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Abstract

The Vese-Chan model for multiphase image segmentation usesm binary label functions to construct 2m

characteristic functions for different phases/regions systematically; the terms in this model have moderate degrees
comparing with other schemes of multiphase segmentation. However, if the number of desired regions is less than
2m, there exist some empty phases which need costly parameter estimation for segmentation purpose. In this paper,
we propose an automatic construction method for characteristic functions via transformation between a natural
number and its binary expression, and thus, the characteristic functions of empty phases can be written and
recognized naturally. In order to avoid the redundant parameter estimations of these regions, we add area constraints
in the original model to replace the corresponding region terms to preserve its systematic form and achieve high
efficiency. Additionally, we design the alternating direction method of multipliers (ADMM) for the proposed modified
model to decompose it into some simple sub-problems of optimization, which can be solved using Gauss-Seidel
iterative method or generalized soft thresholding formulas. Some numerical examples for gray images and color
images are presented finally to demonstrate that the proposed model has the same or better segmentation effects as
the original one, and it reduces the estimation of redundant parameters and improves the segmentation efficiency.

Keywords: Multiphase image segmentation, Vese-Chan model, Parameter estimation, Binary label function,
Alternating direction method of multipliers

1 Introduction
Multiphase image segmentation under variational frame-
work has found a lot of applications including multi-target
detection and recognition, 3D segmentation and recon-
struction in medical images, remote sensing images, etc.
[1, 2], due to its property of multiple cue integration.
The aim of multiphase image segmentation is to parti-
tion images into different regions without any overlaps
and without any unlabeled region (called in the sequel
vacuum) automatically. It is a natural extension of the two-
phase image segmentation based on the variational image
analysis paradigm.
The Mumford-Shah model [3] is fundamental to vari-

ational image segmentation; it is a region-based model
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which approximates an image to a piecewise smooth one
and edges. To circumvent the difficulty of its implementa-
tion, Chan and Vese [4] proposed the classical Vese-Chan
model under variational level set framework [5] based on
reduced Mumford-Shah model with piecewise constant
image assumption. The Chan-Vesemodel introduced one-
level set function to construct two characteristic functions
for two regions. Using the same concept, [6] introduced
n-level set functions to partition n regions for Potts model
[7], but a simplex constraint must be added to avoid vac-
uum and overlapping problem. In order to improve com-
putational efficiency from the viewpoint of model, Pan et
al. [8] proposed to use (n−1)-level set functions to design
n characteristic functions satisfying the simplex constraint
naturally. Vese and Chan [9] proposed a strategy using
m-level set functions to design n = 2m characteristic func-
tions for different regions with less evolution equations to
be solved. Furthermore, Chung and Vese [10] proposed a
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more efficient scheme using only one smooth function to
partition different regions.
Motivated by the relationship between the Heaviside

function of a level set function and a binary label function,
the piecewise constant level set function method was
adopted to two-phase image segmentation [11] combined
with convex relaxation and thresholding techniques with
high efficiency. Themodels for multiphase image segmen-
tation using variational level set method as mentioned
in the previous paragraph have been extended to the
counterparts using piecewise constant level set function
method successively, such as, [12] used n binary label
functions to partition n regions, [13] used m binary label
functions for n = 2m regions, and [14] used one piecewise
constant level set function for all regions. Comparatively,
Vese-Chan type scheme uses less label functions than [12],
and its characteristic functions have lower degree than
[14]. Obviously, lower degree characteristic functions are
convenient to achieve minimum of the energy functional.
To achieve higher computation efficiency for the opti-
mization problems, Goldstein and Osher [15] proposed
the split Bregman method, and Duan et al. [16] proposed
some fast projection methods without re-initialization.
Our research in this paper starts from Vese-Chanmodel

via binary label functions [11], and the goal is to improve
the computational efficiency through modifying its orig-
inal model with fewer parameters to be estimated. Using
Vese-Chan model, the number n of regions is deter-
mined by binary label function number m (i.e., n = 2m).
For instance, if we partition 9 regions, we need 4 binary
functions to construct 16 characteristic functions, and
thus 7 regions are empty; however, the parameters in
these empty regions must be estimated when using
the original model. To avoid the parameter calculations
in these redundant regions, [17] proposed a modified
scheme for characteristic functions after 2m−1 regions
that include two parts to discard the last empty regions,
which can overcome the problem of redundant parameter
estimations.
In this paper, we use a unified characteristic function

