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Abstract
Recent technological advances have enabled the development of compact and
portable cameras for the generation of large volumes of video content. Several
applications have benefited from such significant growth of multimedia data, such as
telemedicine, surveillance and security, entertainment, teaching, and robotics.
However, videos captured by amateurs are subject to unwanted motion or vibration
while handling the camera. Video stabilization techniques aim to detect and remove
glitches or instabilities caused during the acquisition process to enhance visual quality.
In this work, we introduce and analyze a novel representation based on visual rhythms
for qualitative evaluation of video stabilization methods. Experiments conducted on
different video sequences are performed to demonstrate the effectiveness of the visual
representation as qualitative measure for evaluating video stability. In addition, we
present a proposal to calculate an objective metric extracted from the visual rhythms.
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1 Introduction
The popularization of mobile devices in recent years has contributed to making video
acquisition possible for a variety of applications. Handling such devices generally causes
unwanted motion during the video generation, which inevitably affects the quality of the
final video.
Video stabilization [1–15] aims to remove undesired motion in camera handling dur-

ing video acquisition. Efficient methods for stabilization of videos are important to
improve their quality according to human perception or to facilitate certain tasks, such as
multimedia indexing and retrieval [16–18].
Techniques and metrics for quality evaluation must be well established so that video

stabilization approaches can be developed, refined, and compared in a consistent manner.
Therefore, ineffective evaluation measures may lead to the development of inadequate
techniques, compromising the advance of state-of-the-art video stabilization approaches.
Most of the quantitative techniques for the evaluation of video stabilization available

in the literature are inaccurate and, in some cases, incompatible with human visual per-
ception. Moreover, the techniques used to evaluate and report the results subjectively are
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little explored. In this work, we introduce and evaluate the use of visual rhythms as a novel
mechanism for the qualitative evaluation of video stabilization methods.
Experimental results demonstrate that the visual rhythms are effective to evaluate the

stability of camera motion by differentiating stable and unstable videos. Furthermore, it
allows to determine how and when a givenmotion occurs. More complex types of motion,
such as zoom and quick shifts, can also be identified.
This paper is organized as follows. Relevant concepts and related work are briefly

described in Section 2. The use of visual rhythms for subjective evaluation of video sta-
bilization is presented in Section 3. Experimental results are reported and discussed in
Section 4. Final remarks and directions for future work are outlined in Section 5.

2 Background
Different categories of stabilization systems have been proposed to improve the quality of
videos. The three most common types are mechanical stabilization, optical stabilization,
and digital stabilization.
Mechanical video stabilization typically uses sensors to detect camera shifts and com-

pensate for undesired movements. A common way is to use gyroscopes to detect motion
and send signals to motors connected to small wheels, such that the camera can move in
the opposite direction of motion.
Optical video stabilization [19] is widely used in photographic cameras and consists of

a mechanism to compensate for the angular and translational movements of the cameras,
stabilizing the image before it is recorded on the sensor. A form of optical stabilization
introduces a gyroscope to measure velocity differences at distinct instants to distinguish
between normal and undesired motion.
Digital video stabilization is implemented in software without the use of special devices.

Digital video stabilization methods are commonly categorized into two-dimensional (2D)
and three-dimensional (3D) approaches. In the first category, techniques estimate cam-
era motion from two consecutive frames and apply 2D transformations to stabilize the
video. In the second category, techniques reconstruct the camera trajectories from 3D
transformations [20, 21], such as scaling, translation, and rotation.
In the context of image and video processing, the evaluation can be classified as (i)

objective, when obtained through functions applied between two images [22] or video
frames, and (ii) subjective, when the analysis is performed by human observers. In both
cases, a desired goal is to assess stabilization based on criteria in agreement with the
perception of the human visual system.

