Shi et al. EURASIP Journal on Image and Video Processing (2020) 2020:35 EURASIP JO urna | on | mage
https://doi.org/10.1186/s13640-020-00519-1 . .
and Video Processing

Consistent constraint-based video-level ®

Check for

. ° . o updates
learning for action recognition
Qinghongya Shi'?3, Hong-Bo Zhang'?3" ®, Hao-Tian Ren'43, Ji-Xiang Du'?3 and Qing Lei'43
*Correspondence:
zhanghongbo@hqu.edu.cn Abstract
1 i . . .
aEgﬂaet;”:;;g;CﬁgzgjSc'ence This paper proposes a new neural network learning method to improve the
University, Xiamen, Fujian, China performance for action recognition in video. Most human action recognition methods
2Fujian Key Laboratory of Big Data use a clip-level training strategy, which divides the video into multiple clips and trains

. : , p 9 gy ple clip

B;fv"égr;:yc‘;;”nfesne%‘g%HC“;?]:’O the feature learning network by minimizing the loss function of clip classification. The
Full list of author information is video category is predicted by the voting of clips from the same video. In order to
available at the end of the article obtain more effective action feature, a new video-level feature learning method is

proposed to train 3D CNN to boost the action recognition performance. Different with
clip-level training which uses clips as input, video-level learning network uses the entire
video as the input. Consistent constraint loss is defined to minimize the distance
between clips of the same video in voting space. Further, a video-level loss function is
defined to compute the video classification error. The experimental results show that
the proposed video-level training is a more effective action feature learning approach
compared with the clip-level training. And this paper has achieved the state-of-the-art
performance on UCF101 and HMDB5 1 datasets without using pre-trained models of
other large-scale datasets. Our code and final model are available at https://github.
com/hqu-cst-mmc/VLL.
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1 Introduction

Action recognition has gradually become a research hotspot in computer vision and
pattern recognition, which is widely applied in intelligent video surveillance, virtual real-
ity, motion analysis, and video retrieval. How to improve the accuracy of human action
recognition has been studied by many researchers.

Many methods have been proposed to recognize action in video in recent years. The
key to these methods is to learn effective action feature from input data. Several different
neural networks are employed in these methods, such as 3D convolutional neural network
(ConvNets) [1, 2], multi-stream 2D ConvNets [3-5], and recurrent neural network [6, 7].
The difference between video feature and image feature is whether it contains temporal
information. To deal with the different temporal length of video and reduce computa-
tional complexity, the input video is divided into a clip set. Each clip has the same number
of frames, and the video label is assigned to each clip. In the training stage, the parameters
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of network are learned from annotated action clips. In the testing stage, each clip in video
is classified by the network and the video category is predicted by the voting strategy. This
training approach in these methods is named as clip-level training in this work.

Although these works have obtained some significant results, there are some limitations
in clip-level learning. First, to feed into the convolutional network, each clip is segmented
from video with fixed length by dense sampling or sparse sampling. However, short clip
cannot obtain the complete temporal information of human action in video. Therefore,
the vision features extracted from the model, which is trained by the clip set, cannot accu-
rately represent the action. Second, during the training stage, the calculation process of
each clip is independent in these clip-level methods. It ignores the correlation between
clips in the same video. To solve these problems, this paper proposes a new action feature
learning method, called video-level learning.

The object of video-level learning is to train the network which can provide more com-
plete and effective video representation rather than clip representation. In video-level
learning, the input of network is the initial video. In the pre-processing stage, the video is
also divided into a clip set. The video label is assigned as the label of the clip set, rather
than each clip. The difference between clip-level and video-level is shown in Fig. 1. The
video-level learning can be regraded as the problem of set learning. The clip set covers
all the content of the video; therefore, the features learned from the clip set can contain
richer action information than those features learned from a single clip.

