
RESEARCH Open Access

Code fusion information-hiding algorithm
based on PE file function migration
Zuwei Tian* and Hengfu Yang

* Correspondence: 35568625@qq.
com
School of Information Science and
Engineering, Hunan First Normal
University, 410205 Changsha, China

Abstract

PE (portable executable) file has the characteristics of diversity, uncertainty of file size,
complexity of file structure, and singleness of file format, which make it easy to be a
carrier of information hiding, especially for that of large hiding capacity. This paper
proposes an information-hiding algorithm based on PE file function migration, which
utilizes disassembly engine to disassemble code section of PE file, processes function
recognition, and shifts the whole codes of system or user-defined functions to the
last section of PE file. Then it hides information in the original code space. The
hidden information is combined with the main functions of the PE file, and the
hidden information is coupled with the key codes of the program, which further
enhances the concealment performance and anti-attack capability of the system.

Keywords: Information hiding, PE file, Function migration, Code fusion

1 Introduction
PE file is a standard format for executable file in Windows environment, which is one

of the most important software formats in the Internet. The code section is the most

important section in the PE file, which is used to store the executable instruction

codes, including user-defined function code and static link library function code, which

is the main part of the PE file. Combining hidden information with program instruc-

tion code can effectively improve the concealment of information hiding algorithm

based on executable file.

At present, the PE-based information-hiding algorithms are divided into the follow-

ing three categories: One is the information hiding method based on the PE file redun-

dant space [1–20]. The second is the information hiding method based on PE file data

resources [21–23], the third is the information-hiding method based on PE file import

table [24–28]. The existing PE file hiding algorithms mainly exist the following short-

comings: First, the redundant space of PE files is open to people familiar with the PE

file format, and there are powerful PE file analysis tools on the market, such as Stud_

PE and PE Explorer Lord PE. Obviously, because of the use of the redundant space in-

herent in PE files for information hiding, security is not good. The second is that the

hidden space is too concentrated, the hidden information is easily exposed, and the

concealment is poor. The third is the structure of the PE file is transparent; the use of

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

EURASIP Journal on Image
and Video Processing

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2
https://doi.org/10.1186/s13640-020-00541-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-020-00541-3&domain=pdf
http://orcid.org/0000-0002-9555-8079
mailto:35568625@qq.com
mailto:35568625@qq.com
http://creativecommons.org/licenses/by/4.0/

PE files structure characteristics to hide information, once the transformation of its

structural characteristics, hidden information will be destroyed. Fourth, the hidden in-

formation is not combined with the program function, there is no close association

with the program itself, the hidden information and program instruction code is low

coupling, the ability to resist deletion, modification, filing, and other attacks is poor

[29–31].

This paper proposes a highly concealed information-hiding algorithm based on the

migration of PE file code section functions, which enhances concealment and improve

the system’s anti-attack capability, on the basis of fully analyzing the characteristics of

PE file code section. First, through the disassembling engine disassemble PE file code

section, the function recognition algorithm is used to identify the standard functions in

the program, and then the function modules in the program are migrated to the redun-

dant space or the last section of the code section. In this way, the hidden information

and program instruction code closely combined, greatly improve the system’s conceal-

ment and anti-attack ability.

The rest of the paper is organized as follows: In section 2 analyses the structure of

the PE file code section. Section 3 describes the proposed method. Section 4 is experi-

mental results and discussion. Finally, section 5 summarizes the paper.

2 PE file code section anatomy
2.1 Key data structures of code section

The section name of the code section in the PE file is generally .code (or .txt, which is

related to the compiler), and its property value is 0x60000020, indicates that the section

is executable and readable, and contains instruction codes, which is generally located

next to the section table. It is the first section of the PE file, in front of other sections.

The data structure related to the code section is VirtualSize field, VirtualAddress field,

PointerToRawData field, and SizeOfRawData field.