expression for all regions including redundant regions, but
we add some simple area constraints of redundant regions
to avoid estimations of redundant parameters, thus reduc-
ing costs. Although we transform the original model
into a constrained optimization problem, we use ADMM
[18–20] to solve it easily and systematically without
additional constructions of characteristic functions for
empty regions.
The outline of the paper is as follows. In Section 2,

we present some classical models of variational image
segmentation, covering the Potts model and Vese-Chan
model for multiphase image segmentation using binary
label functions. In Section 3, we propose the modified
Vese-Chan model and design its ADMM. In Section 4,

experimental results of gray images and color images are
given to illustrate the efficiency of the proposed model in
this paper. Concluding remarks are drawn finally.

2 Some previous works of variational image
segmentation

2.1 Image segmentation under variational framework
The Mumford-Shah model and the Potts model are fun-
damental to variational image segmentation. The former
one is to partition an image f (x) : � → R into piece-
wise smooth parts u (x) : �s → R and edges � such
that � = �s ∪ � and �s ∩ � = Ø, its energy functional
minimization problem is stated as

Min
u,�

{
E (u,�) = α

∫
�s

(
f − u

)2dx
+β

∫
�s

|∇u|2dx + γ

∮
�

ds
}
,

(1)

where α, β , γ are penalty parameters. The second one is
to partition the image domain � into

� = n∪
i=1

�i and �i ∩ �j = Ø. (2)

Its energy functional minimization problem is

Min
{ui}ni=1

Min
{�i}ni=1

{
α

n∑
i=1

∫
�i

(
f − ui

)2dx

+γ

n∑
i=1

|∂�i|
}
,

(3)

where |∂�i| stands for the boundary length of each sub-
region.
In order to solve these problems in image domain, one

approach is assigning a characteristic function for each
region and making use of its total variation to replace
length terms. If zero level set {x : φ (x) = 0} of a level set
function φ (x) is used to describe the curve for region par-
tition implicitly, its Heaviside function H (φ (x)) can be
used to define characteristic functions of regions. φ (x)
and H (φ (x)) are defined respectively as

φ (x) =
⎧⎨
⎩

> 0 x inside �

0 x on �

< 0 x outside �

, (4)

H (φ (x)) =
{
1 φ (x) ≥ 0
0 otherwise . (5)

Then, the length of a closed curve � is∮
�

ds =
∫

�

|∇H (φ (x))|dx. (6)

Using level set method, Chan and Vese [4] proposed the
Vese-Chanmodel for two-phase segmentation under vari-
ational level set framework based on reduced Mumford-
Shah model with piecewise constant image assumption,
and it is stated as
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Min
u1,u2,φ

{
E (u1,u2,φ) = α1

∫
�

(
f − u1

)2H (φ)dx

+ α2

∫
�

(
f − u2

)2
(1 − H (φ)) dx

+ γ

∫
�

|∇H (φ)|dx
}
.

(7)

If φ (x) is defined as a signed distance function, it must
fulfill the following Eikonal equation

|∇φ| = 1. (8)

For the case of multiphase segmentation, if each region
is assigned a characteristic function χi (x) ∈ {0, 1},
(i = 1, ..., n), (i.e., χi (x) = 1 for x ∈ �i, χi (x) = 0 for
x /∈ �i) , the Potts model (3) can be rewritten as

Min
{ui}ni=1

Min
{�i}ni=1

{
α

n∑
i=1

∫
�i

(
f − ui

)2
χidx

+γ

n∑
i=1

∫
�i

|∇χi| dx
}
.