To build the video-level learning model, the core is to train the parameters of network
through each clip set. In this work, we use 3D ConvNets as the basic network model.
According to the theory of convolutional network [8], in the training stage, we have to tell
3D ConvNets what we wish it to minimize. Therefore, to implement video-level learning,
the video-level loss function is defined in our method. Using the clip set as input, which
sampled from the same video, the video-level loss function of network not only needs to
consider the error rate of clip classification, but also needs to consider the relationship
between the clips in the same video. To solve this problem, in the proposed video-level
learning method, a consistent constraint loss (CCL) function is defined for training the
3D ConvNets. The basic assumption of CCL is that the distance between the clips of the
same video in the voting space should be small. Therefore, in the proposed method, the
video-level loss (VLL) function includes two items: average classification error of clip set
and distance loss of clip set.
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Fig. 1 Comparison of the video-level learning framework and the clip-level learning framework. V; is the ith
video, and L; means action label. Cj’ is the jth clip in video i, and m; is the number of clip in video i

Page 2 of 14



Shi et al. EURASIP Journal on Image and Video Processing (2020) 2020:35 Page 3 of 14

In summary, although most of clip-level-based approaches also take several clips as a
batch and feed into the network in the actual training process, there are still two main
differences between clip-level learning and video-level learning. First, the input data of
video-level learning is the clips which are sampled from the same video instead of select-
ing clips randomly in the clip-level learning. At the same time, the number of clips, which
corresponds to the batch size in the training stage, will change dynamically in video-level
learning. In other words, the batch size is dynamic in the proposed method. It depends
on the video length and sampling method. This means that during the training phase,
the network can better adapt video data with different temporal scale and learn more
complete information, while in clip-level learning, the number of clips is fixed, which is
determined by the pre-defined batch size.

Second, clip-level learning methods use clip classification error as the loss function,
such as the average of cross entropy loss of input clips. In video-level learning, a new
classification loss of video needs to be defined, such as VLL defined in this paper. The
framework of video-level learning is shown in Fig. 1.

Finally, in the testing stage, this paper uses the same voting strategy in clip-level
learning to achieve video action classification. The contributions of this paper are
threefold:

(1) We propose a new end-to-end training method for video-level feature learning to
improve the accuracy of action recognition.

(2) For video-level training, consistent constraint loss is defined to minimize the distance
between clips of the same video in voting space. A new loss function of video
classification is designed to unify all clips that belonged to the same video.

(3) The experimental results demonstrate that the proposed method is effective. The
network trained by the video-level method has better performance than the clip-level
method. And without using the pre-trained model of other large-scale data, the
proposed method provides higher recognition rates than those of state-of-the-art
action recognition methods.

The remainder of this paper is organized as follows. Section 2 introduces the related
works, Section 3 describes the algorithms used to implement the proposed method,
Section 4 presents and discusses the experimental results, and finally, Section 5 concludes
this paper.

2 Related work

Many human action recognition methods have been proposed in recent years. Zhang et
al. [9] summarized the work in recent years from different data perspectives including
RGB video-based methods [1, 2, 10, 11], depth data-based methods [12, 13], and skeleton
data-based methods [14—16]. Although research based on depth and skeleton data has
attracted some attention, human action recognition methods in RGB video have always
been the mainstream research direction. The paper also focuses on the human action
recognition methods in video.

In recent studies, deep learning methods have shown good performance in feature exac-
tion and action recognition. They have become the mainstream method of computer
vision research. In [17, 18], for real-time face landmark extraction, the authors proposed
a new model called EMTCNN that extended from multi-task cascaded convolutional
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neural network. To learn action feature, there are two main network structures in these

methods: 3D ConvNets and multi-stream structure.

2.1 3D ConvNets for action recognition

3D ConvNets is extended from 2D ConvNets, and its convolution kernel contains three
dimensions: the two dimensions represent the space information and the other dimension
represents the temporal information. 3D convolution kernel can calculate both tempo-
ral and spatial features, but it also has more parameters, making the computation of 3D
convolutional network larger. Tran et al. [2] first proposed 3D convolutional network
for learning spatio-temporal features. Carreira et al. [1] proposed inflated 3D ConvNets
(I3D) and used pre-trained models from large dataset to obtain the highest accuracy of
human action recognition, such as Kinetics [19] and ImageNet dataset. In [10], a pseudo-
3D residual networks (P3D) is proposed to learn spatial-temporal representation. Hara
et al. [20] extended the 2D ResNet to 3D structure and proposed the ResNeXt method
to recognize action. And Tran et al. [11] tried to decrease the number of parameters,
making the 3D convolution kernel decomposing to 2D spatial convolution kernel and 1D
temporal convolution kernel.

