
EURASIP Journal on Image
and Video Processing

Wang et al. EURASIP Journal on Image and Video Processing         (2020) 2020:28 
https://doi.org/10.1186/s13640-020-00513-7

RESEARCH Open Access

Joint multi-domain feature learning for
image steganalysis based on CNN
Ze Wang1,2, Mingzhi Chen3, Yu Yang1,2* , Min Lei1,2 and Zhexuan Dong4

*Correspondence:
yangyu@bupt.edu.cn
1State Key Laboratory of Public Big
Data, Guizhou University, 550025
Guizhou Guiyang, China
2Laboratory of Cyberspace Security,
Beijing University of Posts and
Telecommunications, 100876
Beijing, China
Full list of author information is
available at the end of the article

Abstract

In recent years, researchers have been making great progress in the steganalysis
technology based on convolution neural networks (CNN). However, experts ignore the
contribution of nonlinear residual and joint domain detection to steganalysis, and how
to detect the adaptive steganographic algorithms with low embedding rates is still
challenging. In this paper, we propose a CNN steganalysis model that uses a joint
domain detection mechanism and a nonlinear detection mechanism. For the nonlinear
detection mechanism, based on the spatial rich model (SRM), we introduce the
maximum and minimum nonlinear residual feature acquisition method into the model
to adapt to the nonlinear distribution of steganography information. For the joint
domain detection mechanism, we not only apply the high-pass filters from the SRM for
spatial residuals, but also apply the patterns from the discrete cosine transform residual
(DCTR) for transformation steganographic impacts, so as to fully capture the
interference trace of spatial steganography to transform domain. We also apply a new
transfer learning method to improve the model’s performance. That is, we apply the
low embedding rate steganography samples to initialize the model, because we think
that the method makes the network more sensitive than applying high embedding
rate steganography samples to initialize the model. The simulation results also confirm
this assumption. Combined with the above improved methods, the detection accuracy
of the model for WOW and S-UNIWARD is higher than that of SRM+EC, Ye-Net, Xu-Net,
Yedroudj-Net and Zhu-Net, which is about 4∼6% higher than that of the optimal
Zhu-Net. The results can provide a certain reference for steganalysis and image
forensics tasks.

Keywords: Image steganalysis, Convolutional neural networks, Feature learning, Joint
domain, Nonlinear detection

1 Introduction
Steganalysis [1] and information hiding are mutually restricted and mutually promoted
[2, 3]. And there is a more hopeful prospect to carry out the steganalysis work. Image
steganography is a technique of hiding secret messages in images. In the transformation
domain, images are converted by discrete cosine transform (DCT) [4], discrete wavelet
transform (DWT) [5], and so on. And the secret messages are embedded in the trans-
formation coefficients. The popular algorithms are J-UNIWARD [6], nsF5 [7], UED [8],
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and UERD [9]. In the spatial domain, steganography algorithms are characterized by
directly changing the pixels. The typical algorithms are the least significant bit (LSB)
[10, 11], LSB matching [12], and pixel value differencing (PVD) [13]. There are also
some steganography algorithms in the compression domain [14]. Those algorithms above
can be regarded as the non-adaptive steganography algorithms. Compared with non-
adaptive steganography algorithms, the adaptive steganography algorithms have been
proved to have better performance. At present, the popular adaptive algorithms are edge
adaptive image steganography (EA) [15], HUGO [16], HILL [17], MiPOD [18], and S-
UNIWARD [6]. And since the security of steganographic algorithms keeps increasing
[19–21], attempts to detect such data hiding methods encounter more challenges.
A traditional steganalysis method is often based on a manual designed feature. The