When the PE file is loaded, the loader of the Windows operating system continuously

reads SizeOfRawData bytes of data, the entire section of code data, from the PE file off-

set to the position of PointerToRawData, and maps it to memory.

2.2 Data organization of code section

The field value PointerToRawData in the code section table indicates the offset address

of the code section in the disk file, and SizeOfRawData indicates the amount of disk

space taken up by the code section after the file is aligned, as the disk file space is gen-

erally aligned by 512 bytes. The space that the code section actually occupies (the value

of SizeOfRawData) is larger than the value of VirtualSize (unaligned), thus creating the

redundant space of the code section, and the difference between the value of SizeO-

fRawData and VirtualSize is the size of the redundant space of the code section. In the

code section, the redundant space is filled with 0. Setting Sr as the size of the redundant

space for the section:

Sr ¼ SizeOfRawData −VirtualSize ð2:1Þ

Figure 1 is the code section structure of the PE file generated by the VC++ compiler.

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2 Page 2 of 12

2.3 Determination of the entry address of program

In general, when the PE file is loaded by the Windows operating system loader, the

code section is loaded onto the 0x00401000 address (the value of ImageBase plus the

value of VirtualAddress), AddressEntryOfPoint of the HEADER32 structure indicates

the address of the program executable code entry point, that is, the RVA of the first in-

struction to be executed in the PE file, and its value plus the base address in the PE file

memory, is the starting virtual address of the entry function of the program when it

runs. For example, the AddressEntryEntryPoint value of a PE file is 0x0001120D, the

entry address of the program is 0x0041120D. Some of the programs that insert code

into PE files are to modify the address here to point to their own code, and then jump

back after being executed.

The IAT is located before the module entry point in the .text segment (IAT

table is actually a collection of jump instructions). When the Windows loader loads

the executable program into the address space of the process, the actual memory

address for each import function is determined, and the IAT table is also

determined.

3 Proposed method
In this section, we depict the proposed information-hiding scheme using PE file func-

tion migration, and then it hides information in the original code space.

There is usually at least a code section in a PE file, which holds executable code. The

function of a program is achieved by executing instructions in a code section. There-

fore, hiding information in the PE file code section by combining hidden information

with instruction code, which can effectively improve concealment and anti-offensive.

But directly hiding the information in the PE file code section, some of the hidden in-

formation will be converted into some extremely abnormal instructions when being

disassembled, which is easy to arouse the suspicion of attackers. In order to improve

the resistance to disassembly and other reverse analysis tools, we will convert hidden

information to instructions, disguised as a function (functionalization), embedded into

the code section. The hidden information and PE file executable code are integrated,

which improves the concealment. At the same time, in order to solve the problem of

over-concentration of hidden information, a method of migrating one or more func-

tionally independent modules (functions) in the executable code of PE files to redun-

dant spaces in the code section is proposed, and the information is hidden between the

normal function instruction code, so that the hidden information and PE file executable

Fig. 1 Code section structure of PE file

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2 Page 3 of 12

code are closely integrated. It further enhances the concealment and security of the

system.

3.1 Disassembly algorithm

The principle of disassembly software is to first identify the format of the executable

file, distinguish the code and data, determine the file offset address at the entry point of

the code section, then utilize the knowledge of lexical analysis and grammar analysis to

analyze, decode according to the instruction format of the X86 architecture, and finally

output the corresponding assembly instructions.

Disassembly technology can be divided into static disassembly and dynamic disas-

sembly. Static disassembly refers to the conversion of the target program into the

corresponding assembly language program without executing the target program.

Dynamic disassembly refers to tracking the execution of the target program, in the

process of execution disassembling the target program. One advantage of static dis-

assembly is that the entire target program can be processed at once, while dynamic

disassembling can only handle the parts to which the target program is executed.

Currently, the commonly used disassembly tool software are IDA Pro, Ollydbg,

Win32Dasm, SoftICE, Windbg, etc.