2.2 Multi-stream structure for action recognition.

To model the temporal information, several methods added the correspondence motion
sequence of the input video to the feature learning network, such as optical flow image
sequence and motion boundary sequence. Simonyan et al. [21] used a two-stream struc-
ture to calculate the appearance and motion from image and optical flow sequence
respectively. The appearance feature and motion feature were fused as the action feature.
Wang et al. [22] proposed temporal segment networks (TSN) which used sparse tempo-
ral sampling to obtain long-range temporal information. In addition, some works applied
the self-supervised approaches to learn video feature based on multi-stream structure.
Wang et al. [23] proposed a two-stream-based self-supervised approach to learn visual
feature by regressing both motion and appearance statistical information without action
label. In this work, both RGB data and optical data were used to compute appearance and
motion respectively. Crasto et al. [24] introduced a learning network instead of the effect
achieved by optical flow, but it also needs optical flow to train. Wang et al. [25] proposed
two-stream and 3D ConvNets fusion mode to recognize human action with arbitrary size
and length.

In addition, there are also some works using an attention module to improve the
accuracy of action detection and recognition [26—28]. Li et al. [26] proposed an attention-
based GCN for action detection in video to capture the relations among proposals and
reduce the redundant proposals. And in [28], the authors proposed a new spatio-temporal
deformable ConvNet model with an attention mechanism, which takes into consideration
the mutual correlations in both temporal and spatial domains, to effectively capture the
long-range and long-distance dependencies in the video actions.

However, all the above methods use clip-level training strategy. And due to that long-
range clip needs higher computational costs, the length of the clip is short, generally 16
frames in these works. In this paper, 3D ConvNets is also used as the basic network.
Different with these methods, this paper uses the video-level method instead of the clip-
level method to train more accuracy feature representation network. In addition, some
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works used the large dataset, such as sports1M [29] and Kinetics [19], to achieve high
performance. However, large dataset implies greater computational costs. How to obtain
more higher recognition performance without pre-trained model is still an issue that is
worth to study. It is also discussed in this paper.

3 The proposed method
3.1 Problem definition
To describe the proposed method of action recognition in this paper, the problem of
video-level learning can be defined as follows. The proposed method uses a set of pair-
wise components D = {< V1,L; >, < V,,Ly >, ..., < V,,, L, >} to present the input data,
where V; denotes the ith video in the dataset, L; is the correspondence action label, and
n is the number of the videos. In this paper, the input video is segmented into a clip set
Vi = {Ci, Cé, - Cﬁm}, where C} is the jth clip in ith video and m; is the size of the clip
set sampled from video. The input of network < V;, L; > is transferred to a new pairwise
of clip set and label < { i, Cé, s Cﬁni} ,L; >, as illustrated in Fig. 1. This paper samples
a fixed-length continuous frames from the video as a clip. The process of clip generation
is shown in Fig. 2. Referring to the clip-level learning methods [1, 2, 23], the length of the
clip is set to 16 frames in this paper.

Suppose that the proposed model can be defined as a function L; = f(V;). The task
of the training stage is to learn the parameters in this function. After parameter training,
given a testing video V4, the category of the video L; is calculated by this function. The

detail of the proposed model is described in the following section.

Li=f(Vy =f({Cl,C5...CL.}) (1)

3.2 Network structure and video-level learning

In this work, the proposed network uses 3D ConvNets as the feature extractor. The
network structure of the proposed network is shown in Fig. 3. In order to make the param-
eters of network as few as possible, we only use 5 convolution layers and 5 pooling layers
(each convolution layer is immediately followed by a pooling layer), 2 fully connected lay-
ers and a softmax layer to predict action labels. Inspired by the previous works of 3D
ConvNets [1, 2, 23], all of the convolutional kernels are set to 3 * 3 x 3 in the proposed
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Fig. 2 The process of clip generation
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To improve the action recognition performance of 3D ConvNets, the video-level learn-
ing strategy is proposed in this paper. In our method, the network used the whole video
as the input. The network needs to process clip set with different size. Therefore, the
network extracts the feature for each clip independently. To achieve video-level training,
the video-level loss is defined by minimizing the classification error of each clip and the

distance of each clip pair, which is named as consistent constraint loss in this paper.

3.3 Video-level loss function

The most common loss function of 3D ConvNets is cross entropy function Loss., aiming
to measure the similarity between the distribution of ground truth and the distribution
of predicted label, as shown in Eq. 2. In clip-level learning, the 3D ConvNets is trained by
minimizing the classification error of clips.

