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Abstract

Stereo matching is one of the most important topics in computer vision and aims at
generating precise depth maps for various applications. The major challenge of
stereo matching is to suppress inevitable errors occurring in smooth, occluded, and
discontinuous regions. In this paper, the proposed stereo matching system uses
segment-based superpixels and matching cost. After determination of edge and
smooth regions and selection of matching cost, we suggest the segment-based
adaptive support weights in cost aggregation instead of color similarity and spatial
proximity only. The proposed dual-path depth refinements use the cross-based
support region by referring texture features to correct the inaccurate disparities
with iterative procedures to improve the depth maps for shape reserving. Specially
for leftmost and rightmost regions, the segment-based refinement can greatly
improve the mismatched disparity holes. The experimental results show that the
proposed system can achieve higher accurate depth maps than the conventional
methods.

1 Introduction
With fast evolutions of nature three-dimension (3D) technologies, the applications of

mixed reality [1], visual entertainment [2–4], environment reconstruction [5], autono-

mous driving [6], object detection [7, 8], and recognition [9] with additional depth in-

formation become more and more important nowadays. All the above applications, the

key part is to retrieve high accuracy depth maps from multiple camera images. Instead

of transmitting complex multiple views, a color texture image with its corresponding

gray depth map can effectively represent the 3D information. For satisfying 3D vision,

the traditional way is to directly provide multi-view/stereo-view videos, but the 2D

image plus depth map is a preferable way to characterize 3D sensation nowadays. The

depth map provides the pixel-wise distance and exhibits stereoscopic vision. We can

use the depth image-based rendering (DIBR) system [10] to create multi-view videos

with depth information and texture image in the user side.

The concept of stereo vision comes from the different views at distinct positions of

the scene, leads a limited displacement in a pair of corresponding pixels, i.e., so-called
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“disparity”. The disparity becomes larger when the object is moving toward the obser-

ver [11]. By parsing the disparities of left and right views, we can also extend the geo-

metrical principle to estimate the distance between a viewed object and the observer.

To get the depth map efficiently, we propose a local stereo matching method to save

the computation. Since the depth values are mostly dependent on bases of the objects.

By using segmentation information, the proposed stereo matching system can not only

enhance the aggregation efficiency but also refine the missing objects. The basic idea of

stereo matching will be briefly reviewed in Section 2. In Section 3, the designs of the

proposed stereo matching system are present. Section 4 will show the experimental re-

sults achieved by the proposed and other methods. Some conclusions about this paper

are finally given in Section 5.

2 Local stereo matching methods
Generally, the stereo matching algorithms can be classified into three major cat-

egories: global, local, and semi-global approaches. The global approach uses data

term and smooth team to construct their energy functions to compute the global

depth map. Graph-cut [12], belief propagation [13, 14], and dynamic program-

ming [15] are the typical global stereo matching algorithms. Recently, deep learn-

ing approaches have been proposed to estimate the depth maps [16]; however,

they are data dependent. In this paper, we focus on the designs of local stereo

matching approaches for computation considerations and avoid the problems of

data dependency.

2.1 Local stereo matching process

The typical local stereo matching process shown in Fig. 1 mainly contains matching

cost computation, cost aggregation, disparity decision, and disparity refinement stages.

2.1.1 Matching cost computation

To evaluate the pixel-based matching status, there are several famous costs that are

used for disparity estimation. The sum of absolute differences (SAD) [17] with color

components is the most common cost of stereo matching. The SAD cost for finding

the left disparity map can be formulated as:

CSAD p; p0ð Þ ¼
X

c∈ R;G;Bf g
Ilc pð Þ − Irc p0ð Þ�� ��; ð1Þ

where p = (x, y) is the pixel position in the left image and p’ = (x-d, y) denotes its cor-

responding pixel position in the right image with disparity d. In this paper, Ilc and Irc
represent the color intensities of the left and right images in RGB domain, respectively.

Fig. 1 Flow diagram of typical local stereo matching method
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Besides the SAD cost, the gradient similarity can also measure the variations of

the texture images. The gradient cost for searching the left disparity map can be

expressed by

Cgrad p; p
0

� �
¼

X
c∈ R;G;Bf g

∇Ilc pð Þ − ∇Irc p0ð Þ�� ��; ð2Þ

where the gradient operator, ∇, is the combination of horizontal and vertical differ-

ences between the central pixel and its neighboring pixels in the cross relation.

Besides, the census transform, which detects the slight variations in a small block,

can achieve a robust performance for minor intensity changes successfully. Figure 2

shows the traditional census and modified mini-census transforms [18]. The modified

mini-census transform only selects a few specified representative pixels in the block to

reduce the useless information.

To describe the above census transforms precisely, the binary result is expressed by

comparing the neighboring pixel to the central pixel at p as

ξ p; qð Þ ¼ 1; I pð Þ≤ I qð Þ
0; I pð Þ > I qð Þ

�
; ð3Þ

where q denotes the position of the neighboring pixel in the block. A bit-wise caten-

ation is applied to get the census transform as

c pð Þ ¼ �
q∈W

ξ p; qð Þ; ð4Þ

where ⊗ expresses the bit-wise catenation operator and W is the block containing

the selected neighboring pixels. Thus, the census cost in terms of Hamming distance

between two census transforms obtained from left and right views is expressed by:

Fig. 2 Schematic diagrams of the census and the modified census transforms
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Ccensus p; p
0

� �
¼ cl pð Þ⊕cr p

0
� �

; ð5Þ

where ⊕ is the bit-wise XOR operation. The modified mini-census transform [18]

needs fewer computations and achieves more robust performance against the noises

than the traditional census transform.