3.2 Design and implementation of disassembler

The role of the disassembling engine is to translate machine codes into assembly

instructions. Developing an excellent disassembly engine requires an in-depth un-

derstanding of machine instruction coding for Intel’s X86 architecture, with a long

development cycle. Common open-source disassembling engines are udis86, Pro-

view, ade, xde, etc. [28]. OllyDbg’s own disassembling engine is also relatively

powerful, but its instruction set is incomplete and does not support MMX and

SSE well.

We use Udis86 to build a disassembler, the main steps of which are as follows:

Step 1: Deploy the code and header files of the Udis86 disassembling engine to the

system or directly into the project, refer to the “udis86.h” header file.

Step 2: Define an Udis86 object (ud_t ud_obj), set disassembly mode to 32 bits, set the

instruction format for intel instruction format, set the start address of the first

instruction, set the input source, which can be memory, or use ud_set_input_ file is

set directly to file input and other initialization work.

Step 3: Looping, disassembling all the instructions in the input source.

Step 4: To carry out instruction analysis.

Step 5: Record the results of instruction analysis.

The result of disassembly is the same as that of OllyDbg using the built disassembler

to disassemble the writing board program of the system (write.exe). The high-quality

disassembler is the basis for further function recognition.

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2 Page 4 of 12

3.3 Function identification and location

In the process of application programming, modular programming is usually

adopted. According to the top-down method, the program is broken down into

many functional independent modules, each independent module is implemented

by a function. In order to implement some complex functions, a large number of

library functions are provided by the system, including static link library functions

and dynamic link library functions. Static link library functions include system li-

brary functions and dedicated library functions. During compiling and linking, just

like the user-defined function, the code will be linked to the target code of the

executable program. For the dynamic link library function called, the target code is

not in the executable file but in a DLL file. According to statistics, library function

code accounts for an average of 50-90% of the target code in programs written by

advanced languages [32].

In order to further improve concealment and integrate hidden information with the

program’s key function code, we propose an information-hiding algorithm for migrat-

ing function code, and the recognition and location of functions is the basis for this

algorithm.

After disassembling the target program code section, according to the compil-

ation principle and the specification of the function call, the starting address of the

function module is generally the value of the address expression after the CALL

instruction, that is, if there is an instruction CALL ADDR in the assembly code,

there must be a function module with ADDR as the starting address. The function

module ends with the RET instruction. Since there may be multiple exits in the

function module (multiple RET instructions), according to the characteristics of the

function, the end address of the function can be determined by the following

algorithm:

Function: Determine the end address of function module.

Input: Starting address of the function module (F_begin).

Output: End address of the function module (F_end).

Through the address expression after CALL instruction and the above algorithm, the

start address and the end address of a function module can be determined, and the

length of the function instruction code can be calculated.

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2 Page 5 of 12

Using this algorithm to test the function of notepad.exe and thunder program

thunder.exe, the experiment shows that 59 functions can be effectively identified

from “notepad.exe” program, and 4086 functions can be effectively identified from

“thunder.exe” program. It can meet the needs of migration function well (Table 1).

Because the purpose of function recognition in our system is to migrate function

to implement information hiding, we have simplified the function recognition algo-

rithm, for some special functions and functions with short code, will be ignored in

the algorithm, which does not affect the effectiveness of the algorithm and infor-

mation hiding. If the amount of information to hide is large, you can hide the in-

formation in the extended function area by extending the length of the migrated

function, or, after the information to be hidden is functionalized, stored in the last

section of the PE file, scattered between the two migrated functions.

