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Abstract

A high-quality underwater image is essential to many industrial and academic applications
in the field of image processing and analysis. Unfortunately, underwater images frequently
demonstrate poor visual quality of low contrast, blurring, darkness, and color diminishing.
This paper develops a new underwater image restoration framework that consists of four
major phases: color correction, local contrast enhancement, haze diminution, and global
contrast enhancement. A self-adaptive mechanism is designed to guide the image to
either processing route based on a red deficiency measure. In the color correction phase,
the histogram in each RGB channel is transformed for balancing the image color. An
adaptive histogram equalization method is exploited to enhance the local contrast in the
CIE-Lab color space. The dark channel prior haze removal scheme is modified for dehazing
in the haze diminution phase. Finally, a histogram stretching method is applied in the HSI
color space to make the image more natural. A wide variety of underwater images with
various scenarios were employed to evaluate this new restoration algorithm. Experimental
results demonstrated the effectiveness of our image restoration scheme as compared with
state-of-the-art methods. It was suggested that our framework dramatically eliminated the
haze and improved visual interpretation of underwater images.

Keywords: Underwater image restoration, Image dehazing, Color correction, Haze removal,
Dark channel prior

1 Introduction
With recent advances in diversified technologies, high-end underwater remotely oper-

ated vehicles (ROVs), autonomous underwater vehicles (AUVs), and autonomous

underwater robots have been extensively employed for navigation, exploration, and

surveillance in underwater environments. These underwater vehicles and robots are

typically equipped with optical sensors for acquiring underwater images. From the per-

spective of academia and industry, underwater imaging is critical to various applica-

tions such as archaeology, mine and wreckage detection, marine biology, water fauna

identification and assessment, and offshore wind power turbine basis inspection [1, 2].

Nonetheless, the captured images are often degraded with blurring, darkness, low con-

trast, and color diminishing because of particular propagation properties of light
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absorption and scattering along with unstable environments of water turbidness and

light changing [3–5]. As such, it is fundamental and essential to increase the image

contrast, compensate the attenuation effect, and recover the image color for further

processing and analysis.

Underwater image restoration is challenging as the underwater environment condi-

tions are extremely unpredictable. A number of techniques have been proposed to in-

vestigate the characteristics of underwater images with the objective to acquire clear

and color-corrected scene while maintaining detailed textures that are meaningful to

the interpretation of the image. Existing underwater image enhancement and restor-

ation methods can be classified into five major categories: classical optics-based, forma-

tion model-based, haze removal-based, illumination estimation-based, and deep

learning-based approaches. In classical underwater optics, pioneering research was de-

veloped by Duntley [6], who initially defined the basic limitations of underwater im-

aging, which became the foundation of many subsequent works. One prominent

underwater image formation model was independently proposed by McGlamery [7]

and Jaffe [8]. McGlamery [7] established the theoretical foundations of the optical prop-

erties of the light propagation in water. Subsequently, Jaffe [8] improved the image for-

mation model, which was additionally applied to many subsea image acquisition

systems. Without involving a wide spectrum of imaging conditions, Trucco and

Olmos-Antillon [9] proposed a simplified version of the Jaffe–McGlamery model that

aimed to construct a self-tuning image restoration algorithm.

In addition to classical optics-based approaches, there are studies exploiting alterna-

tive image formation models for underwater image processing. For example, a general

framework was proposed to decouple different changes that were induced by illumin-

ation and motion in image intensity [10]. In the presence of scattering, two schemes for

the analysis of light stripe range scanning and photometric stereo were derived, and

more accurately recovered scenes and estimated properties of the medium were ob-

tained [4]. Another photogram-metric model based on a 3D optical ray tracing tech-

nique was introduced to delicately represent imaging systems with multiple refractions

and multi-lens configurations [11]. An enhancement scheme based on light attenuation

inversion after a color space contraction process with quaternions was investigated to

improve the contrast of the scene and the difference between the foreground and the

background [12]. By integrating the point spread function in the spatial domain and

the modulation transfer function in the frequency domain, the traditional restoration

method was extended to estimate optical properties in water while achieving automa-

tion [13]. Observing the relationship between the background color and the inherent

optical properties, a framework was proposed by deriving inherent optical properties

from the background color of underwater images for robust underwater image en-

hancement [14].

While some researchers addressed the color distortion problems [15–17], investiga-

tion in the third category concentrated on the issues of haze removal and contrast en-

hancement [15, 18–20]. In particular, Baseille et al. [21] developed an automatic

preprocessing algorithm to diminish underwater perturbations and raise image quality.

The approach consisted of several successive independent processes including homo-

morphic filtering, wavelet denoising, anisotropic filtering, histogram equalization, and

color model conversion. To improve the perception of underwater images, Iqbal et al.
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[22] proposed a slide stretching scheme for image enhancement. In their approach, the

contrast stretching was first applied to equalize the color contrast in RGB (red, green,

blue) images, followed by saturation and stretching in the HSI (hue, saturation, inten-

sity) model to boost the true color. Tarel and Hautiere [23] introduced a linear time

function method for visibility restoration that was capable of handling both color and

gray level images. Alternatively, He et al. [24] proposed a dark channel prior approach

to remove haze from a single image. The philosophy underlining this scheme was based

on the experimental observation that most local patches in haze-free images contain

pixels whose intensity is deeply dark in at least one color channel. This innovative in-

terpretation became the groundwork of many studies [20]. For example, Chao and

Wang [25] suggested an efficient restoration method to estimate the depth of the turbid

water using a dark channel prior based on water-free images.