2.1.2 Cost aggregation

Once the cost of the paired pixels in the stereo images is calculated, the cost aggrega-

tion is further applied to achieve more robust results by including more pixels, which

have the same tendency. For local stereo matching, the window-based aggregation con-

siders the similarities of the surrounding pixels in a designated window [19–25]. The

ideal windows are designed to include the nearby pixels, which are in the same object

as possible. For example, the adaptive support weights [21] based on color similarity

and spatial proximity are noted as

w p; qð Þ ¼ exp − Δcpq=γc þ Δgpq=γg
� �� �

; ð6Þ

where Δcpq and Δgpq denote the color similarity weight and the geometric distance

weight, respectively. γc and γg are control factors that map Δcpq and Δgpq to become

weights. The color similarity weight is controlled by Δcpq, which can be represented as

Δcpq ¼
X

c∈ R;G;Bf g
j Ic pð Þ − Ic qð Þ j; ð7Þ

while the geometric distance weight is controlled by Δgpq, which is given as

Δgpq ¼ xp − xq
� �2 þ yp − yq

� �2
; ð8Þ

where (xp, yp) and (xq, yq) are the x and y coordinates of pixels p and q, respectively.

Besides the pixel-wise adaptive support weights, the segmentation concept is also

used to modify the weights increasing the matching reliability. The segment-based

adaptive support weight [22, 23] could be expressed by

w p; qð Þ ¼ 1:0 ; if q∈Sp
exp − Δcpq=γc

� �
; if q∉Sp

�
; ð9Þ

where Sp is the segment on which p lies. In (9), they modify the weight to the largest,

i.e., 1.0 if the neighboring pixel is in the same segment as the target pixel while the

weights of the rest pixels are determined by color similarity.

After the weight of each pixel in the window has been calculated, we can apply the

aggregation cost to all the pixel costs become as

Cagg p; p0ð Þ ¼

X
q∈Wr ;q0∈Wt

wr p; qð Þ � wt p
0; q0ð Þ � C p; p0ð Þ

X
q∈Wr ;q0∈Wt

wr p; qð Þ � wt p
0; q0ð Þ ; ð10Þ

where C(p, p’) is the initial cost, which could be SAD cost, gradient cost, or census

cost stated in (2), (3), or (5), respectively. Of course, the combined cost with different

weighting ratios is also possible. In (10), q and q’ are the neighboring pixels of p and p’
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pixels in the target and the reference windows of the target and the reference views,

respectively.

2.1.3 Raw disparity estimation

To obtain the raw disparity map, the disparity estimation is executed after cost aggrega-

tion. It is common to utilize the winner-take-all (WTA) strategy for the criterion of dis-

parity estimation. The selection of WTA can be formulated as

dp ¼ arg min
d∈Rd

Cagg p; p0ð Þ; ð11Þ

where Rd is the disparity search range. In the WTA process, we can finally estimate

the raw disparity by choosing the smallest cost. The raw disparity map dp needs to be

refined in the final disparity refinement process.

2.1.4 Disparity refinement

Usually, the raw disparity map contains mismatched disparities occurring near the ob-

ject boundaries due to occlusion problems and the regions with smooth texture re-

gions, which are hard to find the exact matches. Thus, a suitable disparity refinement

technique is required to remove the mismatched disparities. First, we need to identify

the mismatched pixels by left right consistency check (LRC) to test if the disparities of

the left and right views are consistent.

The LRC detection rule is normally stated as

L x; yð Þ ¼ 1;
0;

�
dl x; yð Þ − drðx − dLðx; yÞ; yÞj j < σ0

dl x; yð Þ − drðx − dLðx; yÞ; yÞj j≥σ0 ; ð12Þ

where di and dr are the disparities of the left and right views respectively, and σ0 is

the tolerance for detecting the wrong disparity. To correct the mismatched pixels with

L(x, y) = 0, there are several disparity refinement methods [26–31]. Usually, we can

classify the mismatching pixels into large and small hole regions. For small hole re-

gions, the background filling algorithm is used to improve the rough disparity map. For

big hole regions, the four-step hole filling method can search the nearest reliable pixel

in neighboring regions [31].

2.2 Simple linear iterative clustering

It is noted that the disparity map will have same disparity values in an object. In order

to correctly estimate the disparity, the precise segmentation of the objects will help to

improve accurate performance. With precise object boundaries, we could use them to

improve the estimation of disparity map. It is noted that the precise object segmenta-

tion is computation consuming processes for left and right images. However, for stereo

matching, we only need to perform a localized segmentation in small regions. In other

words, we only need to identify the superpixels, which are collections of adjacent and

homogeneous pixels of the images. The superpixel, as a segment, provides more struc-

ture information than a single pixel.

In this paper, we adopt simple linear iterative clustering (SLIC) [32], which adapts k-

means clustering method to efficiently group the superpixels. The SLIC method with

five-dimension space of {li, ai, bi, xi, yi} localizes the ith pixel search range to an area
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associated with the cluster center to reduce the computation, where (l, a, b) is the pixel

color vector defined in CIELAB color space and (x, y) is the pixel position. The SLIC

algorithm, which measures the distance between the ith pixel to the cluster center, con-

siders both color similarity and spatial proximity, which are respectively denoted as

dlab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lk − lið Þ2 þ ak − aið Þ2 þ bk − bið Þ2

q
; ð13Þ

and

dxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk − xið Þ2 þ yk − yi

� �2q
; ð14Þ

where {lk, ak, bk, xk, yk} is the cluster center. The k-means clustering is then applied

to achieve superpixel segmentation. With the SLIC method, the utilization of segmen-

tation results could provide more matching information for local stereo matching

algorithms.