2.1 Objective evaluation

Criteria for measuring the amount and nature of the camera displacement have been
proposed to evaluate the quality of video stabilization in an objective manner [23].
Unintentional motion is decomposed into divergence and jitter through low-pass and
high-pass filters, respectively. The amount of jitter from the stabilized and original video
is compared. The divergence is also verified, which indicates the amount of expected dis-
placement. For an overall assessment, the blurring caused by the stabilization process is
considered.
Most of the video stabilization approaches found in the literature have adopted the

interframe transformation fidelity (ITF) [24–28], which can be expressed as the peak
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signal-to-noise ratio (PSNR) of video frames. More recent approaches have considered
the structural similarity (SSIM) [29] as an alternative to PSNR [28].
Liu et al. [30] employed the amount of energy present in the low-frequency portion of

the 2D motion estimated as a stability metric. The rate of frame cropping and distortion
are used to assess the stabilization process more generally.
Synthesizing unstable videos from stable videos has been proposed for the evaluation

of video stabilization [31] in order to provide the ground-truth of the stable videos. The
methods are evaluated according to two aspects: (i) the distance between the stabilized
frame and the reference frame and (ii) the average of the SSIM between each pair of
consecutive frames.
Due to the weaknesses of ITF in motion videos, an evaluation method based on the

variation of the intersection of angles between the global motion vectors, calculated from
the scale-invariant feature transform (SIFT) keypoints [32], was proposed to evaluate the
video stabilization process [33]. In fixed-camera videos, the ITF is considered, however,
only for overlapping the frame background, instead of the entire frame.

2.2 Subjective evaluation

Several methods found in the literature briefly describe and analyze review the trajec-
tories made by the camera and the trajectories of the stabilized video [34–38]. These
trajectories are usually related to the different factors that compose the estimated 2D
motion. For instance, the approaches present the camera path for horizontal and vertical
translations and rotations. Figure 1 shows an example of path for horizontal translation
estimated from the original (blue) and smoothed (green) trajectory.
From the trajectory, it is possible to identify when a motion occurs and its intensity in

the original video, as well as such motion after its smoothing. This type of visualization
can be very useful to analyze the behavior of the motion smoothing step used in a certain
method. However, its result depends on the technique used in estimating the motion, so

Fig. 1 Horizontal translation path of a camera
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Fig. 2 Sequence of video frames. a Original video. b–d Different versions of the stable video. Extracted from
[40]

that the trajectory does not reliably represent the video motion. Thus, the trajectory may
not be a good alternative to the evaluation of the stabilization quality, as well as not an
adequate visualization for videos with spatially distinct motion.
Some approaches in the literature deal with frame sequences usually superimposed by

horizontal and vertical lines [25, 28, 35–37, 39, 40]. Thus, it is possible to check the align-
ment of a small set of consecutive frames. Figure 2 illustrates an example of such type of
visualization, where objects intercepted by lines are more aligned in the stabilized video.
From the sequence of frames, the displacement of each frame is noticeable, in addition

to the amount of pixels lost due to the transformation applied to each frame. How-
ever, this technique becomes impractical when a large number of frames is considered,
compromising the analysis of the entire video.
Furthermore, there are approaches that summarize a video in a single image calculated

through the average gray levels of the frames [41, 42], as shown in Fig. 3. Better-defined
images are expected for more stable videos. From this representation, it is possible to
check if the video has more amount of motion; however, it is difficult to determine the
nature of video motion.
In a broader context, video visualization is concerned with the creation of a new visual

representation, obtained from an input video, capable of indicating its characteristics and
important events [43]. Video visualization techniques can generate different types of out-
put data, such as another video, a collection of images or a single image. Borgo et al. [43]
reported a review of several video visualization techniques proposed over the last years.
In order to help users find scenes with specific motion characteristics in the context of

video browsing, motion histograms were proposed in the HSV color space [44]. Motion
histograms are obtained by means of motion vectors contained in H.264/AVC codecs.
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Fig. 3 The average gray levels for the first ten frames. a Original video. b Stabilized video

Figure 4 presents an example of the visualization, where each frame of the video is rep-
resented by a vertical line, such that the motion direction is mapped by different colors
and the motion intensity by brightness values. As a disadvantage, this technique suffers
from the presence of noise in the motion vectors, introduced by the motion estimation
algorithm [44].
Visual rhythm [45] (VR) corresponds to a summary of temporal information of a video

represented as a single image. This is done by concatenating portions of information
from each frame of the video. Visual rhythms have been generally applied in the context
of video identification and classification, for instance, location of video subtitles, recog-
nition of person action detection of video shot boundaries, detection of face spoofing,
among others [46–50]. Unlike these approaches, the visual rhythms are used in this work
to create a representation of temporal information that allows the evaluation of the video
stabilization by humans.