Illumination estimation-based methods focus on the influences of light and color

on the intensity dispersion. Abdul Ghani and Mat Isa [26] proposed a stretching

process in the RGB and HSV (hue, saturation, value) color models for underwater

image quality enhancement. Based on the Rayleigh distribution, the authors re-

moved the intensities below 0.2% and above 99.8% in the histogram followed by

stretching the remaining intensities to the entire dynamic range for achieving bet-

ter contrast. The problems of generating over-dark and over-bright images were

adequately eliminated. Liu et al. [27] developed a deep sparse non-negative matrix

factorization method to estimate the illumination of an underwater image. After

the factorization process, the estimated illumination was applied to each patch of

the input image to obtain the final output. Peng and Cosman [28] investigated a

depth estimation method to restore underwater images based on image blurriness

and light absorption. The background light was estimated according to candidates

in blurry regions. Better restoration results were obtained in comparison to other

image formation model-based methods. Hou et al. [29] presented a hue preserving-

based underwater color image enhancement approach. A wavelet domain filtering

and a constrained histogram stretching methods were applied on the HSI and HSV

color models, respectively. By preserving the hue component, this strategy im-

proved image quality in terms of contrast, color rendition, non-uniform illumin-

ation, and denoising. Wang et al. [30] described an underwater image restoration

method based on adaptive attenuation-curve prior. The authors estimated the

transmission for each pixel according to its distribution on the curves followed by

the estimation of the attenuation factor for compensation.

Thanks to the recent advancement in artificial intelligence, deep learning-based

schemes have been introduced in underwater image restoration. Lu et al. [31] in-

vestigated an underwater image restoration method by transferring underwater style

image into a recovered style using a multiscale cycle generative adversarial net-

work. The dark channel prior was adopted to obtain the transmission map to im-

prove underwater image quality. A cycle-consistent adversarial network [32] was

employed to produce synthetic underwater images as training data. A residual

learning model associated with the very deep super resolution model was then pro-

posed for underwater image enhancement. Li et al. [33] suggested an underwater

image enhancement network trained on a self-collected underwater image enhance-

ment benchmark dataset. The proposed underwater image enhancement model,
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which was based on the convolutional neural network, demonstrated its advantages

and the generalization of the constructed dataset.

The ambition of this paper is in an attempt to develop a more robust and effective

underwater image restoration framework that can resolve the dilemmas of color dimin-

ishing, poor contrast, and vague perception simultaneously. Inspired by the success of

haze removal techniques in atmospheric images [15, 18, 24], the proposed approach

consists of four major phases of specific image processing schemes: color correction,

local contrast enhancement, haze diminution, and global contrast enhancement. Fur-

thermore, a red deficiency measure mechanism is uniquely introduced to navigate the

input image to either route with different phase arrangements. Experimented on a wide

variety of underwater images, our underwater image restoration algorithm is compared

with state-of-the-art methods in the literature. We will show that, based on the imaging

model through delicate design, this new underwater image restoration scheme outper-

formed the compared methods both qualitatively and quantitatively.

The remainder of the paper is organized as follows. Section 2 describes the proposed

image restoration framework including underwater imaging models and four phase

procedures. In Section 3, experimental results of our algorithm along with six other

methods are presented and discussed. Finally, in Section 4, we draw the conclusions

and summarize the contributions of the current work.

2 Methods
In our approach, the contaminated underwater image is considered as a linear combin-

ation of an intact image and a background light source, which is balanced by a medium

transmission coefficient function [9, 34]. Based on this imaging model, the intention is

to acquire the intact image given only one single degraded image without knowing a

priori knowledge of its imaging conditions in water. The major contributions of the

current work are summarized as follows:

1. An underwater image restoration scheme based on the integration of haze

diminution, histogram processing, and color correction techniques is uniquely

proposed.

2. Two routes with the same processing units but different sequence are designed to

handle diverse underwater images.

3. A self-adaptive mechanism based on a red deficiency measure is introduced to

automatically switch the processing route.

4. Extensive experiments in fair comparison with the state-of-the-art methods are

conducted to evaluate the proposed restoration framework.

2.1 Imaging model

According to the Jaffe-McGlamery model [7, 8], an underwater image can be repre-

sented by a linear superposition of three components: direct, forward-scatter, and back-

scatter components. As this model covers a wide variety of imaging conditions and

possesses complicated numerical techniques, it is not easy to be utilized for single

image restoration design. Alternatively, one popular image degradation model, which is

derived from the radiative transport equation, has been widely adopted for describing
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the formation of hazy images [35]. Conceived from this concept, we rather interpret

the formation model as objects being imaged in a realistic underwater environment.