3 The proposed stereo matching system
Comparing to the traditional method depicted in Fig. 1, the corresponding functional

diagram of the proposed stereo matching system is shown in Fig. 3, which uses SLIC-

based cost aggregation for estimating the accurate left and right depth maps.

To exhibit the usages of SLIC segmentation information, Fig. 4 shows two innovated

kernels: the adaptive stereo matching computation unit first estimates the left and right

raw disparity maps while the dual-path refinement unit further enhances them to be-

come accurate disparity maps. The descriptions of the kernels are addressed in the fol-

lowing subsections.

3.1 Adaptive stereo matching computation

Figure 5 shows the diagram of the proposed adaptive stereo matching computation

unit, which includes the adaptive cost selection of gradient cost, census cost, or SAD

cost, the SLIC-based cost aggregation with left and right SLIC segmentation informa-

tion, and 2-level winner takes all to estimate the left and right raw disparity maps.

3.1.1 Adaptive cost selection

To estimate the similarity between the pixels in the left and its corresponding right

image, the initial cost computation is necessary. First, we detect the edge regions in

color image by using Sobel operator such that we can classify the pixels into edge re-

gion or non-edge region. For edge regions, we will use gradient cost as the initial cost.

For non-edge region, we further classify it as a smooth or non-smooth region. Here, we

utilize the cross-based window [22] to identify the smooth region. The criterion for the

adaptive cost selection of SAD, gradient, or census cost is shown in Fig. 6.

Fig. 3 Flowchart of the proposed stereo matching system
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If the pixel is classified in the edge region, the gradient similarity as stated in (2) is

used since the variation in color image is large. If the pixel is classified as the non-edge

region, we will use cross-based window to further verify whether the pixel lies on

smooth region or not. To find a smooth plane, we calculated the cross-based plane as

r� ¼ max
r∈ 1;L½ �

r
Y
i∈ 1;L½ �

δ p; pið Þ
0
@

1
A; ð15Þ

where r* denotes the largest left span in one direction and the indicator function is

defined by

δ p; pið Þ ¼
1; max

c∈ R;G;Bf g
Ic pð Þ − Ic pið Þj jð Þ≤τ1

0; otherwise

(
; ð16Þ

to evaluate the color similarity of pixels. In (15) and (16), pi is the pixel extended in

the direction. Once the largest span arm r* is derived, we define the left arm length hp
-

= max (r*, 1). Similarly, we can find the other three directions to obtain the arm lengths

as {hp
−, hp

+, vp
−, vp

+} for the pixel p. The two orthogonal cross segments are given as

H pð Þ ¼ x; yð Þ x∈ xp − h −
p ; xp þ hþp

h i
; y ¼ yp

���n o
; ð17Þ

V pð Þ ¼ x; yð Þ x ¼ xp; y∈ yp − v −
p ; yp þ vþp

h i���n o
; ð18Þ

After computation of pixel-wise cross decision results, we can obtain a shape-

adaptive full support region U(p) for the pixel at p. The support region is an area inte-

gral of multiple segments H(p) and is defined as

Fig. 4 Kernels of the proposed stereo matching system

Fig. 5 Diagram of the adaptive stereo matching computation unit to estimate left and right raw
disparity maps
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U pð Þ ¼ ∪
pv∈V pð Þ

H pvð Þ; ð19Þ

where pv is a support pixel located on the vertical segment V(p). If the area of the

cross-based plane is more than 80% of the intact window, we classify the pixel lies on a

smooth region. Once the pixel is classified in the smooth region, we use the census cost

defined in (5) for stereo matching. On the contrary, if we classify the pixel in non-

smooth region, the SAD cost as stated in (1) will be used. For stereo matching cost,

Fig. 7 shows the results of raw disparity map achieved by using the direct combined ini-

tial cost and the adaptive selected initial cost. In consideration of different texture fea-

tures, the proposed adaptive cost selection achieves better raw disparity maps in both

complex texture regions and smooth regions.

3.2 Cost aggregation with SLIC-based ASW

For cost aggregation, we use adaptive support weights (ASWs), which are determined

by SLIC segmentation information [32]. For each segmented superpixel, the aggregated

cost for the pixels in the same segment should give them higher weights. The aggrega-

tion weights in the superpixel concept will be better than the geometry and color simi-

larities in pixel-by-pixel fashions. First, we segment the color image into K levels by the

SLIC segmentation algorithm. The segments in a higher level will have a more complex

segmentation map. From low to high levels, if the neighboring pixels and the center

Fig. 6 Flow chart of adaptive cost selection strategy

Fig. 7 Disparity maps of Tsukuba and Teddy test images achieved by a left color images, b direct
combined cost, and c adaptive cost selection
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pixel are in the same segmented superpixels, these pixels, which are prone to have

higher similarity, should be given with higher weights. Figure 8 shows the result of dif-

ferent level segmentation images.

For K-level system, the proposed SLIC-based adaptive weight is given as

w p; qð Þ ¼ exp −Ns p; qð Þ=rð Þ ; if Ns p; qð Þ≤0:5K ;
exp −Δc Ic pð Þ; Ic qð Þð Þ=rcð Þ ; if Ns p; qð Þ > 0:5K ;

�
; ð20Þ

where Ns(p, q) denotes the segmentation dissimilarity defined as

Ns p; qð Þ ¼
XK
k¼1

T Skp≠S
k
q

h i
; ð21Þ

where T [·] is an indicator function whose value equals to 1 when p and q are not in

the same segment at the kth level, and 0 otherwise. In (21), Skp and Skq are the segmen-

tation labels of pixels p and q at the kth level, respectively. To avoid the ambiguity in

the dissimilar pixels, we suggest the adaptive weight based on the color difference to in-

crease the accuracy if the dissimilarity is over half of total levels. The SLIC-based adap-

tive weights help to obtain a more reasonable aggregation cost to improve the disparity

estimation than the cost aggregation weights stated in (10).