Fig. 4 Histograms of motion with HSV color space. Extracted from [44]
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Fig. 5 Example of horizontal visual rhythm construction from a small set of columns of each frame

Typically, two different paths for constructing the visual rhythms are considered when
traversing each video: horizontal and vertical. Such representations differ according to
the information that is extracted from the video frames. The vertical rhythm extracts
the information from the columns of each frame, whereas the horizontal rhythm is
constructed from the rows of each frame.
A single column or row (or a small set of them) of each frame is usually used to

construct the visual rhythm. Figure 5 illustrates the construction of a horizontal visual
rhythm, as commonly described in the literature. However, the construction of a visual
rhythm is very susceptible to different strategies for video traversal, for instance, a zigzag
path, where an alternating direction might extract patterns from the video frames more
appropriately for a certain problem.

3 Methods
In this work, the visual rhythms are constructed by traversing the video at vertical and
horizontal directions. However, as opposed to using a single row or column (or a small set
of rows or columns), we use the average of the columns for the vertical rhythm and the
average of the rows for the horizontal rhythm.
For both path directions, the rhythm is obtained from the sequential concatenation of

the intensity values, such that the jth column of the visual rhythm image corresponds to
the intensity values in the jth frame. In the horizontal rhythm, a rotation is performed on
the rows in order to obtain the columns in the final image. The width of a visual rhythm
corresponds to the number of video frames, whereas its height corresponds to the height
or width of the frames for the vertical or horizontal rhythm, respectively.
Figure 6 shows the relations between the pixels of the neighborhood in a visual rhythm

image, from which we can see that the visual rhythm maintains the temporal and spatial
information of the video. Thus, the temporal behavior of the gray levels in a certain region
can be easily visualized. This provides information on how and when movements occur
in the video, that is, in addition to being able to distinguish the direction, the intensity,
and the form that the movements are spatially arranged, we can verify the frequency of
certain type of movement and determine the moments of its occurrence. Stable video is
expected to have a more uniform visual rhythm, with fewer twitches and better defined
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Fig. 6 Patterns for pixel neighborhood in the visual rhythm

curves. We refer to “neighbor i − 1” as the pixel that is on the row immediately above the
row of pixel i in the column that represents information extracted from a frame, whereas
“neighbor i + 1” corresponds to the pixel immediately below the row of pixel i.
Figure 7 shows the construction of a horizontal rhythm for two 3×3 frames. At the

transition between framesA and B, the cameramoves from right to left, causing the pixels
to be to the right of their original position. Thus, when obtaining the horizontal rhythm,
the pixels of the column corresponding to frame B are below the equivalent pixels of frame
A, thereby forming a declination.
The separation of the vertical and horizontal visual rhythms is important to thoroughly

detect and evaluate problems in the video stabilization process. From the vertical rhythm,
we can analyze the characteristics of the motion in the y axis. Thus, inclined rhythm
lines indicate camera movements from the bottom to top, whereas declined lines indicate
camera movements from top to bottom. From the horizontal rhythm, in turn, we have the
characteristics of the motion in the x axis. Thus, sloped lines indicate camera movements
from left to right, whereas declined lines indicate camera movement from right to left.

Fig. 7 Direction of horizontal visual rhythm
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The use of only one column or row in the extraction of information from each frame
may be inadequate since it considers little information of the frame. In addition, it makes
horizontal and vertical separation less accurate. This problem can be seen in Fig. 8, where
a vertical movement of the camera occurs, which can influence the horizontal rhythm,
depending on the difference of the pixels between the rows. Thus, the average of the
columns or rows is adopted in our work to compensate for this difference, making the hor-
izontal rhythm less sensitive to vertical movements, and the vertical rhythm less sensitive
to horizontal movements.
In Fig. 8, both columns of the horizontal rhythm should have either the same or very

close values. However, with a single row in each frame, the direction of the rhythm is
uncertain.
As post-processing, we apply an adaptive histogram equalization technique through the

contrast-limited adaptive histogram equalization (CLAHE) [51]. This is done to improve
the contrast of the visual rhythm, facilitating human perception.
The construction of the visual rhythms is not based on motion estimation, as occurs

in other visualizations, shown in Section 2. Therefore, their performance is not depen-
dent on any motion estimation technique, which makes the representation of the
video motion more reliable. In the context of video stabilization, such independence
of methods for motion estimation is crucial to allow a more unbiased assessment of
the results.
The complexity of constructing a visual rhythm depends on three main factors: width