3.4 Function migration

In order to closely combine the hidden information with the instruction code of

the executable, we propose an information-hiding algorithm for function migration

that hides the information in the storage area of the original function module by

migrating the function module in the target program to the last section. Function

recognition is the basis for function migration, locating function by function recog-

nition, and determining the file addresses of function (including function start ad-

dress and end address) in disk file, relative virtual addresses and length of

function, then correcting the relevant instructions in the function module and

overwriting the relevant property values of the PE file. The migration of functions

can be implemented. Because the target program code section at the time of the

link holds the static library function code that is called first, followed by the code

for the user-defined function. In order to improve concealment, user-defined func-

tions are preferred when selecting the migrated functions.

Table 1 Example of function recognition

Filename File size
(bytes)

Function sequence
number

Function size
(bytes)

Function
address range

Relative virtual
address range

notepad.exe 5632 1 126 D5D-DDA 195D-19DA

2 85 0FE8-103C 1BE8-1C3C

3 394 1173-12FC 1D73-1EFC

4 346 36F9-3852 42F9-445A

5 496 4D49-4F38 594C-5B3B

… … … …

thunder.exe 1808176 1 203 1C36-1D00 1C36-1D00

2 152 1D01-1D98 1D01-1D98

3 1648 21D5-2844 21D5-2844

4 206 2FE4-30B1 2FE4-30B1

5 218 359F-3678 359F-3678

… … … …

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2 Page 6 of 12

Let OFFSETold and OFFSETnew represent original offset and new offset of the call in-

struction, respectively. RVAold indicates the relative virtual address before the CALL in-

struction being migrated. RVAnew indicates the relative virtual address after the being

migrated. SECTIONold and SECTIONnew represent the actual size of the section before

and after the migrated function (VirtualSize), and len(P) represents the length of the P

function instruction code, respectively.

The main steps of the function migration algorithm are as follows:

Step 1: The function is located by the function recognition algorithm, and the selected

function module to be migrated is read into memory.

Step 2: Locate at the end of the last section (the PointerToRawData value of the

last section plus the value of the actual size of the last section, VirtualSize), write

the starting address of the function to be migrated (located through that address

when extracting information), and then write the instruction codes of the function

to be migrated.

Step 3: Fix the address value in the CALL instruction inside the function after being

migrated.

OFFSETnew ¼ OFFSETold þ RVAold − RVAnew ð3:1Þ

Step 4: Fix the size of the section and align the SizeOfRawData value of the section by

FileAlignment.

SECTIONnewsize ¼ SECTIONoldsize þ len Pð Þ þ 4 ð3:2Þ

Step 5: Fix the PE file mirror size, mirror size is aligned according to the value of

SectionAlignment.

Step 6: Change the section property to executable.

Step 7: Set the relocation table size to 0.

Step 8: Write a jump instruction at the beginning of the original function, which

jumps to the start address of the migrated function.

It ensures that the function migration does not affect the function of the pro-

gram through function migration and modifying the migrated function, so that the

area occupied by the original function module can be used for information hiding,

and the hidden information is tightly coupled with the key code of the executable

program, which can effectively improve the concealment and security of the system

(Fig. 2).

3.5 Information-hiding algorithm

After function recognition and function migration are completed, the information hid-

ing is relatively simple, and its main steps are described below:

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2 Page 7 of 12

Input: Original carrier PE file P, information to be hidden M, public key pk.

Output: Hidden PE P′ file.

Step 1: Using the public key pk and asymmetric encryption algorithm RSA, the hidden

information M is encrypted and the encrypted information M' = Encrypt (pk, M) is

obtained.

Step 2: The code section of the original carrier PE file P is disassembled by using the

disassembling engine.

Step 3: Use the function recognition algorithm to recognize function of the assembly

code produced by step 2, record the start address and end address, length of each

identified function, count the sum of the number of functions and function lengths of

all the identified functions, and sort the number by the size of the function by the

starting address.

Step 4: According to the length of the information to be hidden, move a function from

small to large of function number to the end of the last section, and write the first 4

bytes of the start address of the function module to the original function address after

migration.

Step 5: Write a jump instruction at the beginning of the original function, jump to the

beginning of the migrated function, and then write the length of the hidden

information and the hidden information.