It is noted that the proposed adaptive weights can reduce the distortion of the similar

pixels and keep the sensitive in complex texture regions. If we only use segmentation

similarity part, called SLIC-only, without adaptive weights controlled by color changes,

the variations of weights cannot tell the detailed differences. Figure 9 shows two distri-

butions of the adaptive weights along x-axis obtained by the proposed method (blue

color) and the SLIC-only (red color). If their weights are the same, we show them with

mixed (purple) color. Thus, the weights obtained by the SLIC-only are hard to separate

the differences in complex region since they are nearly equal and of low values. As the

results, the proposed adaptive weights obtained in (22) can successfully avoid the ambi-

guity conditions with large variation weights.

3.3 Two-level WTA strategy

Normally, the WTA strategy is used to select the disparity value with the minimum

cost. However, there might exist over one disparity sharing the same minimum cost or

have several similar minimum costs. In order to avoid inaccurate disparity decision, we

modified WTA into two-level procedure. First, we check every pixel as

Fig. 8 Results of different levels of the segmented image
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d pð Þ ¼ arg mind∈DCagg p; dð Þ ; if N mind∈DCagg p; dð Þ� �
< 3

256 ; if N mind∈DCagg p; dð Þ� �
≥3

�
; ð22Þ

where N(·) represents the number of disparities, which have the same minimum cost.

If we have more than 3 candidates, which share the same minimum cost, we will re-

place d(p) by 256 to label the pixel p as an unstable point. To deal with the unstable

points, we use window-based histogram voting to select the correct disparity. For each

pixel p, a histogram Hp(d) of the stable points surrounding p in this window is created.

The histogram bin with the highest value dv(p) is selected to replace the unstable point as

dv pð Þ ¼ arg maxd∈DHp dð Þ: ð23Þ

After the disparity of each pixel is found, we could adjust the scale of the disparities

to generate raw depth maps. Generally, the left and right images will have slight inten-

sity difference except the whole object is flat or perpendicular to the paired cameras.

The minimum matching cost might not be able to find the correct matching point.

With the proposed method, the truly disparity could be obtained more precisely.

3.4 Iterative dual-path depth refinement

Since the estimated raw disparity map usually contains some mismatches occurring

near object boundaries and smooth regions. It is hard to reserve the shapes in these re-

gions. Thus, we propose an iterative dual-path refinement algorithm to refine the raw

disparity maps to obtain high precision depth maps and shape reserved.

To find the mismatched disparity, we first label the disparity map by the modified

LRC as,

L x; yð Þ ¼ 1; if dl x; yð Þ ¼ dr x − dl x; yð Þ; yð Þ∩ Idl − Idr x − dlð Þ
		 		≤τAD;

0; otherwise:

�
ð24Þ

In (24), not only with disparity similarity, we further include the color tolerance to

label the pixels. For L(x, y) = 0, the mismatched pixels are further categorized into two

Fig. 9 Variations of the SLIC-only and the proposed adaptive aggregation weights
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types: small holes or big holes. If the mismatching region between the pixel in the tar-

get view is less than 2 pixels, we classify them as small holes. Otherwise, the other mis-

matched pixels are classified as big holes. Figure 10 shows the flow chart of proposed

iterative dual-path refinement.

3.4.1 Small hole filling

Since the mismatching region contains small holes, the color image helps to find the

accurate disparity by obtaining the texture information. Here, we utilize maximum-

weighted candidate to find the correct disparity. With the image color similarity and

spatial proximity in a correction window, we calculate the weight of each pixel as

ω p; qð Þ ¼ exp −
Δcpq
γc

þ Δspq
γs


 �
 �
; ð25Þ

where Δcpq and Δspq are the color differences in RGB domain and spatial difference,

respectively. We analyze the disparity distribution with the calculated weight. Under

the disparity in the ascending order weighted histogram, the maximum corresponding

disparity in the ordered histogram is the point of the final disparity, which is written as

dout pð Þ ¼ d qð Þ max
q∈Ω

ω p; qð Þ
����

� �
; ð26Þ

where Ω is the correlation window region and dout is the final refined disparity map.

3.4.2 Dual-path big hole filling

For big holes, finding the correct disparity in the surrounding pixels is not suitable in

this circumstance. Here we should first classify the occlusion region into non-border

occlusion and leftmost/rightmost border occlusion. Then, we designed two-path hole

filling for both cases. For non-border regions, the holes, which are induced by the oc-

clusion of the foreground objects, should be filled with the background disparity. On

the other hand, the holes should be considered on the target color image only. The

flow chart of occlusion region refinement in two paths is shown in Fig. 11, and the pro-

cessing details are described as the following.