W of the video frames, height H of the frames, and number N of frames in the video. To
calculate an average row in the construction of a horizontal visual rhythm, we need to
compute W averages. The calculation of each mean considers H values. Thus, we have
θ(WH) as the asymptotic complexity of constructing an average row. The same com-
plexity is taken for the computation of an average column in a vertical visual rhythm.
Since either a row or a column should be calculated for each frame of the video, we have
θ(WHN) as the final complexity for constructing a visual rhythm.
Among the good practices in the construction of visual rhythms for the evaluation of

video stabilization results, we recommend the following:

Fig. 8 Direction of horizontal visual rhythm with a single row
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• Crop the frames of the stabilized video so that there are no pixels with null
information (since null information may imply inadequate row or column averages);

• Preserve the frame rate of the video in order to not change its number of frames or
generate visual rhythms of different sizes;

• Rescale the video frames to the original size in order for the visual rhythms to have
the same size.

3.1 Insights into objective metrics

This subsection provides some insights into the calculation of objective metrics from the
visual rhythms for the evaluation of the video stabilization process. It is important to
mention that we do not intend to replace existing objective metrics in the literature with
the proposed objective metric, but to show that a metric can be extracted to distinguish
unstable from stable videos.
In the visual rhythm, the behavior of the movement present in the video is represented

by the shapes of the curves. A more stable video has rhythms with smoother curves. As
shown in Fig. 7, the directions of the visual rhythm can be observed in each column pair
of pixels. Objective metrics can be calculated from the texture of visual rhythms. We con-
jecture that a softer visual rhythm has more regular directions, with less abrupt changes
in the near directions. Thus, to obtain a new objective metric from the visual rhythm,
the directions and their changes must be computed. Figure 9 illustrates the strategy for
calculating the metric.
Initially, we calculate the visual rhythm gradients in order to obtain the directions

of each pixel of the rhythm. This was implemented through the Sobel filter [52]. The
gradients are decomposed into magnitude and angle information.
A thresholding with the Otsu algorithm [53] is applied to the magnitude values to deter-

mine the edges of the visual rhythm. This is done in order to consider only the edge
angles in the following calculations. Then, a co-occurrence representation is calculated
based on the gray level co-occurrence matrix (GLCM) [54]. However, it considers the
co-occurrence of the angles of the edges in the direction of the angles themselves.
Initially, we eliminated the sign from the angles, leaving them in the range of 0 to

180◦. For the calculation of the co-occurrence matrix M, we consider n directions D =
{d0, d1, ..., dn}, resulting in a matrix of size n × n. The angles are then quantized in possi-
ble directions. For each pixel i belonging to the edge, we have its angle θi ∈ D, from which
we calculate the closest pixel j in the direction of θi. Then, it counts as a co-occurrence
at positionMθi,θj , that is, an increment atMθi,θj . For cases where θi are different from the
important angles, we have two pixels j1 and j2. Thus, the two positions of the matrix are
incremented proportionally to the distances of the angles.
Finally, the matrix is normalized by the sum of its elements. Thus, the value of the

matrix at positionMθi,θj indicates the probability that θj is the next direction of the visual
rhythm, since the previous one was θi. From the co-occurrence matrix generated, we can

Fig. 9 Main steps of the objective metric strategy
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Table 1 Video sequences from the first dataset

# Video Source

1 gleicher1 GaTech VideoStab

2 gleicher2 GaTech VideoStab

3 gleicher3 GaTech VideoStab

4 gleicher4 GaTech VideoStab

5 greyson_chance GaTech VideoStab

6 hippo nghiaho.com/uploads/hippo.mp4

7 lf_juggle GaTech VideoStab

8 new_gleicher GaTech VideoStab

9 sam_1 GaTech VideoStab

10 sam and cocoa youtu.be/627MqC6E5Yo

11 sany0025 GaTech VideoStab

12 shake_pgh_1 GaTech VideoStab

13 shaky_car MatLab

14 yuna_long GaTech VideoStab

calculate features to obtain objective metrics. Among the textural features defined by
Haralick and Shanmugam [54], the homogeneity can be expressed as

homogeneity =
n∑

i=0

n∑

j=0

1
1 + (i − j)2

Mi,j (1)

The homogeneity feature, when calculated from the co-occurrence matrix of the edge
angles, will assume larger values the closer the angles of consecutive directions.
Several other measures could be developed to extract useful information to qualify the

stabilization from their visual rhythms. For this, a thorough investigation is necessary
to identify which aspects are important to characterize an unstable motion and how to
obtain such aspects through visual rhythm. These tasks may involve both handcrafted
features and machine learning techniques.