most often adopted features include a gray level co-occurrence matrix (GLCM) [22], local
binary patterns(LBP) [23], and Gaussian Markov random field. In addition, some per-
ceptual hashing techniques can be applied for steganalysis tasks. The perceptual hash
technology [24, 25] can be used to extract information closely related to human per-
ception of image visual quality, so these perceptual description models can also detect
the tampering trace of steganography. Since the spatial rich model (SRM) [26] algo-
rithm was proposed, a lot of research has been focused on SRM algorithm, and many
improved algorithms have been proposed. Although these algorithms have made perfor-
mance improvements, they fail to solve the key shortcomings of the feature extraction
method. The traditional feature extraction method relies on the characteristics of man-
ual design, the design process depends on the expert experience, and the heuristic
method is usually applied. It means that this kind of steganalysis algorithm is dif-
ficult to deal with the challenge brought by the rapid development of steganalysis
algorithm.
Deep learning technology can effectively solve the problems caused by manual fea-

ture design and is widely used in the field of image perception [27, 28] and steganalysis.
Deep learning technology can automatically recognize and extract features through deep
network, which makes steganalysis technology possible to get rid of the dependence on
expert experience. With the development of graphics processing unit (GPU) and parallel
computing technology, this process has been accelerated. In 2014, Tan and Li [29] pro-
posed the first steganalysis model that applied deep learning techniques. In 2015, Qian
et al. [30] proposed the first convolution neural network (CNN) model using supervised
learning methods, whose steganalysis performance surpasses SRM. In 2016, Xu et al.
[31] proposed a CNN model similar to Qian’s model, the so-called Xu-Net. The differ-
ence is that an absolute value layer (ABS) and a 1×1 convolution kernel are employed
in the Xu-Net. Recently, Qian et al. [32] brought forward a creative concept, called
the transfer learning, to improve steganalysis performance. The above models only cap-
ture spatial steganography features, so they are used to detect spatial steganography
algorithm. Until 2017, the research results of detection for steganography algorithm in
transformation domain gradually appeared. Zeng et al. [33, 34] proposed a JPEG-based
steganalysis model. Xu et al. [35], inspired by ResNet [36], proposed a new CNN ste-
ganalysis model consisting of 20 convolutional layers with batch normalization (BN). Ye
et al. [37] proposed a spatial domain CNN steganalysis model, and they added a trun-
cated linear unit (TLU) activation function to the preprocessing layer. The main trend
in 2017 was to optimize the convolution neural network architecture through ResNet
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and draw on the feature extraction method of SRM. In 2018, Yedroudj et al. [38] pro-
posed a spatial domain CNN steganalysis model consisting of five convolutional layers.
In addition to the traditional image datasets BOSSBass [39], they added the BOWS2
[40] image datasets. Tsang et al. [41] improved Ye-Net, which made the model per-
form steganalysis on high-resolution images. Zhang et al. [42] proposed a new CNN
steganalysis model, and they used the depth separable convolution network and spatial
pyramid pooling (SPP) to obtain the channel correlation and adapt to different sizes of
images. Deep steganalysis technology has made remarkable progress, but there is still
much room for improvement. The existing deep steganalysis technology adopts single
domain mode, that is, only spatial features are captured when detecting spatial steganog-
raphy, and the same is true when detecting transformation domain steganography.
However, steganography in transformation domain will destroy the spatial characteristics
of image, and vice versa. So, the joint domain detection can better capture the trace of
steganography.
In this paper, we propose a novel spatial domain steganalysis model called Wang-Net.

It has the following characteristics:

(1) A joint domain detection concept is brought forward. Joint domain detection is to
capture steganography features in both spatial and transformation domain to
complete steganography detection task. At present, the typical spatial and
transformation domain steganalysis models are Zhu-Net and Xu-Net, which only
extract single domain features. However, the steganography of one domain will affect
other domains, so joint domain detection method can capture more comprehensive
steganography information. We simulate SRM and discrete cosine transform residual
(DCTR) feature extraction methods to detect steganography feature in both spatial
and transformation domain.