For non-border hole filling, we usually directly use the background information to fill

the pixels with the mismatched disparity. To get more accurate disparity map, we make

use of the similar pixels in background of the color image. First, we calculate the color

Fig. 10 Flow chart of iterative dual-path refinement
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similarity to find the most similar pixel on the same horizontal line among Q pixels to fill

its corresponding disparity of the occluded pixel. After finding the similar pixel in the

background (extended to the left side), we assign its corresponding disparity to the hole as

Doc ¼ d x − ið Þ arg arg min
0≤ i≤Q

ΔC x; x − 1ð Þ
����

� �
; ð27Þ

where ΔC(x, x − i) denotes the color similarity between the target hole at x and the

horizontal-left background pixel at x − i. Though there are still some residual wrong

disparities by the proposed non-border hole filling method, the problem can be solved

by iterative steps. The illustrations of the regular background hole filling and the

matched-color background hole filling are shown in Fig. 12 a and b, respectively. We

did not fill the hole by the nearby background disparity (light blue) pixel. We filled the

marched-color background disparity (yellow) pixel.

For the leftmost border regions in the target (left) disparity map, as shown in Fig. 13 a

and b, we only can refer the target (left) color image to fill the holes of the target (left)

Fig. 11 Flow chart of dual-path refinement for big hole regions

Fig. 12 Illustrations and results of the occlusion small-hole background filling methods. a Regular. b
Matched-color. c Disparity map by regular. d Disparity map by matched-color
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disparity map since we cannot find any matching information from the reference (right)

view. The object in the leftmost region of the right image totally disappears. We do not

have any clue to find the corresponding disparity for unknown regions. Thus, we only can

use the leftmost color image to infer the holes as possible. Fortunately, we have computed

SLIC segments for determination of ASWs to the color image as shown in Fig. 13c, which

shows the localized superpixels. We can use the concept that the pixel in the same super-

pixel should have the same depth value. For better inferences, we could associate the lo-

calized SLIC superpixels for border big-hole filling as the following procedures: First, we

could merge the localized superpixels, which have similar texture color information, as

shown in Fig. 13d, to gather some superpixels into larger megapixels, which are treated as

the object-like segments; secondly, we horizontally extend the known and reliable dispar-

ity leftward to all the hole pixels, which share the same megapixel as possible. We can ob-

tain some filled megapixels in this step.

Thirdly, we perform disparity histogram voting for those isolated megapixels, which do

not contain any known disparity. Starting from the lowest pixel of the isolated megapixel,

we choose the disparity from the largest disparity histogram of the filled megapixel,

which is next to the current megapixel. Finally, the hole regions in the border can

be reproduced with clear objects and their edges. The left refined disparity map is

shown in Fig. 13f.

Fig. 13 Border disparity segment-based refinement. a Left color image. b Right color image. c Segmented
superpixels of left image. d Merged megapixels of left image. e Left raw disparity map. f Left refined disparity map

Table 1 Image information of Middlebury 2005

Images Image resolutions Disparity level

Cones 450 × 375 60

Teddy 450 × 375 60

Tsukuba 384 × 288 16

Venus 434 × 383 20
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4 Results and discussion
The proposed stereo matching system was implemented with MATLAB R2016a and

tested on an Intel Core i5-8400 PC and 16GB RAM. The experimental evaluation is per-

formed by using 2003 [33], 2005 [34], and 2014 [35] datasets created in Middlebury. The

testing images that include Cones, Teddy, Tsukuba, and Venus are shown in Table 1

while the test images with higher resolutions and higher disparity levels are exhibited in

Table 2.

4.1 Results achieved by the proposed system

As shown in Fig. 14, the raw and refined disparity maps achieved by the proposed adap-

tive stereo matching and dual-path refinement methods for Cones, Teddy, Tsukuba, and

Venus test images are exhibited in the first and second rows, respectively.

Table 2 Image information of Middlebury 2014

Images Image resolutions Disparity level

Adirondack 718 × 496 73

ArtL 347 × 277 64

Jadeplant 659 × 497 160

Motorcycle 741 × 497 70

MotorcycleE 741 × 497 70

Piano 707 × 481 65

PianoL 707 × 481 65

Pipes 735 × 485 75

Playroom 699 × 476 83

Playtable 680 × 463 73

PlaytableP 681 × 462 73

Recycle 720 × 486 65

Shelves 738 × 497 60

Teddy 450 × 375 64

Vintage 722 × 480 190

Fig. 14 Disparity maps for Cones, Teddy, Tsukuba, and Venus test images achieved by a raw disparity by
the proposed adaptive stereo matching, and b refined disparity after dual-path refinement
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4.2 Comparisons with other approaches

For performance evaluations, we compare the proposed method to other stereo match-

ing algorithms. The compared methods include adaptive support weight (ASW) [21],

segmentation-based adaptive support weight (S-ASW) [23], plant leaf stereo matching

(LP-SM) [36], edge-based stereo matching method (E-SM) [37], stereo matching imple-

mented on GPU platform [31], AdaStereo [38], comparative evaluation of SGM variants

for dense stereo matching (tMGM) [39], learning-based disparity estimation (iResNet)

[40], and DeepPruner [41] methods. Tables 3 and 4 show that the performance of the

proposed multi-scale ASW is superior to traditional ASW and other methods. Table 4

shows we have better performance than some deep learning-based methods in training

set, even the training set is more beneficial to deep learning. Though the average error