Step 6: Determine whether the information is all hidden, if it is to turn to step 7,

otherwise turn to step 4 repeat the same operation.

Step 7: Modify the size of the PE file section, the size of the mirror, and change the

properties of the section to be executable.

3.6 Information extraction algorithm

Input: A PE file P' with hidden information, private key sk.

Output: Hidden information M.

Fig. 2 Example of information hiding by function migration

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2 Page 8 of 12

Step 1: Move 4 bytes forward from the end of the last section and record the current

pointer position SectionAddr.

Step 2: With SectionAddr as the starting address, read the contents of 4 cells as the

address value Adrr, and determine whether the address is a JMP instruction for the

unit where Adrr is located, or then the value of SectionAddr minus 1, continue to

scan forward.

Step 3: If the jump instruction jumps exactly to the location where SectionAddr 4

is located, then the location of SectionAddr 4 is the post-migration function, and

the starting address of the original function is in the two-word unit where Sectio-

nAddr is located, and then the transfer step 4, Otherwise, the value of Section

Addr is reduced by 1, read 4 bytes in a row, and continue to scan forward.

Step 4: Read the starting address of the original function from the two-word unit

where SectionAddr is located, skip the JMP instruction, read the length of the

hidden information Len, and begin to extract hidden pieces of information that

are len bytes in length.

Step 5: Determine whether the value of SectionAddr points to the beginning of the

last section, and if so, the reverse scan ends, otherwise the value of SectionAddr

is reduced by 4 and then transferred to step 2.

Step 6: The extracted pieces of M' secret information are reversed into secret

information.

Step 7: Using the private key sk and asymmetric encryption algorithm RSA, the

watermark information M' is decrypted. The decrypted information M =

DeEncrypt(sk, M’) is obtained (Where M is plaintext).

4 Experimental results and discussion
4.1 Results of the experiment

The PE files used in the experiment consist of three different types of files: some

from the windows operating system’s own applications, located in the windows sys-

tem32 folder, such as notepad.exe, write.exe, winmine.exe, etc. Part of it is a com-

mon desktop application for users, such as qq.exe, thunder.exe, winRAR, 360sd.exe,

and part of the application written for yourself. From which 200 PE files are ran-

domly selected as test programs for experimentation.

In the experiment, the watermark information is embedded in all functions iden-

tifiable in each tester. The results of the experiment are as follows:

Table 2 Embedded capacity and bit rate of function migration methods

Filename File length
(bytes)

Number of identified
functions

Function (average
length)

Total hidden
capacity (bytes)

Bit
rate

write.exe 5,632 4 52.75 211 3.7464

notepad.exe 66,560 59 220.7966 13027 19.5718

telnet.exe 85,504 111 188.4505 20918 24.4644

winmine.exe 119,808 67 98.25373 6583 5.4946

qq.exe 99,744 40 142.525 5701 5.7156

360sd.exe 1,697,400 2805 193.3323 542297 31.9487

thunder.exe 1,808,176 4086 132.0952 539741 29.8500

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2 Page 9 of 12

As can be seen from Table 2, in general, the larger the file, the stronger the function,

the more functions are recognized, the greater the hidden capacity.

5 Discussion
5.1 Covert analysis

The function migration method suggested in this paper moves the recognized function

module to the last section to hide information in the original function code area. Using

the services provided by the www.virscan.org website, the hidden PE file upload server

will be hidden for virus scanning, the results show that the file is normal (the website

provides up to 37 types of antivirus engines). Ability to resist the detection of common

anti-virus software and the analysis of static reverse analysis tools.

5.2 Embedded capacity

The embedded capacity of a normal function migration method is related to the size of

the PE file and the number of static library functions called in the file. In general, the

larger the PE file, the more complex the function, the more static library functions are

called, the more functions that can be identified and can be migrated, and the greater

the embedded capacity.