Accordingly, the underwater image is divided into two elements: the direct transmis-

sion of light from objects and the transmission due to turbid water medium and float-

ing particles, which is also known as the veiling light. This can be mathematically

expressed as

I xð Þ ¼ J xð Þt xð Þ þ B 1 − t xð Þð Þ; ð1Þ

where the parameters are interpreted on the RGB color model, I(x) represents the input

image that is perceived from the camera as illustrated in Fig. 1a, J(x) represents the

scene radiance of the original image, t(x) represents the medium transmission coeffi-

cient along the ray that describes the portion of the light not backward scattered and

reaching the camera, and B represents the global background light source. The first

Fig. 1 Illustration of intermediate outputs. a Input image. b Local contrast-enhanced image. c Delicate
transmission map. d Haze-removed image. e Color-corrected image. f Global contrast-enhanced image
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term J(x)t(x) on the right-hand side of Eq. (1) is treated as direct attenuation, and the

second term B(1 − t(x)) indicates waterlight illumination. Moreover, the transmission

coefficient t(x) is an exponentially decayed function with

t xð Þ ¼ e − ηdp xð Þ; ð2Þ

where η represents the scattering coefficient in the water and dp(x) represents the scene

depth in terms of x.

Due to its shortest wavelength in visible light, the blue color travels the longest in

water. This makes underwater images dominated mostly by green to blue color as can

be realized from Fig. 1a. In consequence, the red brightness values in some underwater

images are relatively small, which is due to the absorption of light by water. To

recognize the degree of weakness in the red channel, the red channel intensity histo-

gram is first computed. If more than h% of the pixels, whose intensity in the red chan-

nel is below a threshold, say, P, it is treated as a red deficiency image; otherwise, it is

regarded as a color balance image. This red deficiency measure mechanism is mathem-

atically formulated as

I xð Þ ¼ red deficiency; if
N Pð Þ
LxLy

> h%

color balance; otherwise

8<
: ; ð3Þ

where Lx and Ly represents the width and length of the image I, respectively, and N(P)

represents the number of pixels whose intensity in the red channel is less than P with

N Pð Þ ¼ count Ir xð Þ < Pð Þ; ð4Þ

where Ir represents the red channel image. As illustrated in Fig. 2, the proposed ap-

proaches consist of four major phases: color correction, local contrast enhancement,

haze diminution, and global contrast enhancement. To accommodate the red deficiency

image, the phase of color correction followed by local contrast enhancement is applied

before performing haze diminution. Doing this eliminates the influence of the unbal-

anced color distribution, which leads to better recovery performance. On the other

hand, the color balance image is processed following the other route, which starts from

the local contrast enhancement phase. With different phase arrangements in either

route, this self-adaptive underwater image restoration algorithm possesses exactly the

same four phases, which are described in detail as follows.

2.2 Local contrast enhancement

To acquire better contrast, abundant local contrast enhancement techniques have

been developed in the field of image processing and analysis. Among these

methods, the contrast limited adaptive histogram equalization (CLAHE) scheme

[36, 37] is exclusively incorporated into the underwater image restoration algorithm

for boosting the local contrast of the image. Since direct operation on the RGB

color model will result in color distortion, the image is accordingly converted into

the CIE-Lab color model, which is specified by the International Commission on

Illumination (French Commission internationale de l'éclairage, hence its CIE initial-

ism). The CIE-Lab color space is designed to approximate human vision that
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aspires to perceptual uniformity. In the CIE-Lab system, the color space is visual-

ized as a three-dimensional space, where L represents lightness, and a along with b

represent the color-opponent dimensions. Specifically, the L component closely

matches human perception of lightness, the a component describes the red/green

coordinates with red at positive a values and green at negative a values, and the b

component describes the yellow/blue coordinates with yellow at positive b values

and blue at negative b values.

This adaptive scheme of local contrast enhancement first divides the L image into m × n

subregions, where a number of histograms are computed and analyzed. Each histogram

corresponds to a distinct subregion of the image, which is utilized to redistribute the light

values of the image via histogram equalization. An upper threshold called the clipping

limit is employed to restrict the intensity distribution. The clipping limit is defined as the

99% value of the maximum intensity in the histogram. Any intensity value larger than this

limit is removed and reassigned to the histogram through linear interpolation. To further

prevent over-amplification of noise arising from adaptive histogram equalization, a Ray-

leigh transformation function is derived to reshape the histogram. Consequently, it is ap-

propriate to enhance the local contrast of the image, which provokes more details. The

enhanced image is transformed back to the RGB color model after the procedure is com-

pleted and denoted as ~IðxÞ, which is illustrated in Fig. 1b.

Fig. 2 Flowchart of the proposed self-adaptive restoration algorithm consisting of four major phases
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2.3 Haze diminution

Contemporary techniques are introduced to effectively perform haze diminution that

consists of five major steps. In this dehazing phase, the objective is to eliminate haze in

underwater images based on the imaging model.

2.3.1 Dark channel map

Since J(x) in Eq. (1) is assumed an intact image, applying color correction and local

contrast enhancement to both sides of (1) results in

~I xð Þ ¼ J xð Þ~t xð Þ þ ~B 1 −~t xð Þð Þ; ð5Þ

where ~tðxÞ and ~B are the transmission coefficient and background light source adapted

to the previous processes, respectively. Herein, Eq. (5) implies that it is the transmission

coefficient and background light source that transform the same scene radiance into

different images being perceived. Rather than exploiting Eq. (1), we intend to recover

J(x) based on Eq. (5) by solving ~tðxÞ in advance.