Table 3 Error rate (%) of the proposed and other stereo matching algorithms

Methods Sun [31] Hsieh [29] Kuo et al. [27] E-SM [37] S-ASW [23] Proposed

Cones Non-occ 6.69 5.62 4.44 15.64 7.44 5.59

All 13.72 13.23 10.96 24.6 13.49 12.06

Disc 18.70 14.36 10.22 27.22 16.79 13.24

Teddy Non-occ 10.57 8.75 9.39 20.84 8.73 9.57

All 17.96 16.23 15.52 28.83 14.78 15.50

Disc 23.60 26.32 19.16 34.81 23.57 25.08

Tsukuba Non-occ 6.70 4.26 4.38 5.15 2.59 2.79

All 8.11 5.18 5.35 7.05 2.89 3.05

Disc 19.67 17.42 17.12 19.93 13.26 13.93

Venus Non-occ 1.54 1.98 4.15 5.49 0.48 0.38

All 2.08 2.43 5.09 7.01 0.68 0.64

Disc 12.96 6.45 10.71 30.02 4.21 4.88

Average 11.86 9.21 9.23 10.40 9.08 8.89

Table 4 Error rate (%) of the proposed and other stereo matching algorithms

Methods AdaStereo [38] tMGM [39] iResNet [40] DeepPruner [41] Proposed

Adirondack Non-occ 28.1 29.9 25.1 36.9 16.6

ArtL Non-occ 11.0 11.9 20.2 37.4 30.9

Jadeplant Non-occ 44.4 28.4 47.9 56.5 21.4

Motorcycle Non-occ 37.0 16.1 35.6 41.2 11.5

MotorcycleE Non-occ 37.9 16.1 36.2 41.7 35.5

Piano Non-occ 39.5 25.8 37.4 37.9 14.2

PianoL Non-occ 62.2 36.3 59.8 47.4 43.2

Pipes Non-occ 36.7 14.2 34.5 47.5 16.3

Playroom Non-occ 49.8 38.5 46.1 52.9 34.4

Playtable Non-occ 51.4 30.4 40.2 44.9 21.7

PlaytableP Non-occ 37.6 25.4 25.3 38.6 15.3

Recycle Non-occ 31.0 31.0 35.0 34.9 10.0

Shelves Non-occ 63.8 52.7 59.6 52.7 15.5

Teddy Non-occ 14.5 11.7 15.0 22.9 11.9

Vintage Non-occ 51.8 52.8 47.7 41.7 30.1

Average 36.6 25.3 35.1 41.2 21.9
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rate is slightly lower than S-ASW, our method utilizes more information from segmen-

tation instead of only assign weight to 1 with the same segment. According to the re-

finement steps, the edge areas of the depth maps can be reasonably reconstructed.

With the proposed algorithm, the disparity maps show accurate, which helps to im-

prove the performance in the DIBR system for multi-view synthesis [42]. Figures 15,

16, 17 and 18 show the results achieve by the referenced methods for Cones, Teddy,

Tsukuba, and Venus images, respectively.

.

5 Conclusions
In this paper, we proposed a segment-based adaptive stereo matching algorithm and a

dual-path disparity segment-based refinement method. The former can provide a rea-

sonable good raw disparity map, and the latter can effectively enhance the raw disparity

map into high-quality ones. The contributions of the proposed method include

Fig. 15 Estimated disparity maps of Cones achieved by a Kuo et al. [27], b Kuo [28], c Hsieh [29], d Sun
[31], e ASW [21], f S-ASW [23], g LF-SM [36], and h the proposed method

Fig. 16 Estimated disparity maps of Teddy achieved by a Kuo et al. [27], b Kuo [28], c Hsieh [29], d Sun
[31], e ASW [21], f S-ASW [23], g LF-SM [36], and h the proposed methods
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adaptive cost selection, the segment-based adaptive weights for cost aggregation, two-

level WTA strategy, and dual-path depth refinement. For small holes, the depth refine-

ment uses maximum-weighted candidate for the best filling process. For non-border

big holes, the background filling strategy is adopted by consideration of color and prox-

imity information. And for border holes, the megapixel-based filling process is sug-

gested to achieve better results. The proposed stereo matching system tested on

Middlebury stereo datasets shows the best performances among all compared methods.

Especially in the edge areas of the depth maps, it can reasonably reconstruct depth

values of the objects. The experimental results show that the proposed system can

reach high-quality depth maps for 3D video broadcasting with 3D-HEVC [43, 44] and

CTDP-HEVC [45, 46] formats. Comparing with the deep-learning methods, the pro-

posed system can be applied to various databases. As to learning-based approaches with

Fig. 17 Estimated disparity maps of Tsukuba achieved by a Kuo et al. [27], b Kuo [28], c Hsieh [29], d Sun
[31], e ASW [21], f S-ASW [23], g LF-SM [36], and h the proposed methods

Fig. 18 Estimated disparity maps of Venus achieved by a Kuo et al. [27], b Kuo [28], c Hsieh [29], d Sun [31],
e ASW [21], f S-ASW [23], g LF-SM [36], and h the proposed methods
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convolutional neural networks, they have problems in data dependencies and are easily

blurred at depth edges because of the designs of the loss functions.

Abbreviations
3D: Three-dimension; DIBR: Depth image-based rendering; SAD: Summation of absolute differences; WTA: Winner-take-
all; LRC: Left right consistency check; SLIC: Simple linear iterative clustering; ASWs: Adaptive support weights; S-
ASW: Segmentation-based adaptive support weight; LP-SM: An improved stereo matching algorithm applied to 3D
visualization of plant leaf; E-SM: Variable window size for stereo image matching based on edge information;
tMGM: SGM variants for dense stereo matching; iResNet: Learning for disparity estimation; CTDP: Centralized texture
depth packing

Acknowledgements
The authors deeply thank the Editor and anonymous reviewers who have spent their valuable time to review this
paper and give constructive suggestions for improvements of formatting and readability of the paper.

Authors’ contributions
C.-S. Huang carried out image processing studies, participated in the proposed system, and drafted the manuscript. Y.-
H. Huang carried out the software simulations and adjustment parameters. D.-Y. Chan and J.-F. Yang conceived of the
study and participated in its design and coordination and helped to draft the manuscript. All authors read and
approved the final manuscript.