(2) The nonlinear feature detection mechanism is introduced. The nonlinear detection
mechanism is to capture the steganographic features through nonlinear
transformation. At present, the famous Ye-Net and Zhu-Net all simulate the linear
feature extraction method of SRM to complete the steganalysis task. However, the
embedding of steganography information is nonlinear, so it is necessary to introduce
nonlinear detection mechanism.We simulate the nonlinear feature extraction of SRM
to complete the design and implementation of the nonlinear detection mechanism.

(3) A new transfer learning method is applied. For Zhu-Net and other steganalysis models
using the transfer learning method, the authors use high embedding rate samples to
initialize the model, in order to solve the problem that the model in the training stage
is difficult to converge to the low embedding rate samples. Compared with high
embedding rate samples, low embedding rate samples have less steganography
information with the same steganography mode. For the transfer learning method in
this paper, the low embedding rate samples are used to initialize the model, in order
to enhance the sensitivity of the model to steganography information.

2 Preliminaries
We mainly extract feature information through high-pass filters (HPFs) from SRM and
DCT patterns from DCTR. The contents of SRM and DCTR are as follows.
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Fig. 1 The feature extraction process of SRM steganalysis

2.1 SRM

The feature extraction method of SRM steganalysis can be seen in Fig. 1. Firstly, the
residual map sub-models are obtained by the high-pass filter, then the fourth-order
co-occurrence matrix of each residual map sub-model is extracted by quantization,
rounding, and truncation. Finally, the elements of these co-occurrence matrices are
rearranged to form the steganalysis feature vector.
Scholars design various HPFs in SRM and use them to generate residual map sub-

models. The original linear residual calculation formula is as follows.

Rmn = pred(Nmn) − cImn (1)

where c is called the residual order,m and n represent the pixel coordinates, Nmn is the
adjacent pixel of image Imn, pred(Nmn) is the predictor of cImn, and Rmn is the residual of
image Imn. Generally, the number of pixels of Nmn is equal to c.
The residuals mainly include first-order, second-order, third-order, SQUARE,

EDGE3x3, and EDGE5x5 six types, and each type of residuals is divided into linear filter-
ing residuals and nonlinear filtering residuals. The typical residuals and high-pass filters
can be seen in Table 1, Eqs.(2), (3), and (4). As shown in Eq.(2), the residuals in the hor-
izontal, vertical, diagonal, and anti-angular directions are denoted as Rh,Rv,Rd,andRm.
The max nonlinear filtering residual is denoted as Rmax, the min nonlinear filtering resid-
ual is denoted as Rmin. As shown in Eq.(3), the left side is the SQUARE3x3 high-pass filter,
and the right side is the SQUARE5x5 high-pass filter. As shown in Eq.(4), the left and right
sides are the EDGE3x3 and EDGE5x5 high-pass filter respectively.

Rmin
ij = min

(
Rh
ij,Rv

ij,Rd
ij,Rm

ij

)
,
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(
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ij,Rm
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) (2)
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Table 1 First-order, second-order, and third-order linear residuals in the horizontal direction

Residual type HPF Linear residual

First-order (1, − 1) Rhij = yi,j+1 − yij
Second-order (1, − 2, 1) Rhij = yi,j−1 − 2yij + yi,j+1

Third-order (1, − 3, 3, − 1) Rhij = yi,j−1 − 3yij + 3yi,j+1 − yi,j+2
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For the linear residual, Table 1 has given the calculation method of the first-order,
second-order, and third-order linear residuals. It is not difficult to find that the linear
residuals of SQUARE, EDGE3x3, and EDGE5x5 only apply more directional neighbor-
hood pixels in the calculation. The SQUARE, EDGE3x3, and EDGE5x5 high-pass filters
are shown in Eqs. (3) and (4). In fact, the linear residual calculation method can be
converted to the convolution operation:

R = I ∗ K = (Rij) =
(∑

r,c
xr,ci,j k

r,c
)