(9)

In order to fulfill the condition (2), χi (x) must satisfy
the following simplex constraint

n∑
i=1

χi (x) = 1. (10)

Using variational level set method, each region is
described by one-level set function φi (x), then, its charac-
teristic function can be denoted by the Heaviside function
of φi (x) (i.e., χi (x) = H (φi (x))). Replacing χi (x) with
H (φi (x)) in Eqs. (9) and (10) leads to the Potts model
under variational level set framework.
Motivated by the Four-Color Theorem, Vese and Chan

[9] proposed a strategy to partition n regions usingm-level
set functions with n = 2m, which can avoid the problem of
vacuum and overlaps, and where themodel is expressed as

Min
u,φ

{
E (u,φ) = α

2m∑
i=1

∫
�

(
f − ui

)2
χidx

+ γ

m∑
j=1

∫
�

∣∣∇H
(
φj

)∣∣dx
}
,

(11)

where χi is characteristic function with the form

χi =
m∏
j=1


(φj),
(φj) = H(φj) or 1−H(φj). (12)

For instance, if m = 2, χ1 = H (φ1)H (φ2), χ2 =
H (φ1) (1 − H (φ2)), χ3 = (1 − H (φ1))H (φ2), χ4 =
(1 − H (φ1)) (1 − H (φ2)).

2.2 Variational convex model for multiphase image
segmentation

Taking into account the relationship of level set function
and characteristic function, [11] rewrote the Chan-Vese
model via a binary label function φ ∈ {0, 1}

Min
u1,u2,φ∈{0,1}

{
E (u1,u2,φ) = α1

∫
�

(
f − u1

)2
φdx

+ α2

∫
�

(
f − u2

)2
(1 − φ) dx

+ γ

∫
�

|∇φ|dx
}
.

(13)

During automatic computation, φ is relaxed to a con-
vex version φ ∈ [0, 1], which is recovered to its binary
label function finally. For the case of multiphase image
segmentation, [13] introduced m binary label functions
φj ∈ {0, 1} , (j = 1, ...,m

)
to define n = 2m characteris-

tic functions for region partitioning, leading to the new
Vese-Chan model in convex form

Min
u,φ

{
E (u,φ) = α

2m∑
i=1

∫
�

(
f − ui

)2
χidx

+ γ

m∑
j=1

∫
�

∣∣∇φj
∣∣dx

}
,

(14)

where the form of characteristic function is

χi =
m∏
j=1


(φj), 
(φj) = φj or 1−φj. (15)

Whenever the number of image regions is taken as
N ∈ (

2m−1, 2m
)
, the problem of the automatic estima-

tion of redundant parameters ui arises, and this in turn
increases the computation cost due to inherent redun-
dancy. Assuming that the number of redundant regions
start from N + 1, Li et al. [17] proposed a scheme
to avoid redundant parameter estimation using various
characteristic function formulas. Their energy functional
minimization problem is as follows

Min
u,φ

{
E (u,φ) = α

N∑
i=1

∫
�

(
f − ui

)2
χN
i dx

+
m∑
j=1

∫
�

∣∣∇φj
∣∣dx

}
,

(16)

where u = {ui}Ni=1, φ = {
φj

}m
j=1, χ

N
i is characteristic func-

tion of the ith region. If N = 2m, χN
i is defined evenly

χ2m
i = (−1)s

m
i

m
�
j=1

(
φj − bm,i−1

j

)
, (17)
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if 2m−1 < N < 2m,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χN
i = (−1)smi

m
�
j=1

(
φj − bm,i−1

j

)

for i = 1, · · · , 2i0
χN
i = (−1)s

m1
i1

m1
�
j=1

(
φj − bm1,i1−1

j

)

for i = 2i0 + 1, · · · ,N

, (18)

where m1 = m − 1, i0 = N − 2m1 , i1 = i − i0, smi =
m∑
j=1

bm,i−1
j , bm,i−1

j = {0, 1}. This scheme can handle dif-

ferent situations for different numbers of image regions.
However, it destroys the original symmetric forms with
complicated different characteristic functions. For exam-
ple, there are different forms of characteristic function for
N = 5 and N = 7, which are as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

χ5
1 = φ1φ2φ3,

χ5
2 = φ1φ2 (1 − φ3)

χ5
3 = φ1 (1 − φ2)