Funding
This work was supported in part by the Ministry of Science and Technology of Taiwan, under Grant MOST 106-2221-E-
006 -038 -MY3.

Availability of data and materials
All the data and material are from Middlebury datasets, which have been mentioned in the references.

Competing interests
The authors declare that they have no competing financial interests.

Author details
1Department of Electrical Engineering, National Cheng Kung University, 1, University Rd, Tainan City, Taiwan.
2Department of Computer Science and Information Engineering, National Chia-Yi University, Chia-Yi, Taiwan.

Received: 29 February 2020 Accepted: 17 August 2020

References
1. R. Kaiser, D. Schatsky, For more companies, new ways of seeing – Momentum is building for augmented and virtual

reality in the enterprise. Deloitte, Insights 5 (2017)
2. L. Zhang, Fast stereo matching algorithm for intermediate view reconstruction of stereoscopic television images, IEEE

Trans Circuits Syst Video Technol, 16(10), 1259 – 1270, Oct. (2006).
3. S. Carmichael, Using 3D immersive technologies for organizational development and collaboration. Organizational

Dynamics Working Papers, University of Pennsylvania, May 1 (2011)
4. KPMG – FOCCI, The future: now streaming, Indian Media and Entertainment Industrial Report, (2016).
5. J. H. Joung, K. H. An, J. W. Kang, M. J. Chung and W. Yu, 3D environment reconstruction using modified color ICP

algorithm by fusion of a camera and a 3D laser range finder, Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems, October 11-15, 2009, St. Louis, USA (2009)

6. S. Kriegel, C. Rink, T. Bodenmüller and M. Suppa, Efficient next-best-scan planning for autonomous 3D surface
reconstruction of unknown objects, J. Real-Time Image Proc., 10(4), 611-631, Dec. (2015).

7. X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, R. Urtasun, 3D object proposals for accurate object class
detection, Proc. of Advances in Neural Information Processing Systems 28 (NIPS), (2015)

8. S. Song and J. Xiao, Sliding shapes for 3D object detection in depth images, Proc. of European Conference on
Computer Vision. Pp.634-651, (2014).

9. E. Zappa, P. Mazzoleni, Y. Hai, Stereoscopy based 3D face recognition system. Proc Comput Sci. 1(1), 2529–2538 (2010)
10. S.C. Chan, H. Shum, K. Ng, Image-based rendering and synthesis. IEEE Signal Process. Mag. 24(6), 22–33 (2007)
11. I.P. Howard, B.J. Rogers, Binocular Vision and Stereopsis (Oxford University Press, USA, 1995)
12. Y. Boykov, O. Veksler, R. Zabih, Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Machine

Intell 23(11), 1222–1239 (2001)
13. X. Sun, X. Mei, S. Jiao, M. Zhou and H. Wang, Stereo matching with reliable disparity propagation, Proc. of International

Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, Hangzhou, 2011, pp. 132-139. (2011)
14. J. Sun, N.-N. Zheng and H.-Y. Shum, Stereo matching using belief propagation, IEEE Trans Pattern Anal Machine Intell,

25(7), 787-800, July (2003).
15. O. Veksler, Stereo correspondence by dynamic programming on a tree, Proc. of IEEE Conference on Computer Vision

and Pattern Recognition, (2005).
16. W. Luo, A. G. Schwing and R. Urtasun, Efficient deep learning for stereo matching, Proc. of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 5695-5703. (2016)
17. M. Humenberger, T. Engelke, and W. Kubinger, A census-based stereo vison algorithm using modified semi-global

matching and plane fitting to improve matching quality, Proc. of IEEE Computer Vision Patter Recognition Conf., pp. 77-
84, (2010).

Huang et al. EURASIP Journal on Image and Video Processing         (2020) 2020:38 Page 18 of 19



18. N. Y.-C. Chang, T.-H. Tsai, B.-H. Hsu, Y.-C. Chen, T.-S. Chang, Algorithm and architecture of disparity estimation with mini-
census adaptive support weight, IEEE Trans Circuits Syst Video Technol, 20(6), 792 – 805, June (2010).

19. T. Chen and W. Li, Stereo matching algorithm based on adaptive weight and local entropy, Proc. of the 9th
International Conference on Modelling, Identification and Control (ICMIC), Kunming, 2017, pp. 630-635. (2017)

20. O. Veksler, Fast variable window for stereo correspondence using integral images, Proc. of IEEE Conference on
Computer Vision and Pattern Recognition, Madison, WI, USA, 2003, pp. I-I. (2003)

21. K. J. Yoon and I. S. Kweon, Adaptive support-weight approach for correspondence search, IEEE Trans Pattern Anal
Machine Intell, 28(4), 650-656, April (2006).

22. K. Zhang, J. Lu and G. Lafruit, Cross-based local stereo matching using orthogonal integral images, IEEE Trans Circuits
Syst Video Technol, 19(7), 1073-1079, July (2009).

23. F. Tombari, S. Mattoccia, L. Di Stefano, Segmentation-Based Adaptive Support for Accurate Stereo Correspondence in
Lecture Notes in Computer Science, Berlin, Germany: Springer, 4872, pp. 427-438, Dec. (2007).