(5)

where (i, j) is the pixel coordinates, and (r, c) is the index of the convolution kernel. xr,ci,j
denotes the pixel value of the fixed neighborhood window index (r, c) of the central pixel
(i, j). kr,c denotes the value of index (r, c) of the convolution kernel, which is the same
size as the fixed neighborhood window. Rij denotes the result of convolution operation
for pixels (i, j). I and K denotes the image and convolution kernel respectively. R denotes
the residual for the whole image. ∗ denotes the convolution operation.
As shown in Eq.(2), the nonlinear residual can be obtained by finding the maximum or

minimum of some linear filtering residuals. As shown in Table 1, we take the first-order
linear residual as the residual prototype; there are totally eight first-order linear residuals:

Rij ={yi,j+1 − yij, yi+1,j+1 − yij, yi+1,j−1 − yij,

yi,j+1 − yij, yi,j−1 − yij, yi−1,j+1 − yij,

yi−1,j − yij, yi−1,j−1 − yij}
(6)

Then, the first-order nonlinear residual is:

Rmin
ij = min{Rij} (7)

Rmax
ij = max{Rij} (8)

The nonlinear residuals combine the statistical characteristics of the same kind of lin-
ear residuals, which fully reflect the adjacent pixels changes in image caused by the
steganography.

2.2 DCTR

In the transformation domain, the DCTR [43] is a general steganalysis algorithm. The
steps of its feature processing are as follows:

(1) Obtain 64 8×8 DCT bases patterns by calculation, then obtain feature maps by
convoluting the decompressed JPEG image with the DCT basis patterns.

(2) Obtain the sub-feature maps by quantifying and truncating the raw feature maps.
(3) Compress the sub-feature maps into an 8000-dimensional feature vector.
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In the above steps, the DCT basic patterns are 8×8 matrices, B(i,j) = (B(i,j)
mn ), 0≤m, n≤7,

and B(i,j)
mn is calculated as follows:

B(i,j)
mn = uiuj

4
cos

π i(2m + 1)
16

cos
π j(2n + 1)

16
(9)

where u0 = 1√
2 ,uk = 1 for k > 0, (i, j) is the pixel coordinates.

DCT is defined as the convolution operation of the image and 64 DCT basic patterns
B(i,j). In order to understand DCT better, we set the length and width of all images to a
multiple of 8. When given a grayscale image I ∈ RM×N of sizeM × N (M, N is a multiple
of 8):

U(I) = {U(i,j)|0 ≤ i, j ≤ 7} (10)

Ui,j = I ∗ Bi,j (11)

where U(i,j) ∈ R(M−7)×(N−7), ∗ denotes a non-padded convolution operation.

3 The proposedmethod
As shown in Fig. 2, our model consists of preprocessing layer, feature extraction layer, and
classification layer. For the preprocessing layer, we simulate the SRM feature extraction
method in the spatial domain and simulate the DCTR feature extraction method in the
transformation domain and added the nonlinear residual features extraction method. For
the general feature extraction stage, we design eight different convolution layers, together
with the fully connected layer as the tenth layer for steganographic detection. Nonlinear
feature extraction method, joint domain detection mechanism, and detailed designs are
introduced in the following sections.

3.1 Nonlinear feature extraction method

At present, the linear feature extraction method of steganalysis model cannot perfectly
adapt to the nonlinear embedding state of steganalysis information, so we design a
nonlinear feature extraction method.
For the linear feature extraction method, like Zhu-Net, we apply six types of SRM

HPFs. All HPFs of the same type are composed of their basic “spams” filters and rota-
tion variants, so as to capture multi-directional and comprehensive residual information
in the same neighborhood. The pixel residual information captured by different types
of HPFs has different statistical characteristics. And compared with lower-order HPFs,