χ5
4 = (1 − φ1) φ2

χ5
5 = (1 − φ1) (1 − φ2)

, (19a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ7
1 = φ1φ2φ3

χ7
2 = φ1φ2 (1 − φ3)

χ7
3 = φ1 (1 − φ2) φ3

χ7
4 = φ1 (1 − φ2) (1 − φ3)

χ7
5 = (1 − φ1) φ2φ3

χ7
6 = (1 − φ1) φ2 (1 − φ3)

χ7
7 = (1 − φ1) (1 − φ2)

, (19b)

which will reduce the generality of characteristic func-
tion for different region numbers and increase the com-
putation time. In the next section, we propose another
modified Vese-Chan model to overcome these problems.

3 Methods
3.1 Characteristic functions based on binary

decomposition
According to the original scheme by [9], the intersection
of m binary functions can generate n = 2m characteristic
functions for region partition. Let the binary expression of
characteristic functions χi be bi−1

1 bi−1
2 · · · bi−1

m , where the
value of bi−1

j is related to the binary expression about the
subtraction of index by one (i.e., i − 1) for the ith region
�i, then the characteristic function of �i is

χi =
m∏
j=1

(
bi−1
j + (−1)b

i−1
j φj

)
, (20)

where φj ∈ {0, 1}, bi−1
j = {0, 1}, i = 1, · · · , 2m,

j = 1, · · · ,m . Taking m = 3 for example, 8 regions are
partitioned as shown in Fig. 1, and the relevant character-
istic functions are listed in Table 1.

3.2 The classic optimization scheme of the Vese-Chan
model

Equation (14) stated a multiphase segmentation Vese-
Chan model using m binary label functions to define
2m characteristic functions, which is usually solved by
alternative optimization method.
The idea of alternative optimization is to solve mini-

mum problem of a variable by fixing others. Firstly fix φ

to optimize u, we obtain

ui =
∫
�
f χidx∫

�
χidx

, (i = 1, · · · , 2m). (21)

When u is fixed, we compute φ by gradient descent
method, which is shown below

∂φj

∂t
= γ∇ ·

(
∇φj∣∣∇φj

∣∣
)

− α

2m∑
i=1

(
f − ui

)2 ∂χi
∂φ

, (22)

Fig. 1 Eight regions partitioned by three binary label functions
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Table 1 Relationship between binary region number and
characteristic function

�i bi−1
1 bi−1

2 bi−1
3 Characteristic function χi =

m∏
j=1

(
bi−1
j + (−1)b

i−1
j φj

)

�1 0 0 0 χ1 = φ1φ2φ3

�2 0 0 1 χ2 = φ1φ2(1 − φ3)

�3 0 1 0 χ3 = φ1(1 − φ2)φ3

�4 0 1 1 χ4 = φ1(1 − φ2)(1 − φ3)

�5 1 0 0 χ5 = (1 − φ1)φ2φ3

�6 1 0 1 χ6 = (1 − φ1)φ2(1 − φ3)

�7 1 1 0 χ7 = (1 − φ1)(1 − φ2)φ3

�8 1 1 1 χ8 = (1 − φ1)(1 − φ2)(1 − φ3)

where ∇ ·
( ∇φ

|∇φ|
)
is the curvature term of φ. We use the

upwind differential scheme [16] to compute this term

∇ ·
(

∇φx,y∣∣∇φx,y
∣∣
)

= ∇+ ·
( ∇−φx,y

|∇−φx,y

)

= d1x,yφx+1,y + d2x,yφx−1,y

+ d3x,yφx,y+1 + d4x,yφx,y−1 − Dx,yφx,y

(23)

where

d1x,y = 1√(
φx+1,y−φx,y

h

)2 +
(

φx,y+1−φx,y−1
2h

)2 + ε

d2x,y = 1√(
φx,y−φx−1,y

h

)2 +
(

φx−1,y+1−φx−1,y−1
2h

)2 + ε

d3x,y = 1√(
φx,y+1−φx,y

h

)2 +
(

φx+1,y−φx−1,y
2h

)2 + ε

d4x,y = 1√(
φx,y−φx,y−1

h

)2 +
(

φx+1,y−1−φx−1,y−1
2h

)2 + ε

Dxy = d1x,y + d2x,y + d3x,y + d4x,y.
(24)

In Eq. (24), x and y represent coordinates in the image,
h is spatial step, and ε is a small positive value.
For the optimization of variable φ, the curvature term of

φ will be obtained if the alternative optimization method
is used directly, causing complex difference scheme
and low computational efficiency. However, the ADMM
method can avoid computing the curvature term and sim-
plify the solving process by introducing auxiliary variables
and Lagrange multipliers.