24. D. Chang, S. Wu, H. Hou, L. Chen, Accurate and fast segment-based cost aggregation algorithm for stereo matching.
Proc. of IEEE 19th International Workshop on Multimedia Signal Processing, 1–6 (2017, 2017)

25. H. Zhu, J. Yin, D. Yuan, SVCV: Segmentation volume combined with cost volume for stereo matching. IET Comput. Vis.
11(8), 733–743 (2017)

26. S. B. Kang, R. Szeliski and J. Chai, Handling occlusions in dense multi-view stereo, Proc. of IEEE Conf. on Computer Vision
and Pattern Recognition, Kauai, HI, USA, 2001, pp. I-I, (2001)

27. P.C. Kuo, K.L. Lo, H.K. Tseng, K.T. Lee, B.D. Liu, J.F. Yang, Stereoview to multiview conversion architecture for auto-
stereoscopic 3D displays. IEEE Trans Circuits Syst Video Technol 28(11), 3274–3287 (2017)

28. H. T. Kuo, VLSI Implementation of real-time stereo matching and centralized texture depth packing for 3D video
broadcasting, M.S. Thesis, National Cheng Kung University, Tainan, Taiwan, July (2017).

29. C. L. Hsieh, A two-view to multi-view conversion system and its VLSI implementation for 3D displays, M. S. Thesis,
National Cheng Kung University, Tainan, Taiwan, July (2017).

30. A. Emlek, M. Peker and K. F. Dilaver, Variable window size for stereo image matching based on edge information, Proc.
of International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, 2017, pp. 1-4. (2017)

31. T. Y. Sun, Stereo matching and depth refinement on GPU platform, M. S. Thesis, National Cheng Kung University, Tainan,
Taiwan, July (2018).

32. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE Trans Pattern Anal Machine Intell 34(11), 2274–2282 (2012)

33. D. Scharstein and R. Szeliski, High-accuracy stereo depth maps using structured light, IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2003), volume 1, Madison, WI, pp. 195-202 June 2003.

34. D. Scharstein and C. Pal, Learning conditional random fields for stereo, IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2007), Minneapolis, MN, Jun, (2007).

35. D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nesic, X. Wang, P. Westling, High-Resolution Stereo
Datasets with Subpixel-Accurate Ground Truth, German Conference on Pattern Recognition (GCPR 2014) (Münster,
Germany, Sep, 2014)

36. Liu, Zhi-chao, Li-hong Xu, and Chao-feng Lin. An improved stereo matching algorithm applied to 3D visualization of
plant leaf. 2015 8th International Symposium on Computational Intelligence and Design (ISCID). 2. IEEE, (2015).

37. Emlek, A., Peker, M., & Dilaver, K. F., Variable window size for stereo image matching based on edge information, 2017
International Artificial Intelligence and Data Processing Symposium (IDAP), IEEE, pp. 1–4, September (2017).

38. Song, X., Yang, G., Zhu, X., Zhou, H., Wang, Z., & Shi, J, AdaStereo: a simple and efficient approach for adaptive stereo
matching, arXiv preprint arXiv:2004.04627. (2020)

39. Patil, Sonali, Tanmay Prakash, Bharath Comandur, and Avinash Kak., A comparative evaluation of SGM variants (including
a new variant, tMGM) for dense stereo matching, arXiv preprint arXiv:1911.09800, (2019).

40. Liang, Z., Feng, Y., Guo, Y., Liu, H., Chen, W., Qiao, L., ... & Zhang, J, Learning for disparity estimation through
feature constancy. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2811-
2820, (2018).

41. Duggal, Shivam, Shenlong Wang, Wei-Chiu Ma, Rui Hu, and Raquel Urtasun, DeepPruner: learning efficient stereo
matching via differentiable PatchMatch., In Proceedings of the IEEE International Conference on Computer Vision, pp.
4384-4393. (2019).

42. K. J. Hsu, GPU implementation for centralized texture depth depacking and depth image-based rendering, M. S. Thesis,
National Cheng Kung University, Tainan, Taiwan, July (2017).

43. G. Tech, K. Wegner, Y. Chen, and S. Yea, 3D HEVC test model 3. Document: JCT3VC1005. Draft 3 of 3D-HEVC Test Model
Description. Geneva, (2013).

44. D. Rusanovskyy, K. Müller, and A. Vetro, Common test conditions of 3DV core experiments, joint collaborative team on 3D
video coding extensions of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Document no. JC3VC-E1100, Vienna,
Aug. (2013).

45. J.-F. Yang, K.-T. Lee, G.-C. Chen, W.-J. Yang and Lu Yu, A YCbCr color depth packing method and its extension for 3D
video broadcasting services, IEEE Trans. on Circuits and Systems for Video Technology, ISSN: 1051-8215, Online ISSN:
1558-2205 Digital Object Identifier: https://doi.org/10.1109/TCSVT.2019.29342541, pp.1-11. (2019)

46. W.-J. Yang, J.-F. Yang, G.-C. Chen, P.-C. Chung, M.F. Chung, An assigned color depth packing method with centralized
texture depth packing formats for 3D VR broadcasting services. IEEE J Emerg Selected Topics Circuits Systems 9(1), 122–
132 (2019)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Huang et al. EURASIP Journal on Image and Video Processing         (2020) 2020:38 Page 19 of 19

https://doi.org/10.1109/TCSVT.2019.29342541

	Abstract
	Introduction
	Local stereo matching methods
	Local stereo matching process
	Matching cost computation
	Cost aggregation
	Raw disparity estimation
	Disparity refinement

	Simple linear iterative clustering

	The proposed stereo matching system
	Adaptive stereo matching computation
	Adaptive cost selection

	Cost aggregation with SLIC-based ASW
	Two-level WTA strategy
	Iterative dual-path depth refinement
	Small hole filling
	Dual-path big hole filling


	Results and discussion
	Results achieved by the proposed system
	Comparisons with other approaches

	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