Fig. 2 Integrated structure of the network
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higher-order HPFs can capture pixel residual information of larger neighborhood. These
six types of HPFs contain the first-order, second-order, third-order, SQUARE, EDGE3x3,
and EDGE5x5, and the number of filters are 8, 4, 8, 2, 4, and 4, respectively. We obtain 30
linear residual feature maps through these 30 high-pass filters.
For the nonlinear feature extraction method, we use SRM’s nonlinear feature statis-

tics method to capture the nonlinear residual feature map from these six types of HPFs.
Specifically, SQUARE is divided into SQUARE3x3 and SQUARE5x5. SQUARE3x3, and
EDGE3x3 belong to the same category, so there are two nonlinear residual feature maps
in SQUARE3x3 and EDGE3x3. And there are also two nonlinear residual feature maps
in SQUARE5x5 and EDGE5x5. Finally, we obtain a total of 10 nonlinear residual feature
maps by statistics.
After simulating the linear and nonlinear feature extraction methods, we design two

networks, called the single linear residual feature net (Linear Kernel-Net) and nonlinear
residual feature net (Non-linear Kernel-Net), and carry out the steganography detection.
According to Table 2, forWOW(0.2 bpp),WOW (0.4 bpp), S-UNIWARD (0.2 bpp), and

S-UNIWARD (0.4 bpp), the accuracy of Non-linear Kernel-Net are 0.697, 0.788, 0.609,
and 0.734 respectively, and the accuracy of Linear Kernel-Net are 0.710, 0.819, 0.661,
and 0.766 respectively. The accuracy of Non-linear Kernel-Net is about 2∼6% lower than
that of Linear Kernel-Net. For nonlinear residual features, we roughly calculate the max-
imum and minimum values of each type of linear residual features and do not consider
the distribution characteristics of residual feature values. Therefore, the adjacent pixel
changes in the image caused by steganography are not comprehensively reflected, that is,
the advantage of the nonlinear residual feature is not fully utilized. However, the accu-
racy of Non-linear Kernel-Net is higher than that of CNN steganalysis Network Ye-Net,
indicating that the Non-linear Kernel-Net still has good competition and can enhance the
feature representation. Therefore, we add linear and nonlinear residual features to our
network named All Kernel-Net to continue the steganalysis.
According to the information in Table 3, for WOW (0.2 bpp), WOW (0.4 bpp),

S-UNIWARD (0.2 bpp), and S-UNIWARD (0.4 bpp), the accuracy of All Kernel-Net is
0.714, 0.844, 0.669, and 0.792, which is about 0.4∼6% higher than that of Linear Kernel-
Net and Non-linear Kernel-Net. All Kernel-Net combines the advantages of linear and
nonlinear residual features and has a great steganalysis effect.

3.2 Joint domain detection mechanism

At present, Zhu-Net and other steganalysis models only capture the steganalysis features
from a single domain, without considering the impact of steganalysis on other domains.
And the steganography features captured by these models have the defect of singleness.

Table 2 The performance of Linear Kernel-Net, Non-linear Kernel-Net, and Ye-Net on resampled
images

Algorithms Linear Kernel-Net Non-linear Kernel-Net Ye-Net

WOW (0.2 bpp) 0.710 0.697 0.669

WOW (0.4 bpp) 0.819 0.788 0.768

S-UNIWARD (0.2 bpp) 0.661 0.609 0.600

S-UNIWARD (0.4 bpp) 0.766 0.734 0.688

The involved networks are trained and tested on BOSSBase
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Table 3 The performance of Linear Kernel-Net, Non-linear Kernel-Net, and All Kernel-Net on
resampled images

Algorithms Linear Kernel-Net Non-linear Kernel-Net All Kernel-Net

WOW (0.2 bpp) 0.710 0.697 0.714

WOW (0.4 bpp) 0.819 0.788 0.844

S-UNIWARD (0.2 bpp) 0.661 0.609 0.669

S-UNIWARD (0.4 bpp) 0.766 0.734 0.792

The involved networks are trained and tested on BOSSBase

Therefore, we propose a joint domain detection mechanism based on All Kernel-Net and
simulate the feature extraction method DCTR in the transformation domain.
Small convolution kernels can effectively reduce the parameters scale, and matrix oper-

ations can take full advantage of the parallel computing. Therefore, referring to Zhu-Net,
we design the convolution kernel as a matrix with 94 channels and 5×5 size, which was
initialized with DCT patterns and HPFs. At this point, the calculation formula for the new
DCT patterns is as follows:

B(i,j)
mn = uiuj

5
cos

π i(2m + 1)
10

cos
π j(2n + 1)

10
(12)

where u0 = 1,uk = √
2 for k > 0, 0 ≤ m, n ≤ 4, 0 ≤ i, j ≤ 7.

In this way, we add the matrix initialized by DCT patterns and HPFs to the prepro-
cessing layer. The network is called Wang-Net that combines the advantages of linear
and nonlinear feature extraction in the spatial and transformation domains. We exert the
steganalysis simulation.
According to the results in Table 4, the steganalysis accuracy of Wang-Net for WOW

(0.2), WOW (0.4), S-UNIWARD (0.2), S-UNIWARD (0.4) are 0.749, 0.860, 0.691, and
0.819 respectively, which is about 2∼3% higher than that of All Kernel-Net. It strongly
shows that the joint domain detection mechanism can force the model to learn richer and
more comprehensive steganography features and achieve better steganography detection
performance.

3.3 Detailed design in network architecture

Our network receives an image of 256×256 size and outputs two types of labels. Wang-
Net consists of 10 network layers, including a preprocessing layer, eight convolutional
layers for feature extraction, and a fully connected layer for result classification. For pre-
processing layer, we apply a convolution kernel with the channel number of 94 and the
size of 5×5, which is initialized by the SRM filters and DCT patterns. For the feature
extraction process, 3×3 convolution kernels are applied in the layers 2, 3, 4, 8, and 9, and

Table 4 The performance of Wang-Net and All Kernel-Net on resampled images

Algorithms All Kernel-Net Wang-Net

WOW (0.2 bpp) 0.714 0.749

WOW (0.4 bpp) 0.844 0.860

S-UNIWARD (0.2 bpp) 0.669 0.691

S-UNIWARD (0.4 bpp) 0.792 0.819

The involved networks are trained and tested on BOSSBase
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5×5 convolution kernels are applied in the layers 5, 6, and 7. In each convolution layer,
we add BN, rectified linear unit (ReLU), and TLU nonlinear activation functions. And we
also add average pooling to the 4, 5, and 6 convolutional layers.

4 Simulation configuration
We applied two well-known content adaptive steganography algorithms to evaluate the
performance of the CNN models, which are WOW and S-UNIWARD. And we use a
randomly embedded key when applying the steganography algorithm, which is also in
line with the actual steganography situation. The datasets applied in the simulations is the
BOSS-Base 1.01. BOSSBase 1.01 contains 10,000 512×512 natural grayscale cover images
taken directly from the camera, which have different texture features and are widely used
in steganalysis. Due to the limitations of GPU computing resources, in the simulation,
like Zhu-Net, we scale the images of BOSSBase 1.01 to 256×256 (using “imresize()” in
matlab, the function parameter remains the default configuration). In the simulation, we
apply the steganography algorithm and cover images to generate 10,000 corresponding
stego images. In order to prevent overfitting, we need to allocate as much data as possible
in the training process for our complex model with strong learning ability. Therefore, the
data ratio of training datasets, verification datasets, and test datasets is 8:1:1. We apply
the AdaDelta [44] to train the network model, which accelerates the convergence of the
model. Due to GPU memory limitations, we set the mini-batch size to 16. We apply an
exponential decay method with a decay rate of 0.95, a decay step of 2000, and an initial
learning rate of 0.4. We also apply Xavier [45] to initialize the weights and biases in all
convolution layers.