5.3 Anti-filling attack experiment

Hiding information in the redundant space of the PE file, there are insufficient gaps in

the hidden information that is too centralized, hidden location is easy to expose, hidden

capacity is small, and the hidden information will be destroyed by filling the known re-

dundant space with full 0 or full 1. Extending the last section of the PE file or adding a

section to hide information, while solving the problem of hidden capacity, but as with

the use of redundant space for information hiding, there is an over-concentration of in-

formation, hidden location disclosure problems, and because there is no integration

with the program's main functional code, Using a full 0 or full 1 to fill forward from

the end of the last section will break the hidden information, but the program will still

function properly.

The function-based method is to hide the information in the original function code

area by migrating the function code of the recognized system function or user-defined

function to the last section of the PE file. Because the information is hidden in the code

area of the original function module of the PE file, when using full 0 or full 1 to fill the

attack forward from the end of the last section, the hidden information is not broken,

while the fill attack will destroy the original function code that is migrated, resulting in

the program not being able to run. Take notepad.exe, a notepad.exe that comes with

the Windows operating system, for example, after using the function migration method

to hide the information, the program can function properly and extract the hidden

information.

The traditional method is to hide the secret information in the redundant space, data

resource segment, and import table of PE file. There are some shortcomings, such as

the known redundant space, the too concentrated hidden space, the easy destruction of

hidden information, and the loose association between the hidden information and the

key code of the program. Compared with the previous methods, the method proposed

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2 Page 10 of 12

http://www.virscan.org

in this paper overcomes their shortcomings. Our method is to fuse the secret informa-

tion with the instruction code of the program through function migration and store it

in the code segment. The hidden information is scattered, and the adversary is difficult

to determine the location of the secret information and instruction code, and the hid-

den information is coupled with the key code of the program. Once the secret informa-

tion in the program is destroyed, the program will not be executed correctly. So, it is

more secure and capable of resisting attacks than the previous methods.

6 Conclusion and future work
In this paper, a large-capacity information hiding algorithm based on function migra-

tion is presented. The PE file code section is disassembled through the disassembling

engine processes functions recognition, and shifts the codes of recognized function.

The design implements an algorithm that hides information by migrating the functional

code of an identified static library function or user-defined function to the last section

of the PE file. In this way, the hidden information is combined with the main functional

code of the PE file, and the hidden information is coupled with the key code of the PE

file, which further enhances the concealment and anti-attack of the system. The theor-

etical analysis and experimental results show that, compared with similar algorithms,

the proposed algorithm integrates the information to be hidden with the program in-

struction code through function migration, and the algorithm hides the capacity and

concealment, strong ability to resist attacks.

Abbreviations
PE: Portable executable; IAT: Import address table; RVA: Relative virtual address; DLL: Dynamic link library;
MMX: Multimedia extensions; SSE: Streaming SIMD extensions

Acknowledgements
Thanks to the anonymous reviewers for their constructive suggestions to help improving this paper.

Authors’ contributions
Our contributions in this paper were that the first author (Zuwei Tian) participated in the designing of the scheme and
drafted the manuscript. The second author (Hengfu Yang) carried out code design, the experiments and participated
in designing of the scheme. All authors read and approved the final manuscript.

Authors’ information
Zuwei Tian received the B.E. degree in computer engineering from Xiangtan University, China, and the master’s
degree of computer science from National Defense Science and Technology University, China. He received the Ph.D.
degree from Hunan University, China. He is a computer science professor of Hunan First Normal University, China. He
leads a team of researchers and students in the areas of Information Security, such as information hiding. He has
published more than 20 journals articles and his research has been funded by Natural Science Foundation Committee
of China.
Hengfu Yang received the B.E. degree in computer engineering from Xiangtan University, China, and the master's
degree of computer science from GuiZhou University, China. He received the Ph.D. degree from Hunan University,
China. He is a computer science professor of Hunan First Normal University, China. His research interests include
information hiding, image processing, and multimedia security.