3.3 The modified model for gray images and its ADMM
For a gray value image f (x) : � → R with N < 2m
regions, there exist 2m−N redundant regions in the range
[N + 1, 2m]. To avoid the redundant parameter estima-
tions, we add area constraints on these regions

∫
�

χl (φ) dx = 0,
(
l = N + 1, ..., 2m

)
. (25)

We cast the Vese-Chan model into

Min
u,φ

{
E1 (u,φ) = α

N∑
i=1

∫
�

(
f − ui

)2
χi (φ) dx

+ γ

m∑
j=1

∫
�

∣∣∇φj
∣∣dx

} (26)

with constraints (25), where u = {ui}Ni=1 consists of
parameters need to be estimated, φ = {

φj
}m
j=1 consists of

binary label functions.
In order to improve the efficiency, ADMM is used in

our method. We introduce auxiliary variable w = ∇φ,
Lagrange multipliers λj, λl and positive penalty param-
eters θ , μ. We add constraints (25) into Eq. (26), which
can be rewritten as the following form of alternative
optimization

(
uk+1,φk+1,wk+1

)
= argMin

u,φ,w⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1 (u,φ,w) = α
N∑
i=1

∫
�

(
f − ui

)2
χi (φ)dx

+γ
m∑
j=1

∫
�

∣∣wj
∣∣dx

+
m∑
j=1

∫
�

λk
j · (wj − ∇φj)dx

+ θ
2

m∑
j=1

∫
�

∣∣wj − ∇φj
∣∣2dx

+
2m∑

l=N+1

∫
�

λkl χl (φ) dx

+μ
2

2m∑
l=N+1

∫
� (χl (φ))2dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
(27)

where k is the iteration step.
Using the idea of alternative optimization, Eq. (27) is

transformed into the following sub-problems of optimiza-
tion in each loop

(
uk+1

)
= argMin

u
E1

(
u,φk ,wk

)
, (28a)(

φk+1
)

= argMin
φ

E1
(
uk+1,φ,wk

)
, (28b)

(
wk+1

)
= argMin

w
E1

(
uk+1,φk+1,w

)
. (28c)
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Using variational method to Eq. (28a), fix φk and wk to
optimize uk+1, we obtain

uk+1
i =

∫
�
f χi (φ)dx∫

�
χi (φ)dx

, (i = 1, · · · ,N). (29)

For the problem (28b), since φ ∈ {0, 1} is a non-convex
function, we first transform φ ∈ {0, 1} to φ ∈ [0, 1] with
convex relaxation and then fix uk+1 and wk , and the sub-
problem of optimization with respect to φk+1 is as follows

(
φk+1

)
= arg Min

φ∈[0,1]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1
(
uk+1,φ,wk) = α

N∑
i=1

∫
�

(
f − uk+1

i

)2
χi (φ)dx

+
m∑
j=1

∫
�

λk
j · (wk

j − ∇φj)dx

+ θ
2

m∑
j=1

∫
�

∣∣∣wk
j − ∇φj

∣∣∣2dx
+

2m∑
l=N+1

∫
�

λkl χl (φ) dx

+μ
2

2m∑
l=N+1

∫
� (χl (φ))2dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(30)

we obtain the Euler-Lagrange equation of φk+1
j

{
A + B + C = 0 x ∈ �

−
(
λk
j + wk

j − ∇φj
)

· n = 0 x ∈ ∂�
(31)

where A =
N∑
i=1

α
(
f − uk+1

i

)2
∂χi(φ)