We first compute the dark channel map [24] of ~IðxÞ to appraise the transmission co-

efficient function based on general statistics of water-free images. Experimentally

speaking, the intensity of “dark” pixels is pretty small in at least one RGB color channel.

To characterize this phenomenon as a concrete interpretation, the following equation

is employed:

~Idark xð Þ ¼ min
y∈ρ xð Þ

minc∈ R;G;Bf g~Ic yð Þ� � ð6Þ

where ~Idark represents the dark channel map of I, ρ(x) represents the local patch cen-

tered at x, and ~Ic represents one of the RGB color channels of ~I . It is interesting to

note that the dark channel map consists of two minimum operators: (a) miny ∈ ρ(x), a

minimum filter for searching the smallest color channel in every local area and (b)

minc ∈ {R, G, B}, used to determine the smallest color channel value at every pixel.

The rationale behind the particular “dark” pixels in majority of underwater image

patches can be realized as follows. Based on empirical observation, the low intensities

in the dark channel are essentially due to three factors [25]: (a) shadows: e.g., shadows

of creatures, planktons, plants, or rocks in the seabed; (b) colorful objects or surfaces:

e.g., green plants, red or yellow sands, and colorful rocks or minerals lacking color in

one of RGB color channels; (c) dark objects or surfaces: e.g., dark creatures and stones.

In underwater images, the intensity values of these selected pixels in the dark channel

map are predominantly contributed by the backward scattered light component. As

such, the pixels in the dark channel map directly provide rigorous estimation of the

background light source and the medium transmission function.

2.3.2 Transmission map

As the dark channel map is approximating the haze distribution, we estimate the water-

light source ~B by detecting the haze–opaque region in the map. The top 0.1% brightest

pixels in the dark channel map, which usually represent the most haze–opaque field,

are firstly located. Among these pixels in the map, the highest intensity values in the

corresponding image ~I are then treated as the waterlight source ~B in Eq. (5). Note that
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these pixels may not correspond to the brightest intensities in the image, which is ad-

vantageous if some white objects are present.

Separating Eq. (5) into each RGB color channel and applying the dark channel as-

sumption in Eq. (6) to the minimum operated equation followed by the normalization

of the waterlight source [24], we acquire

~t0 xð Þ ¼ 1 − φ min
c

Îc xð Þ
~Bc

� �
; ð7Þ

where 0 < φ ≤ 1 is a constant for balancing the contribution of the hazy opacity, Î cðxÞ
represents the outcome after applying a min spatial filter to each color channel of the

image ~I , and ~Bc represents the background waterlight in channel c with c ∈ {R, G, B}.

Herein, we have assumed that the transmission in a local patch ρ(x) is constant and de-

noting the corresponding patch transmission coefficient as ~t0ðxÞ, which is independent

of the minimum operator. Practically, Eq. (7) makes the image more natural in such a

way to adaptively preserve haze for different perspectives of distant objects in water.

2.3.3 Delicate transmission

After obtaining the preliminary transmission map, there exist somewhat ragged and

blocky effects depending on the patch size. This is because the transmission inside a

patch is actually not a constant as we assumed. To refine the transmission map, we

introduce the matting Laplacian matrix method [38]. In this image matting scheme, the

color of a pixel is assumed the linear combination of the foreground and background

colors weighted by the opacity. Drawing an analogy between the transmission and opa-

city, and further employing the technique of the sparse linear system [39], we achieve a

compact expression of the transmission map:

Lþ λUð Þ~t ¼ λ~t0; ð8Þ

where L is the matting Laplacian matrix, λ is a diagonal matrix for representing the

regularizing parameter, U is the identity matrix with the same dimension as L, and ~t

and ~t0 are the vector forms of the transmission.

2.3.4 Guided filtering transmission

Since the dimension of the matrix L in Eq. (8) is proportional to the number of pixels

in the image ~I , the dimension of L will be 307,200 × 307,200 for an underwater image

with a typical size of 640 × 480. In consequence, direct computation for solving the

transmission in Eq. (8) involves heavy computation of the inverse matrix of L, which is

extremely time consuming. To conquer this problem, the transmission ~t is efficiently

computed through the guided filter [40] using

~t ¼ W Gð Þ~t0; ð9Þ

where G is the guided image and W is the filter kernel in terms of G. For more details,

readers please refer to the original article in [40]. Notice the significant computation re-

duction in Eq. (9) comparing to Eq. (8). As depicted in Fig. 1c, the delicate transmission

map that refines the original transmission and reflects the scene depth is actually uti-

lized for the scene radiance recovery.
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2.3.5 Scene radiance recovery

After acquiring the transmission map, the scene radiance is computed by rearranging

Eq. (5) as

J xð Þ ¼
~I xð Þ − ~B
~t xð Þ þ ~B ð10Þ

However, in underwater images, it is quite often that the direct attenuation compo-

nent vanishes at some pixels when the transmission ~tðxÞ is tiny and close to zero. Dir-

ect division of ~tðxÞ in Eq. (10) will more or less produce noisy scene radiance artefacts.