N
Lossce (,7) = — ZJ’/‘ log (%)) @
j=1

where y is the one-hot vector of ground truth of the input video, N is the number of
category, and ¥ is the predict score of the clip.

However, this strategy ignores the relationship between clips. To address this problem,
video-level loss is proposed in this work. To calculate video-level loss, the video classifica-
tion loss is computed by the average of cross entropy function of all clips from same video.
And more importantly, the distance of these clips in voting space is defined as the con-
sistent constraint loss Loss;. Finally, the video-level loss Loss,; is a combination of the
average Loss., and Loss,, as shown in Fig. 4. The calculation process of these functions

is defined as follows.

1 & .
Lossyy =(1 —a)— Z Lossce (%), 7))
m; =1 (3)

+ aLoss.y

where m; is the size of the input clip set corresponding to the ith video and « is the
balanced weight of cross entropy loss function and consistent constraint loss function.
To achieve the assumption of the consistent constraint, which means the output of the
network for each clip from the same video should be consistent, this paper uses the out-
put vector of the network as the input of consistent constraint loss function. And the
consistent constraint is computed by the distance of each clip pair in the same video. The
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purpose of adding this constraint to the video-level loss function is to make the network
provide more closer the classification score for clips from the same video. In this work,
there are several consistent constraint loss functions that are discussed.

First, the average of Euclidean distance of each clip pair is applied to compute the
consistent constraint loss. It is defined as Euclidean distance loss as shown in Eq. 4.

2 m; mj
Loss?f = ——— —— ik — Vi 4
= o =D ZZnyk Jilly (4)
k=1 j>k
where % is the number of clip pair in the input set. Because Euclidean distance of
clip pair is symmetric, that is ||y — yjll, = [l; — ykll,, we only calculate one of them in

Eq. 4. The index of k is from 1 to m;, and the index of j is from k + 1 to m;, total %

items.

Further, during the training process, the distribution of prediction scores of the samples
with incorrect prediction should be more and more consistent with the samples with
correct prediction. Therefore, the consistent constraint loss function is further defined in
Eq. 5, which is named as error direction loss.

Loss7) = = i — Rmeanl 6
¢ icE
where E is the set of samples that are predicted incorrectly in each round of training. N,
is the size of set E, and N, < m;. Riyean is the mean vector of the prediction score of the
samples that are predicted correctly.

Finally, the consistent constraint loss proposed in this paper is composed of Egs. 4 and 5,
as shown as follows. During the training, we not only make the output of the network
more consistent for the clips in the same video, but more importantly, we require the
network to adjust the output of the clips, which are incorrectly predicted, to be more
consistent with the output of the clips that are predicted correctly.

Loss&f N, = m;||[N, = 0

LossZ ; others

Loss,y = l (6)
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4 Experimental results and discussion
In this section, some experiments are performed on UCF101 [30] and HMDB51 [31]
datasets to verify the effectiveness of the proposed video-level learning method.

4.1 Dataset and experiment setting

UCFI01 dataset. UCF101 contains 101 action categories, total 13320 videos which are
collected from YouTube. It is one of the most commonly used datasets in the research
of action recognition. Each video has been divided into several clips, total 148166 clips
in this experiment. And UCF101 provides the diversity in terms of actions, and with the
presence of large variations in camera motion, object appearance, and pose, it is also a
challenging dataset.

HMDBS51 dataset. HMDB51 collects the videos from various sources, mostly from
movies, and a small proportion from public databases such as the Prelinger archive,
YouTube, and Google videos. The dataset contains 6766 videos with 51 action categories,
each containing a minimum of 101 clips.

In the experiment, this paper uses standard training/testing splits from the official web-
site of these datasets. To reduce the parameters of 3D ConvNets, this paper uses relu
function as activate function and set dropout value to 0.05. All input images are resized to
112*112 with random crop. The entire network is fine-tuned with SGD on 0.001 learning
rate. And every 2000 iterations, the learning rate decreased by 0.1. The balanced weight
of video-level loss function is set to 0.3. The proposed method is implemented on two
NVIDIA GeForce RTX 2080Ti GPUs which take about 8 and 2.5 h to train the model on
UCF101 and HMDB51 datasets respectively. For fair comparison, in the testing, all meth-
ods use the accuracy of video category, which is predicted by the voting of clip category
in this video, as the measure metric.