∂φ
, B =

m∑
j=1

(
∇ · λk

j +

θ∇ · (wk
j − ∇φj)

)
, C =

2m∑
l=N+1

(
λkl + μχl (φ)

)
∂χl(φ)

∂φ
. φk+1

j

can be solved by Gauss-Seidel iterative method, then

φk+1
j = Max

(
Min

(
φk+1
j , 1

)
, 0

)
. (32)

For Eq. (28c), to fix uk+1 and φk+1 to optimizewk+1 , we
obtain the Euler-Lagrange equation

γ
wj∣∣wj

∣∣ + λk
j + θ(wj − ∇φk+1

j ) = 0, (33)

when
∣∣wj

∣∣ �= 0. Equation (33) can be expressed as a fol-
lowing generalized soft thresholding formula in analytical
form

wk+1
j = max

(∣∣∣∣∣∇φk+1
j − λk

j

θ

∣∣∣∣∣ − γ

θ
, 0

) ∇φk+1
j − λkj

θ∣∣∣∣∇φk+1
j − λkj

θ

∣∣∣∣
ε

,

(34)

The Lagrange multipliers λk+1
j and λk+1

l can be updated
as the following⎧⎪⎨

⎪⎩
λk+1
j = λk

j + θ
(
wk+1
j − ∇φk+1

j

)

λk+1
l = λkl + μχl (φ)

. (35)

In order to represent the boundary of segmented
images, it is necessary to transform φj after convex relax-
ation to binary label function as the following

φj =
{
1 φj ≥ τ

0 φj < τ
, (36)

where τ ∈ (0, 1). The parameter τ is usually chosen as
τ = 1

2 . The stopping criterion is based on the relative
energy error formula

∣∣∣E1k+1 − E1k
∣∣∣E1k ≤ ε, where ε is a

small positive value.
The ADMM of modified model for gray images can be

described as Algorithm 1.

Algorithm 1 ADMM of modified Vese-Chan model for
gray images
Initialize: u0 = f 0, w0 = ∇φ0, λ0 = 0, step = 500;
1: for (k = 0; k <= step; k + +) do
2: uk+1

i are given by (29);
3: φk+1

j are given by (31),(32);
4: wk+1

j are given by (34);
5: λk+1

j , λk+1
l are given by (35);

6: if
∣∣∣E1k+1 − E1k

∣∣∣E1k ≤ ε then
7: break
8: end if
9: end for

3.4 The modified model for color images and its ADMM
Different from a scalar image, a color image consists of
three layers, so parameter estimation is needed for each
layer in different regions. Let f = (

f1, f2, f3
) ∈ R3 be

a color image, ui = (ui1,ui2,ui3) be the piecewise con-
stant parameters to be estimated in the ith region, φ

consists ofm binary functions as the previous sub-section,
and the variational model for multiphase color image
segmentation is

Min
u,φ

{
E2 (u,φ) = α

N∑
i=1

3∑
p=1

∫
�

(
fp − uip

)2
χi (φ) dx

+ γ

m∑
j=1

∫
�

∣∣∇φj
∣∣dx

}
,

(37)

it is also subjected to the constraints (25).
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To design its ADMM method, we introduce auxiliary
variable w = ∇φ , Lagrange multipliers λj, λl and posi-
tive penalty parameters θ ,μ. Then we add constraints (25)
into Eq. (37) and transform it into the following form of
alternative optimization(

uk+1,φk+1,wk+1
)

= argMin
u,φ,w⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E2 (u,φ,w) = α
N∑
i=1

3∑
p=1

∫
�

(
fp − uip

)2
χi (φ)dx

+γ
m∑
j=1

∫
�

∣∣wj
∣∣dx

+
m∑
j=1

∫
�

λk
j · (wj − ∇φj)dx

+ θ
2

m∑
j=1

∫
�

∣∣wj − ∇φj
∣∣2dx

+
2m∑

l=N+1

∫
�

λkl χl (φ) dx

+μ
2

2m∑
l=N+1

∫
� (χl (φ))2dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(38)

Using the same procedure as the last sub-section in each
loop of optimization, we get successively

uk+1
ip =

∫
�
fpχi (φ)dx∫

�
χi (φ)dx

. (39)