Funding
This work is supported in part by the National Natural Science Foundation of China (61373132, 61872408), the Key
Laboratory of informationization technology for basic education in Hunan province (2015TP1017), Hunan provincial
higher education reform research project (2012[528]), Project of research study and innovative experiment for college
students in Hunan Province(2017[873]).

Availability of data and materials
The datasets used and analyzed during the current study are available from
the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2 Page 11 of 12

Received: 24 April 2020 Accepted: 11 November 2020

References
1. Z. Wu, S. Feng, J. Ma, Information hiding scheme and implementation of PE file. Comput. Eng. Appl. 41(27), 148–150

(2005)
2. R. El-Khalil, A.D. Keromytis, Hiding information in program binaries, Proc of the 6th International Conference on

Information and Communications Security (Springer, Berlin, 2004), pp. 287–291
3. R.K. Tiwari, G. Sahoo, A novel steganographic methodology for high capacity data hiding in executable files. Int. J.

Internet Technol. Secured Trans. 3(2), 210–222 (2011)
4. S.B. Che, S. Jin, G.W. Ling, in International Conference on Computer Science and Education (ICCSE10). Software watermark

research based on portable execute file (Hefei, 2010), pp. 1367–1372
5. Z. Sha, H. Jiang, A. Xuan, in the 3rd International Conference on Genetic and Evolutionary Computing (WGEC09). Software

watermarking algorithm by coefficients of equation (Guilin, 2009), pp. 410–413
6. X. Wang, Y. Wang, X. Zhang, et al., Research on PE file software watermark against similarity attack. Netw. Secur.

Technol. Appl., 82–84 (2007)
7. A.A. Zaidan, B.B. Zaidan, A.W. Naji, et al., in International Conference on Advanced Management Science (ICAMS09).

Approved undetectable-antivirus steganography for multimedia information in PE-file (Singapore, 2009), pp. 437–441
8. H. Alanazi, H.A. Jalab, A.A. Zaidan, et al., New framework of hidden data with in non multimedia file. Int. J. Comput.

Netw. Secur. 1, 46–53 (2010)
9. A.W. Naji, A.A. Zaidan, B.B. Zaidan, Challenges of hidden data in the unused area two within executable files. J. Comput.

Sci. 1, 890–896 (2009)
10. A.A. Zaidan, B.B. Zaidan, A.W. Naji, et al., in International Conference on Information management and engineering (ICIME09).

Securing cover-file of hidden data using statistical technique and AES encryption algorithm (Malaysia, 2009), pp. 35–40
11. A. Haveliya, A new approach for secret concealing in executable file. Int. J. Eng. Res. Appl. 2(2), 1672–1674 (2012)
12. B.B. Zaidan, A.A. Zaidan, F. Othman, et al., in Proceeding of the International Conference on Cryptography, Coding and

Information Security. Novel approach of hidden data in the unused area 1 within exe files using computation between
cryptography and steganography (Paris, 2009), pp. 1–22

13. M.R. Islam, A.W. Naji, A.A. Zaidan, et al., New system for secure cover file of hidden data in the image page within
executable file using statistical steganography techniques. Int. J. Comput. Sci. Inf. Secur. 7(1), 273–279 (2009)

14. B.B. Zaidan, A.A. Zaidan, F. Othman, New technique of hidden data in PE-file with in unused area one. Int. J. Comput.
Electrical Eng. (IJCEE) 1(5), 669–678 (2009)

15. A.W. Naji, A.A. Zaidan, B.B. Zaidan, et al., New approach of hidden data in the portable executable file without change
the size of carrier file using distortion techniques. Int. J. Comput. Sci. Netw. Secur. 9(7), 218–224 (2009)