4.2 Performance evaluation on UCF101

4.2.1 Comparison of video-level training and clip-level training

To compare the performance of video-level and clip-level training, some experimental
results are shown in Table 1. In Table 1, using clip-level training with cross entropy loss
function, the accuracy of action classification is 51.52%. The action classification accuracy
of the network, which is trained by video-level strategy with the same loss function, is
53.44%. From this comparison, it can be seen that video-level training is more effective
than clip-level training, and the accuracy is improved by 1.92%.

4.2.2 Comparison of different loss functions in video-level training

In video-level training, the proposed loss functions also are discussed in the experi-

euc

ment. In Table 1, Loss,;; (Losscd

) indicates that Euclidean distance loss function Loss{f

Table 1 Accuracy of clip-level training and video-level training with different loss functions

Training method Loss function UCF101 (%)

Clip level Lossce 5152
LOSSce 5344

Video level Lossyy (Lossl)) 55.38
Lossyy (Losse) 57.11

Lossyy (LosSccr) 58.76
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Fig. 5 Recognition accuracy with different weight «

is used as the consistent constraint loss function in video-level loss function Loss,;.
Loss,; (Lossig ) indicates that error direction loss function Loss{; is applied as the consis-
tent constraint loss function in Loss,y;. And Loss,;; (Loss..;) means using Loss,; function
which is defined in Eq. 6 as the consistent constraint loss function in Loss,;. From this
comparison, the action recognition accuracy of the network which is trained by the video-
level loss function with Euclidean distance loss Loss¢ is 57.11%. It is 3.67% higher than

the results of the network trained by cross entropy loss function.

euc

o ), the network trained by the loss function

Compared to the loss function Loss, (Loss
Loss,y (Lossig ! ) has better recognition performance. Finally, the proposed method, which
uses Loss,y; (Loss,) function to train the 3D ConvNets, obtains the highest accuracy

58.76%, which is 7.24% higher than the network trained by clip-level training.

4.2.3 Balanced weight discussion

The performance of different weight value « in video-level loss function Loss,; is shown
in Fig. 5. In this experiment, the consistent constraint loss function in Loss,; use Loss.;
function defined in Eq. 6, and « is set from 0.1 to 0.9. In Fig. 5, « = 0.3 achieves the best

recognition accuracy.

4.2.4 Comparison with the state-of-the-art
To evaluate the effectiveness of the proposed method, the accuracy of the proposed
method is compared with the state-of-the-art methods. The comparison results are

Table 2 Comparison results of the proposed with other state-of-the-art action recognition methods

Training method Method Accuracy (%)
3D [2] 5152
Geometry [32] 55.2

Clip level CD-UAR [33] 425
3D-ShuffleNetV2 [34] 56.52
MASN [23] 5344

Video level Ours 58.76
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shown in Table 2. None of the methods in Table 2 uses the pre-trained of other large
datasets. Table 2 indicates that the proposed method has the better recognition accuracy.

4.2.5 Qualitative evaluation

To further verify the effectiveness of the proposed method, we show some action
recognition results of video-level training and clip-level training. We use red to repre-
sent the corresponding ground truth, and other colors for the rest of the categories.
We select three videos for qualitative evaluation. Some examples of these videos are
shown in Fig. 6. These samples are selected from three different action categories:
“ApplyEyeMakeup,” “ApplyLipstick,” and “BabyCrawling” Each video contains 16 clips.
Each clip has 16 frames. Figures 7 and 8 show the recognition results of these three
samples.

In Fig. 7a, it is the vote distribution of the clips in testing video. Each clip category
is predicted by the clip-level training model. From Fig. 7a, we can find that based on
the clip-level training model, only one clip is correctly classified, and the other 15 clips
are classified into the wrong category in sample 1. In sample 2, two clips are correctly
classified, and the other 14 clips are classified into the wrong categories. In sample 3, there
are 7 clips correctly classified. Therefore, based on clip-level training, the recognition
results of sample 1 and sample 2 are wrong, and sample 3 is correctly predicted. Similarly,
Fig. 7b is the clip vote distribution predicted by the video-level training model. Based on
the video-level training model, in these samples, the number of correctly classified clips
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5 8 8 8
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g 6 £ 6
z 4 Z 4
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0 | I | 0
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(a) Clip-level training (b) Video-level training
Fig. 7 Visualization of action recognition result by voting




Shi et al. EURASIP Journal on Image and Video Processing (2020) 2020:35 Page 11 of 14

0.8 1
0.7
0.6 08
.. 05 o 0.6
= 04 =
g 03 5 04
= =
& 02 = 02
o1 | [
0 0
Samplel Sample2 Sample3 Samplel Sample2 Sample3
(a) Clip-level training (b) Video-level training
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has increased significantly. For example, in sample 1, there are 15 clips correctly predicted
and only one clip is classified incorrectly. Finally, both sample 1 and sample 2 can be
correctly classified by using the video-level training model.