4 Results and discussion
This section describes and evaluates the experimental results obtained with two datasets.
All the videos considered in our experiments were obtained from two publicly available
databases: GaTech VideoStab1 [55] and the database proposed by Liu et al.2 [30].
Table 1 reports a summary of the first database with videos in alphabetical order. We

will refer to the videos in this database through the identifiers assigned to each of them.
Table 2 presents the database proposed by Liu et al. [30], which is divided into six cate-
gories, containing a total of 139 videos. We will refer to the videos in this dataset by the
name of the category followed by the identifier of each video, attributed by the authors.
Due to space limitations, we report only a few visual rhythms that illustrate the results
obtained from these databases, which have been confirmed in the other videos.
Figure 10 presents the visual rhythms generated for the video #12 before and after

the video stabilization process. In order to obtain the stabilized version of the video, we
submit it to YouTube, which applies one of the state-of-the-art digital video stabilization
approaches [55]. The width of all the images presented in this section was considered
constant for a better organization.

1https://www.cc.gatech.edu/cpl/projects/videostabilization/
2http://liushuaicheng.org/SIGGRAPH2013/database.html

https://www.cc.gatech.edu/cpl/projects/videostabilization/
http://liushuaicheng.org/SIGGRAPH2013/database.html
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Table 2 Categories and amount of videos present in the second dataset, proposed by Liu et al. [30]

Category # Videos

Crowd 22

Parallax 17

Quick rotation 28

Regular 22

Running 21

Zooming 29

Total 139

From the horizontal visual rhythm of the unstable video, shown in Fig. 10c, we can
notice the twitches and irregularities present in the lines. On the other hand, in the
horizontal visual rhythm of the stabilized video, shown in Fig. 10b, there are more contin-
uous, well-defined and softer lines. Analogously, the vertical visual rhythm of the unstable
video, shown in Fig. 10c, has twitches and irregularities that are eliminated in the visual
rhythm of the stabilized video, shown in Fig. 10d. We can also observe that vertical and

Fig. 10 Visual rhythms for video #12. a Horizontal visual rhythm for original video. b Horizontal visual rhythm
for stabilized video. c Vertical visual rhythm for original video. d Vertical visual rhythm for stabilized video



Souza and Pedrini EURASIP Journal on Image and Video Processing         (2020) 2020:19 Page 12 of 19

horizontal rhythms are not influenced by each other, where certain motion regions occur
in one but not in the other.
For the video Regular8, we present a comparison of the visual rhythms obtained

through the average of the rows or columns, and through the column or central row. In
this case, we present the horizontal and vertical visual rhythms only for the unstable video.
It can be seen from Fig. 11a that the visual rhythm with only one row can be nega-

tively influenced by the vertical motion of the video, with artifacts that do not correspond
to the horizontal motion, such as the discontinuities present in the rhythm, whereas
the visual rhythms presented by their average are more consistent with the motion
present in the video. An analogous behavior can be seen in the vertical rhythm shown in
Fig. 11c.
Figure 12 presents the visual rhythms of the unstable video #1. For this video, we

present the rhythms obtained after the stabilization of YouTube, in addition to a

Fig. 11 Visual rhythms for original video Regular8 . a Horizontal visual rhythm with mean row. b Horizontal
visual rhythm with central row. c Vertical visual rhythm with mean column. d Vertical visual rhythm with
central column
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Fig. 12 Visual rhythms for original video #1. a Horizontal visual rhythm. b Vertical visual rhythm

Fig. 13 Visual rhythms for stabilized video #1. a Horizontal visual rhythms for weak stabilization. b Horizontal
visual rhythms for YouTube stabilization. c Vertical visual rhythms for weak stabilization. d Vertical visual
rhythms for YouTube stabilization
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stabilization with inferior performance. Figure 13 shows the horizontal and vertical
rhythms for both versions of the stabilized video.
By comparing the visual rhythms for the unstable video and the rhythms for the sta-

bilized videos, it is possible to confirm the validity of using visual rhythms to compare
versions of stable and unstable videos. In addition, from the visual rhythms of the two dif-
ferent methods, illustrated in Fig. 13, we can observe the occurrence of less twitches and
smoother lines throughout the entire rhythm, both for the horizontal and vertical rhythm.
This shows that the visual rhythm can be used in the comparison of two different video
stabilization methods.
The horizontal and vertical rhythms for the original and stabilized video