One way to resolve this issue is to set a lower bound to the transmission so that a small

amount of haze is preserved. Accordingly, the preliminary scene radiance J(x) is recov-

ered using

J xð Þ ¼
~I xð Þ − ~B

max ~t xð Þ;~tlowð Þ þ
~B; ð11Þ

where max(·, ·) represents the maximum operator, and ~tlow represents the lower bound

of ~tðxÞ. When ~tðxÞ is less than ~tlow at x, it is replaced with the value of ~tlow . After the

haze diminution phase, the recovered scene radiance with better clarity is acquired as

illustrated in Fig. 1d.

2.4 Color correction

To account for the wavelength dependence on scattering effects in water, we contem-

plate employing straightforward image processing techniques to perform color correc-

tion. The main idea is based on the inherent relationship between color spectra of

underwater images and optical properties of water medium [14, 22, 25]. The histograms

of many underwater images in the RGB color space are observed that indicates the

green and blue channels representing balanced values but low and unbalanced values

on the red channel, depending on the degree of red deficiency. To achieve better color

balance, a linear histogram transformation on each individual RGB color channel of

J(x) is performed to average luminance using

Ĵ c xð Þ ¼ J c xð Þ þ Sm − Jmcð Þ; ð12Þ

where Ĵ c represents the adjusted color channel of the output image, Jc represents the

color channel on J in Eq. (11), Sm represents the desired mean value in each color chan-

nel, and Jmc represents the mean intensity computed in the color channel. In Eq. (12),

the value of Sm is set to the median of the three mean intensity values, i.e., Sm = med-

ian(Jmc). As illustrated in Fig. 1e, after the color correction phase the image does not

present the green scene.

2.5 Global contrast enhancement

A histogram stretching method for performing global contrast enhancement is finally

exploited to achieve a more natural image. Taking advantage of histogram stretching,

we intend to rearrange the pixel values to fill the whole brightness range and result in

higher contrast. Due to the deficiency of color shifting in the RGB color model, the
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image is first transformed into the HSI color space. Subsequently, the histogram

stretching is applied only on the S and I channels but not the H channel using

~J c xð Þ ¼ Ĵ c xð Þ − Ĵminc

Ĵmaxc − Ĵminc

� 255; ð13Þ

where ~J cðxÞ is the final recovered image after global contrast enhancement, Ĵ cðxÞ is the
image after color correction with c ∈ {S, I}, and Ĵminc and Ĵmaxc are the minimum and

maximum intensity values in the histogram in the corresponding channel. Once again,

the restored image is transformed back to the RGB color space for visualization. As il-

lustrated in Fig. 1f, we achieve brilliant contrast and colorful scene without significantly

affecting the fidelity in contrast to the input image in Fig. 1a.

3 Results and discussion
A wide variety of underwater images with different degrees of turbidness and various

scenarios of distortion were adopted to evaluate the proposed restoration algorithm. In

particular, most underwater images were acquired from the aqua life [41], national geo-

graphic [42], bubble vision [43], and ocean view diving [44] websites, which resulted in

Fig. 3 Analysis of the local patch size. a Input image. b Recovered image with patch size 3 × 3. c Recovered
image with patch size 15 × 15. d Recovered image with patch size 21 × 21

Fig. 4 Analysis of the lower bound of the transmission. a Input image. b Recovered image with ~tlow ¼ 0:0
5. c Recovered image with ~tlow ¼ 0:1. d Recovered image with ~tlow ¼ 1:0
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a collective database with over 140 underwater images. For the experiments, fixed par-

ameter values were set with h = 60 in Eq. (3) and P = 40 in Eq. (4) for the red deficiency

detection, φ = 0.9 in Eq. (8), and the window radius of the guided filter equal to 50. The

entire system was implemented and programmed in MATLAB 2015 (The MathWorks

Inc. Natick, MA, USA). All experiments were executed on an Intel® Core(TM) i7 CPU

@ 2.40GHz with 8 GB RAM running 64-bit Windows 10. Experimental results pro-

duced by our underwater image restoration framework were compared to six state-of-

the-art methods: the underwater dark channel prior (UDCP) [5], integrated color model

(ICM) [22], fast visibility restoration (FVR) [23], dark channel prior (DCP) [24], en-

hancement with Rayleigh distribution (ERD) [26], and image blurriness and light ab-

sorption (IBLA) [28] methods.

Fig. 5 Illustration of the effectiveness of the proposed color correction procedure in different underwater
images. Top row: input images, middle row: restoration without color correction, bottom row: restoration
with color correction

Fig. 6 Restoration results of the bluish fish image. a Input image. b With UDCP. c With ICM. d With FVR. e
With DCP. f With ERD. g With IBLA. h With the proposed algorithm
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For quantitative analyses, the underwater color image quality evaluation (UCIQE)

metric [45] was utilized. The UCIQE metric is a linear combination of chroma, satur-

ation, and contrast in the CIE-Lab color space with

UCIQE ¼ κ1σc þ κ2conl þ κ3μs; ð14Þ

where σc is the standard deviation of chroma, conl is the contrast of luminance, μs is

the average of saturation, and κ1, κ2, and κ3 are weighting coefficients with κ1 = 0.4680,

κ2 = 0.2745, and κ3 = 0.2576, respectively. The higher the UCIQE score, the better the

image quality. An additional evaluation metric called the underwater image quality

measure (UIQM) [46] was also employed. The UIQM metric is a linear combination of

three independent image quality measures using

UIQM ¼ c1 � UICMþ c2 � UISMþ c3 � UIConM; ð15Þ

where UICM represents the colorfulness, UISM represents the sharpness, and UIConM

represents the contrast measures. The parameters c1, c2, and c3 are weights, whose

values are application dependent. In this paper, we have set the values as follows:

c1 = 0.3282, c2 = 0.2953, and c3 = 3.5753. A greater score of the UIQM indicates super-

ior image quality.