5 Results and discussions
In this section, we compare Wang-Net with existing spatial domain steganalysis mod-
els, such as SRM+EC, Xu-Net, Ye-Net, Yedroudj-Net, and Zhu-Net. Then, we apply the
new migration learning method to the model, hoping to enhance the model’s ability of
steganography detection generalization.
We compare the detection performance of Wang-Net with other steganalysis algo-

rithms. The results are shown in the Table 5. The performance of Wang-Net is signifi-
cantly better than that of traditional steganalysis algorithm SRM+EC and deep learning
steganalysis algorithms Xu-Net, Ye-Net, and Yedroudj-Net, but the detection accuracy is
about 2∼3% lower than that of Zhu-Net. It shows that Wang-Net has a good steganalysis
performance.

Table 5 The performance of Wang-Net and other steganalysis models on resampled images

Algorithms WOW (0.2 bpp) WOW (0.4 bpp) S-UNIWARD (0.2 bpp) S-UNIWARD (0.4 bpp)

SRM+EC 0.635 0.745 0.634 0.753

Xu-Net 0.676 0.793 0.609 0.728

Ye-Net 0.669 0.768 0.600 0.688

Yedroudj-Net 0.722 0.859 0.633 0.772

Zhu-Net 0.766 0.882 0.719 0.847

Wang-Net 0.749 0.860 0.691 0.819

The involved networks are trained and tested on BOSSBase
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Table 6 The performance of Wang-Net, Yedroudj-Net, and Zhu-Net on resampled images

Algorithms Payload Yedroudj-Net Zhu-Net Wang-Net

WOW 0.2 0.722 0.766 0.812
0.4 0.859 0.882 0.920

S-UNIWARD 0.2 0.633 0.719 0.777
0.4 0.772 0.847 0.888

The involved networks are trained and tested on BOSSBase

In order to improve the generalization ability of steganography detection of the model,
inspired by transfer learning, we propose a novel transfer learning method. We apply
the datasets with lower embedding rates for training and compare the performance
again.
According to the results in Table 6, for WOW (0.2), WOW (0.4), S-UNIWARD (0.2),

and S-UNIWARD (0.4), the accuracy of Wang-Net are 0.812, 0.920, 0.777, and 0.888
respectively, which surpasses the Zhu-Net. It shows that Wang-Net can capture key
steganographic traces under multiple embedding rates and has a good ability to express
features. Now, our CNN model has the best steganalysis detection performance.
To sum up, after applying nonlinear detection mechanism, joint domain detection

mechanism, and new migration learning method, Wang-Net can capture more abun-
dant and diversified steganography semantic information and has better steganography
detection performance.

6 Conclusion
In the field of steganalysis, it is of great significance for applying the CNN. In this paper,
we propose a CNN steganalysis model with three great advantages.

(1) We creatively propose the nonlinear feature detection mechanism, and simulate the
nonlinear features extraction method of SRM. For WOW and S-UNIWARD, the
accuracy of the model is 0.3∼6% higher than that of the basic model. It shows that
the nonlinear detection mechanism forces the model to adapt to the nonlinear
distribution of steganography.

(2) We pioneer the joint domain detection mechanism and simulate the manual feature
extraction method of SRM in the spatial domain and DCTR in the transformation
domain. For WOW and S-UNIWARD, the accuracy of the model is increased by
2∼3%. It shows that the joint domain detection mechanism can help the model
capture more abundant steganography features.

(3) We propose a model transfer learning method, which uses low embedding rate
images to initial the model. For WOW (0.2), WOW (0.4), S-UNIWARD( 0.2), and
S-UNIWARD (0.4), the accuracy of Wang-Net are 0.812, 0.920, 0.777, and 0.888
respectively, which is higher than that of the current Zhu-Net and other steganalysis
models. It shows that Wang-Net can capture more levels of steganography features,
which is conducive to the feature expression.

Our model is not suitable for steganalysis of color image. This issue will be addressed in
further research.
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