16. A.A. Zaidan, B.B. Zaidan, A.J. Hamid, A new system for hiding data within (unused area two + image page) of portable
executable file using statistical technique and advance encryption standared. Int. J. Comput. Theory Eng. 10(5), 125–131 (2010)

17. D. Shin, Y. Kim, K. Byun, et al., in Proceedings of the 6th Australian Digital Forensics Conference. Data hiding in windows
executable files (Perth, 2008), pp. 1–8

18. L. Qian, F. Yong, D. Tan, Z. Changshan, Research on information hiding technology based on unlimited capacity of PE
file. Comput. Appl. Res. 28(7), 2758–2760 (2011)

19. W. Wei, K. Liu, X. Wan, High capacity information hiding based on PE file format. J. Nanjing Univ. Sci. Technol. 39(01),
45–49 (2015)

20. Y. Li, X. Shi, Research on PE file information hiding technology. Netw. Secur. Technol. Appl. (11), 51–52 (2017)
21. X. Xu, X. Xu, H. Liang, et al., Information hiding research and scheme implementation of PE file resource section.

Comput. Appl. 27(3), 621–623 (2007)
22. D. Qingfeng, Y. Wang, Z. Kaize, W. Xi, Information hiding scheme based on PE file resource data. Comput. Eng. 35(13),

128–130 (2009)
23. Z. Tian, Y. Li, L. Yang, Research on PE file information hiding technology based on import table migration. Comput. Sci.

43(01), 207–210 (2016)
24. J. Xu, J.F. Li, Y.L. Ye, et al., An information hiding algorithm based on bitmap resource of portable executable file. J.

Electron. Sci. Technol., 181–184 (2012)
25. D. Qingfeng, W. Yanbo, Z. Xiongwei, Z. Kaize, Spread spectrum software watermarking scheme based on the number of

import function references. Comput. Res. Dev. 46(supply), 88–92 (2009)
26. F. Long, J. Liu, X. Yuan, A software watermark for transforming the structure of PE file import table. Comput. Appl. 30(1),

217–219 (2010)
27. A.P. Namanya, I.U. Awan, J.P. Disso, M. Younas, Similarity hash based scoring of portable executable files for efficient

malware detection in IoT. Future Generation Computer Systems (2019)
28. S.L. Shiva Darshan, C.D. Jaidhar, Performance evaluation of filter-based feature selection techniques in classifying

portable executable files. Proc. Comput. Sci. 2018, 125 (2018)
29. X. Wang, J. Jianming, Z. Shujing, B. Liang, A fair blind ignature scheme to revoke malicious vehicles in VANETs,

computers. Mater. Continua 58(1), 249–262 (2019)
30. J. Wang, H. Wang, J. Li, X. Luo, Y.-Q. Shi, S. Kr, Jha, Detecting double JPEG compressed color images with the same

quantization matrix in spherical coordinates. IEEE Trans. CSVT (2019). https://doi.org/10.1109/TCSVT
31. J. Wang, T. Li, X. Luo, Y.-Q. Shi, S. Jha, Identifying computer generated images based on quaternion central moments in

color quaternion wavelet domain. IEEE Trans. CSVT 29(9), 2775–2785 (2018)
32. K. Chen, Z. Liu, Current situation and progress on decompilation research. Comput. Sci. 28(5), 113–115 (2001)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tian and Yang EURASIP Journal on Image and Video Processing (2021) 2021:2 Page 12 of 12

https://doi.org/10.1109/TCSVT

	Abstract
	Introduction
	PE file code section anatomy
	Key data structures of code section
	Data organization of code section
	Determination of the entry address of program

	Proposed method
	Disassembly algorithm
	Design and implementation of disassembler
	Function identification and location
	Function migration
	Information-hiding algorithm
	Information extraction algorithm

	Experimental results and discussion
	Results of the experiment

	Discussion
	Covert analysis
	Embedded capacity
	Anti-filling attack experiment

	Conclusion and future work
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