Fig. 7 Restoration results of the green dish image. a Input image. b With UDCP. c With ICM. d With FVR. e
With DCP. f With ERD. g With IBLA. h With the proposed algorithm

Fig. 8 Restoration results of the blue coral image. a Input image. b With UDCP. c With ICM. d With FVR. e
With DCP. f With ERD. g With IBLA. h With the proposed algorithm
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3.1 Parameter analysis

To understand the influence of the local patch ρ(x) in Eq. (7) and the lower bound
~tlow in Eq. (12), we first investigated the setting of these essential parameters in

the restoration procedures. Figure 3 illustrates the effects of the local patch with

different sizes of 3 × 3, 15 × 15, and 21 × 21 in the dark channel map and transmis-

sion map procedures. It is indicated that all scenarios represent satisfactory restor-

ation results without significant differences. However, in contrast to using 15 × 15,

the results of using 3 × 3 were slightly sharper and the results of using 21 × 21

were slightly smoother. Overall, the proposed scheme restored the images quite

well over a wide range of local patch sizes. The effects of the lower bound of the

transmission in the scene radiance recovery procedure were studied on underwater

images with minor to moderate degrees of turbidity. Figure 4 depicts the restor-

ation results of employing different values of ~tlow , which were equal to 0.05, 0.1,

and 1.0. When ~tlow ¼ 0:05 , the majority of the computed transmission was pre-

served that resulted in luminous recovery. When ~tlow was getting higher and

reached 1.0, more computed transmission values were replaced by the constant

threshold that led to hazier results as shown in Fig. 4d. Particularly for the slightly

Fig. 9 Restoration results of the bluish diver image. a Input image. b With UDCP. c With ICM. d With FVR. e
With DCP. f With ERD. g With IBLA. h With the proposed algorithm

Fig. 10 Restoration results of the blue bulge image. a Input image. b With UDCP. c With ICM. d With FVR.
e With DCP. f With ERD. g With IBLA. h With the proposed algorithm

Chang et al. EURASIP Journal on Image and Video Processing         (2020) 2020:41 Page 14 of 21



hazy image (the bottom row), ~tlow ¼ 1:0 was too large so that the restored image

was overhazy, which also resulted in color distortion. For ~tlow ¼ 0:1 , the restor-

ation results appeared more natural as illustrated in Fig. 4c. Consequently, a 15 ×

15 local patch associated with ~tlow ¼ 0:1 was utilized throughout the subsequent

experiments.

In Section 2.4, we proposed a straightforward manner to automatically perform image

color correction. To realize its effectiveness, we demonstrate restoration results without

using the color correction procedure for comparison. As shown in Fig. 5, four input

underwater images with two bluish and two greenish tones were in the top row. While

the middle row presented the corresponding restoration results without the execution

of the color correction phase, the bottom row exhibited the restoration outcomes with

color correction. It was noted that the restored images without color correction were

quite similar to the input images in tone apart from the haze being removed. With the

proposed color correction, the restored images revealed clear and vivid scenes. Not

only did the image quality improved, but the quantitative evaluation measures also vali-

dated the efficacy of the color correction procedure. For example, the UIQM values for

the restored images without color correction in Fig. 5a and b were 2.8034 and 4.0207,

respectively, whereas the restored images with color correction produced higher UIQM

values of 4.1337 and 5.5121, respectively.

Fig. 11 Restoration results of the bluish lion image. a Input image. b With UDCP. c With ICM. d With FVR. e
With DCP. f With ERD. g With IBLA. h With the proposed algorithm

Table 1 Quantitative performance analyses based on UCIQE

Method Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11

Origin 0.5082 0.4983 0.5572 0.5205 0.5018 0.5209

UDCP 0.5738 0.5373 0.5675 0.6414 0.5416 0.5253

ICM 0.5301 0.5894 0.6321 0.6103 0.5605 0.5895

FVR 0.5427 0.5189 0.5657 0.5381 0.5495 0.5321

DCP 0.4896 0.5007 0.5857 0.5098 0.5027 0.5271

ERD 0.6392 0.5672 0.5780 0.5994 0.5936 0.5795

IBLA 0.6049 0.5860 0.5898 0.5756 0.5513 0.5672

Proposed 0.6770 0.5971 0.6632 0.6761 0.6537 0.6775
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3.2 Underwater image restoration