In addition, we can obtain the same conclusion from the probability of video classi-
fication. Figure 8a shows the top 5 probabilities of video classification by the clip-level
training, while Fig. 8b shows the top 5 probabilities of video-level training. We choose the
category with the highest predict probability as the predict result. From the comparison,
it can be found that based on the video-level training model, sample 1 and sample 2 can be
adjusted from the classification error to a high probability on the category corresponding
to ground truth, and then correctly classified. For sample 3, the probability corresponding
to ground truth is increased by using the video-level training model.

4.3 Performance evaluation on HMDB51

4.3.1 Comparison of video-level training and clip-level training

In this section, we evaluate the performance of the proposed method on the HMDB51
dataset. HMDB51 is less than UCF101, which has only 51 classes. Table 3 shows the
experimental results. From Table 3, we can find that compared with clip-level training,
using the same cross entropy loss function, the model trained by video-level strategy can
improve the recognition accuracy from 32.6 to 33.15%.

As the above introduction, a new loss function Loss,; is used in video-level learning.
Comparing with only cross entropy loss function, the accuracy of the model which is
trained by the proposed consistent constraint loss function in Loss,; is 35.38%, which is
improved by 2.23%.

4.3.2 Comparison with the state-of-the-art
We also compare the proposed method with other state-of-the-art methods on HMDB51
dataset. Table 4 shows the comparison results. Compared with the methods without using

Table 3 Accuracy of clip-level training and video-level training with different loss functions on

HMDB51
Training method Loss function HMDB51
Clip level LoSSce 32.6%

0,
Video level Lossce 33.15%

Lossyy (LosSccr) 35.38%
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Table 4 Comparison results of the proposed with other state-of-art action recognition methods on

HMDBS51

Training method Method Accuracy (%)
Geometry [32] 233
MASN [23] 326

Clip level ST-puzzle (Kinetics) [35] 283
MASN (Kinetics) [23] 334

Video level Ours 35.38

other large-scale dataset to pre-train the model, our method achieves the higher accuracy.
Compared with the methods using Kinetics dataset to pre-train the model, the proposed
method also has better performance. All the above experiments further verify that the
proposed video-level training method is also effective on small dataset.

5 Conclusion

In this paper, we proposed a new neural network training method named video-level
learning to improve the performance of 3D ConvNets. Different with the traditional train-
ing method which used clips as input, the proposed method used the entire video as input.
This method defined a video-level loss function which contained cross entropy loss func-
tion and consistent constraint loss function to train the 3D ConvNets. And in this paper,
we discussed three different consistent constraint loss functions. The experimental results
show that in comparison with the clip-level learning method, the proposed method has
better action recognition performance. And the effectiveness of the proposed method is
verified by comparison with the state-of-art methods.

Although the proposed method can effectively improve the accuracy of the network,
this work still has some limitations. In this paper, we only report the results without using
pre-trained models of other large-scale datasets. There are mainly the following reasons.
First, to verify the effectiveness of the proposed method, our motivation is to use the
simplest 3D ConvNets as the basic network to highlight the impact of video-level learning.
The backbone network of 3D ConvNets only contains 5 convolution layers, 5 pooling
layers, 2 fully connected layers, and a softmax layer. Second, we also pay attention to some
complex convolution networks which have been proposed with better performance in
recent years, such as P3D [10] and 3D ResNet [20]. To use these pre-trained models, it
needs to modify the structure of the backbone network to be consistent with the structure
of these well-trained models. However, what kind of network structure is the best for
action recognition still is an open and complex issue in action recognition research.

In the future work, we will try to find more effective 3D convolutional model instead
of the simple 3D ConvNets which is used in this work, discuss the performance of these
methods based on the well-trained models, and apply these methods on other large-scale
action datasets.
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