++ +++ +++ ++

Results with the best performances are presented in bold

enhanced by applying the global optimization process.
The inclusion of the descriptor weights (KFv3) helps to
estimate more robustly the pose because it reduces the
importance of weak correspondences, which may not be
a good match (great distance between descriptors), and
prioritizes strong matches.

5 Conclusion and future work

This paper has presented a framework for HPE based on
key frames, which includes information of appearance,
shape head pose hypothesis. This includes an original
offline learning proposal consisting of two stages: (1)
an automatic KF learning step and (2) an original post-
processing step that minimize globally the error between
KFs and the 3D face model, enhancing the accuracy and
consistency of the KF set. We evaluated this person-
specific approach in two public benchmarks, and we
have shown that the use of the KF provides robust esti-
mates for a wide range of orientations in reasonable time.
Also, we presented a more challenging dataset with com-
plex behaviors that includes self-occlusions, fast motion,
change of the head position, and extreme head orienta-
tion. The results in this dataset showed that our approach
can estimate a pose even in complex situations, contrarily
to other approaches. At the same time, we have shown that
our proposal is more stable than others and with a gain in
precision as the complexity of the datasets increases.

We have compared against several works and consid-
ered classic benchmark datasets. Regarding the bench-
marked datasets, the results have shown how the KF-
based approach, learned from weaker estimation algo-
rithms, provides good performance and how those are
enhanced after optimization. Furthermore, our approach
maintains a competitive CPU cost with respect to other
applications.

A natural investigation track is to relax the offline stage
(to leave a mostly online system) by learning only a couple
of KFs of the target, with neutral pose and looking into the
camera direction. Then, we perform our pose estimation
algorithm where we learn more KFs as soon as new esti-
mates are available. The set of KF is updated as described
in Section 3.3.2.

Abbreviations

3DMFM: 3D morphable face model; BFM: Basel face model; CNN:
Convolutional neural network; FPFH: Fast Point Feature Histogram; GPU:
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