In Fig. 6a, the input undersea image was apparently hazy and bluish with UCIQE =

0.5082 and UIQM= 2.5387. Although the foreground fish was uncovered by the UDCP

method as shown in Fig. 6b, the background scene became deep blue and darker. The

restoration results by the ICM, FVR, and DCP methods were visually quite similar with

blue and foggy scenery as depicted in Fig. 6c, d and e, respectively. While the ERD’s

output properly revealed the foreground scene as shown in Fig. 6f, the restored image

by the IBLA method preserved more bluish background as shown in Fig. 6g. The pro-

posed algorithm profoundly removed the haze with appropriate contrast between the

objects while keeping tiny haze for the distant coral as presented in Fig. 6h. Another

greenish underwater image restoration example was illustrated in Fig. 7, where the diver

and seabed appeared visible using the UDCP method. There was no significant differ-

ence between Fig. 7c, d and e, and the input image. In Fig. 7f, the ERD method moder-

ately restored the hazy image. However, some vague artefacts were introduced in the

right arm region. As can be observed in Fig. 7g, the IBLA method properly removed

the haze for the foreground scene, but the recovered image lost balance such that the

texture of the dish was unclear. After executing the proposed restoration algorithm, the

color of the image was more balanced and natural with more details around the seabed

and dish as depicted in Fig. 7h.

Deep blue underwater images were also utilized to evaluate the performance of the

restoration schemes as illustrated in Fig. 8. The UDCP, FVR, DCP, and IBLA methods

were unable to effectively reduce the blue haze and reveal the foreground scene as

shown in Fig. 8b, d, e and g. The ICM method moderately lessened the heavy haze and

disclosed the foreground scene as presented in Fig. 8c. Both Fig. 8f and h revealed effi-

cient elimination of the blue haziness with natural color balance and more detailed

structures, which resulted in UCIQE = 0.5780 and UCIQE = 0.6632 for the ERD and

proposed methods, respectively. Fig. 9a illustrates a common diver image, where the

haze and blueness was presented. The UDCP method somewhat unveiled the diver, but

the blue tone seemed heavier as shown in Fig. 9b. As depicted in Figs. 9c, d ,e and g,

the ICM, FVR, DCP, and IBLA methods were incapable of discarding the blue haze.

Despite the removal of the blue haze, the ERD method introduced some lavender arte-

facts as observed on the oxygen tank and seabed regions in Fig. 9f. As shown in Fig. 9h,

our restoration framework adequately eliminated the haze and genuinely recovered the

Table 2 Quantitative performance analyses based on UIQM

Method Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11

Origin 2.5387 1.3648 3.6323 2.2049 0.6852 1.2351

UDCP 3.9296 2.0189 4.2225 4.0899 2.8730 2.2210

ICM 2.9411 2.1265 4.4687 3.4056 3.2412 3.5430

FVR 3.6293 1.9413 3.6564 2.6568 1.0865 2.0227

DCP 2.0702 1.7095 3.8880 2.2320 1.1348 1.8529

ERD 4.2139 2.1690 3.9251 2.5887 4.6832 3.3669

IBLA 4.0399 2.3524 4.0788 2.5258 2.7833 2.3805

Proposed 5.5121 2.4646 5.3293 4.1770 4.7874 4.0754
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color with better contrast between objects, which produced the highest scores of

UCIQE = 0.6761 and UIQM= 4.1770.

Another blue and slightly dark image was illustrated in Fig. 10a, where one fish was

swimming over a big bulge with UIQM= 0.6852. The blue haze was fairly removed by

the UDCP method; however, the output looked gloomy as shown in Fig. 10b. Although

the ICM and IBLA methods revealed the fish, the bulge partially remained hazy. While

Fig. 13 Representative images among the collective underwater image database

Fig. 12 Illustration of the influences of the red deficiency mechanism. Top row: input images, middle row:
restoration results based on the route decided by the measure using Eq. (3), bottom row: restoration results
using the other route
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the FVR method introduced some dark blue artefacts in Fig. 10d, there was no apparent

improvement using the DCP method in Fig. 10e. The ERD method moderately removed

the blue haze, but some reddish orange spots were introduced on the lower bulge. As

depicted in Fig. 10h, after applying the proposed algorithm, not only was the blue haze

adequately erased but the color was also enhanced more brightly with UCIQE = 0.6537

and UIQM= 4.7874 compared with other methods. Restoration of underwater debris

images was illustrated in Fig. 11, where heavy haze and color shifting was presented. As

shown in Fig. 11b, the UDCP method changed the image color to a greenish and dark

tone with poor contrast. The restored images by the ICM, FVR, DCP, and IBLA

methods remained with different degrees of blueness, which were similar to the input

image more or less. The output by the ERD method in Fig. 11f disclosed the foreground

scene, but murky artefacts were presented in the distant region. On the contrary, in

Fig. 11h, our restoration algorithm appropriately removed the blue haze and improved

the clarity of the input image with more natural color. Finally, in Tables 1 and 2, we

summarized the UCIQE and UIQM scores of all tested methods in the experiments, re-

spectively. It was obvious that the proposed restoration algorithm achieved the highest

evaluation values in all scenarios.

One unique characteristic of this work is to process underwater images in two differ-

ent routes according to the red deficiency measure as described in Section 2.1. The two

parameters were set fixed with h = 60 in Eq. (3) and P = 40 in Eq. (4), which was appro-

priate for the majority of underwater images being tested. The only consequence re-

sulted from different settings of h and P is the restoration through the other pipeline.