QuickRotation0 are shown in Fig. 14. In this case, the video was stabilized with the
method proposed by Liu et al. [30]. The version of the video QuickRotation0 sta-
bilized with Youtube was not shown here since the method modified its frame rate,
reducing the number of frames and making the visualization of the stabilized video
considerably smaller than the original video.
Besides confirming the smoother lines obtained in the visual rhythm for the stabilized

video, it is possible to observe totally vertical lines in the horizontal visual rhythms, which
indicates a very fast horizontal movement of the camera. It is also possible to see that the

Fig. 14 Visual rhythms for video QuickRotation0 . a Horizontal visual rhythm for original video. b
Horizontal visual rhythm for stabilized video. c Vertical visual rhythm for original video. d Vertical visual
rhythm for stabilized video
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horizontal lines are inclined in their origin, which indicates that the displacement is from
left to right.
In Fig. 15, we present the horizontal and vertical visual rhythms for the original and

stabilized video Zooming0. The video was stabilized through the method proposed by
Liu et al. [30].
In the visual rhythms for video Zooming0, it is also possible to see the presence of

well defined, regular lines in the visual rhythm of the stabilized video. In addition, it is
possible to observe inclined and declined lines in the horizontal visual rhythms present
simultaneously in the beginning of the video, which indicates the existence of zoom.
Figure 16 shows visual rhythms for a video where there is a low-texture background

and a moving object. This scenario can be challenging for the proposed representation,
since we do not separate the background from the objects in the construction of the
rhythm. Nevertheless, the visual rhythym representation makes it possible to distinguish
the unstable from the stable videos.

Fig. 15 Visual rhythms for video Zooming0 . a Horizontal visual rhythm for original video. b Horizontal visual
rhythm for stabilized video. c Vertical visual rhythm for original video. d Vertical visual rhythm for stabilized
video
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Fig. 16 Visual rhythms for video with moving object on low-texture background. a Horizontal visual rhythm
for original video. b Horizontal visual rhythm for stabilized video. c Vertical visual rhythm for original video. d
Vertical visual rhythm for stabilized video

Table 3 reports the results of the homogeneity extracted from the horizontal and ver-
tical visual rhythms for the video sequences listed in Table 1, where the original videos
are stabilized by the YouTube method [55]. We can observe that the obtained results
are able to distinguish original and stabilized videos. However, further investigation is
needed regarding the extraction of other features from the co-occurrence matrix, which
may be complementary to the homogeneity information. In addition, the results from the
proposed metrics will be compared to objective metrics available in the literature.

Table 3 Results of homogeneity for video sequences

# Video Original YouTube

Horizontal Vertical Horizontal Vertical

1 0.446 0.449 0.737 0.773

2 0.404 0.478 0.685 0.741

3 0.392 0.473 0.647 0.708

4 0.409 0.425 0.665 0.742

5 0.511 0.575 0.715 0.649

6 0.481 0.627 0.678 0.734

7 0.423 0.446 0.652 0.615

8 0.409 0.508 0.697 0.672

9 0.499 0.523 0.549 0.625

10 0.387 0.441 0.588 0.620

11 0.609 0.557 0.743 0.636

12 0.515 0.474 0.535 0.678

13 0.499 0.441 0.665 0.614

14 0.479 0.618 0.521 0.750

Average 0.461 0.502 0.648 0.682
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5 Conclusions and future work
This work presented the use of visual rhythms for the subjective evaluation of video sta-
bilization. The vertical visual rhythm is constructed from the average of the columns of
each frame, whereas the horizontal visual rhythm is constructed from the average of the
rows of each frame.
We were able to characterize and separate the horizontal and vertical movements of the

video, determining how and when they happen. The stability of a video can be determined
from the regularity and smoothness of the curves of each visual rhythm. In addition, the
presence of more complexmovements, such as zoom, can be verified in the visual rhythm.
As directions for future work, we intend to thoroughly investigate objective evaluation

metrics for the stabilization of videos, calculated from the visual rhythms.
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