Table 3 Comparison of overall performance based on over 140 underwater image restoration
results

Method UCIQE UIQM

Origin 0.4797±0.0813 1.8271±1.0264

UDCP 0.5776±0.0505 2.9859±0.9123

ICM 0.5616±0.0456 2.5431±0.8806

FVR 0.5024±0.0677 2.2540±1.1440

DCP 0.4952±0.0585 1.9168±0.8331

ERD 0.5776±0.0328 2.8288±0.7587

IBLA 0.5505±0.0788 2.7193±1.1623

Proposed 0.6261±0.0441 3.5423±1.0871

Table 4 Performance comparison based on top 50 best underwater image restoration results

Method UCIQE UIQM

UDCP 0.6285±0.0258 3.9773±0.4910

ICM 0.6078±0.0210 3.4940±0.6035

FVR 0.5570±0.0294 2.9906±0.8316

DCP 0.5585±0.0298 2.7375±0.5300

ERD 0.6093±0.0130 3.6335±0.4192

IBLA 0.6306±0.0279 3.9200±0.7643

Proposed 0.6718±0.0186 4.7272±0.7441
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Under the current parameter setting, restoration by means of the route that is not

chosen based on the red deficiency measure may produce more pleasing result. Figure

12 demonstrates two underwater image restoration examples using both pipelines for

comparison, where the top row shows the input images, the middle row depicts the res-

toration outcome by the selected route, and the bottom row delineates the restoration

outcome using the rejected route. All restoration results appropriately removed the

haze and corrected the color. However, it was noted that the restored image by the pre-

ferred route in Fig. 12a exhibited some red tone in the dark coral areas. Comparing to

the restored image by the selected route in Fig. 12b, the restored image by the other

route looked more vivid.

3.3 Massive comparison and computation time

For completeness, the proposed underwater image restoration algorithm was compared

with the competitive methods on the collected image database, some of which were il-

lustrated in Fig. 13. Table 3 presents the comparison of overall performance based on

over 140 image restoration results. It was indicated that our proposed scheme achieved

the best evaluation scores with UCIQE = 0.6261 and UIQM= 3.5423 over other

methods. To more thoroughly understand the characteristics of the tested image restor-

ation methods, we reported the top 50 best restoration results among this database for

each method in Table 4. It was not surprising that both UCIQE and UIQM values for

all methods increased comparing to Table 3. Nonetheless, our restoration algorithm

still produced the highest UCIQE = 0.6718 and UIQM= 4.7272 scores.

Although outperforming the compared approaches, the proposed restoration frame-

work is theoretically more complicated and computationally more time consuming

than some simple methods. As presented in Table 5, our image restoration scheme

ranked moderate in computation speed among all tested methods. For a typical image

with a dimension of 640 × 480 acquired by ROVs and AUVs as shown in Fig. 8, the pro-

cessing time was approximately 6.68 s, which limits the real-time applications. The

most computationally expensive component is the haze diminution phase as is the

DCP method. One way to accelerate the computation is to approximate the transmis-

sion map through filtering techniques without solving the sophisticated matrix. An-

other manner is the adoption of parallel computing with multiple cores of the central

processing unit (CPU) and graphics processing unit (GPU) strategies. All these are in-

teresting research topics, which are worth investigating in the future. Nevertheless, not

requiring a priori knowledge of input images or laborious parameter settings, our

Table 5 Computation time (s) analyses

Image Dimension Pixel number UDCP ICM FVR DCP ERD IBLA Proposed

Fig. 6 500 × 375 187,500 13.78 0.23 1.45 4.69 0.30 27.14 4.18

Fig. 7 1209 × 906 1,095,354 115.16 0.59 31.04 27.86 0.79 204.08 20.02

Fig. 8 640 × 480 307,200 24.46 0.27 2.53 7.82 0.32 45.84 6.68

Fig. 9 1024 × 768 786,432 66.84 0.51 22.05 19.92 0.51 131.81 14.87

Fig. 10 500 × 375 187,500 13.96 0.19 1.37 4.54 0.31 26.64 3.68

Fig. 11 800 × 600 480,000 37.04 0.31 5.18 11.96 0.45 72.58 10.19

Average 507,331 38.75 0.30 9.09 10.97 0.38 72.58 8.52
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restoration algorithm produced excellent performances, which indicates that the pro-

posed framework is advantageous for high-quality postprocessing of underwater

images.

4 Conclusion
Inspired by the effectiveness of haze removal and contrast enhancement strategies, this

study developed a new underwater image restoration algorithm that consisted of four

major phases, namely color correction, local contrast enhancement, haze diminution,

and global contrast enhancement. With the observation of specific propagation proper-

ties of light in water, a red deficiency measure scheme was introduced to appropriately

process images through either route. Underwater images with various scenarios of haze

quality and color distortion were employed to evaluate the performance of the pro-

posed framework. As consistent with the theory of the proposed imaging models, our

self-adaptive and four-phase scheme efficiently resolved the hazing and blurring prob-

lems while acquiring high clarity and natural color. Comparing with the state-of-the-art

methods, our restoration results were generally more visually pleasing and with less dis-

tortion. While acceleration is worth investigating in the future, this unique underwater

image restoration algorithm is promising in facilitating the perception and interpret-

ation of underwater images in many image processing applications.
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