Fixing uk+1
ip and wk , we obtain the Euler-Lagrange

equation of φk+1 as the following{
Ai + B + C = 0 x ∈ �

−
(
λk
j + wk

j − ∇φj
)

· n = 0 x ∈ ∂�
, (40)

where Ai = α
N∑
i=1

3∑
p=1

(
fp − uk+1

ip

)2
∂χi(φ)

∂φ
. We design

Gauss-Seidel iterative method from Eq. (40) to compute
φk+1
j .
wk+1
j can be solved from Eq. (34). The Lagrange multi-

pliers λk+1
j and λk+1

l can be updated as Eq. (35).
The ADMM of the modified model for color images can

be described as Algorithm 2.

4 Results and discussion
In this section, we present two groups of numerical exper-
iments for segmented images including gray images and
color images to study the effectiveness and efficiency of
our method. For Eqs. (27) and (38), if the number of
regions N = 2m, this method represents traditional 2m-
phase segmentation with ADMM. IfN < 2m, it represents
the proposed method in this paper. The initial binary label
function φ is initialized as m circles, there are two cases,
in the circle φ0 = 1 otherwise φ0 = 0. In our experiments,
We set α = 1, μ = 1, h = 1, ε = 10−6,ε = 10−5. All

Algorithm 2 ADMM of modified Vese-Chan model for
color images
Initialize: u0i = f 0, w0 = ∇φ0, λ0 = 0, step = 500;
1: for (k = 0; k <= step; k + +) do
2: uk+1

ip are given by (39);
3: φk+1

j are given by (40),(32);
4: wk+1

j are given by (34);
5: λk+1

j , λk+1
l are given by (35);

6: if
∣∣∣E2k+1 − E2k

∣∣∣E2k ≤ ε then
7: break
8: end if
9: end for

experiments are performed using MATLAB R2016a on a
Window 7 platform with an Intel(R) Core(TM) i5-4590
CPU at 3.30GHz and 4.00GB memory.

4.1 Numerical experiments for gray image segmentation
Firstly, we compare the Vese-Chan model without redun-
dant regions by using classic optimization method shown
in Section 3.2 and ADMMmethod in Section 3.3 to study
advantages of the latter method. Besides, we compare
Algorithm 1 with the original Vese-Chan model in [9]
and TV regularization method in [17] for images with
redundant regions.

4.1.1 Comparisons between the classic optimization
method and ADMM

Figure 2 a shows a synthetic image with four phases, so
we use two binary label functions to design characteris-
tic functions. Figure 2b and c are segmentation results
for classic optimization method and ADMM method,
respectively, which contains four meaningful phases
(Fig. 2d–g, h–k).We conclude that the above twomethods
obtain the same segmentation effectiveness.
In Fig. 3, we compare the classic optimization method

and ADMM method for a brain MR image. The four
phases of two methods are displayed in the second row
and the third row, respectively. The ADMM method can
give the better segmentation result from the comparison
of Fig. 3f and g.
Table 2 demonstrates the iterations and computational

time for Figs. 2a and 3a. ADMM method consumes less
computational time and iterations than the classic opti-
mization method. We can conclude that using ADMM
method can improve computational efficiency for image
segmentation.

4.1.2 Comparisons between Algorithm 1 and othermethods
Figure 4 a shows a picture consists of a little bottle, a
cup, and background, which occupy three regions. Using
Vese-Chan scheme for division, we need two binary label
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Fig. 2 Comparison of the classic optimization method and ADMM. a The input synthetic image. b The segmentation result of classic optimization
method. c The segmentation result of ADMM. d–g Different regions obtained via the classic optimization method. h–k Different regions obtained
via ADMM

Fig. 3 Four-phase segmentation of the classic optimization method and ADMM. a The input brain MR image. b The segmentation result of classic
optimization method. c The segmentation result of ADMM. d–g Different regions obtained via the classic optimization method. h–k Different
regions obtained via ADMM
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Table 2 Iterations and computational time for Figs. 2a and 3a

Image Size Iterations Computational time(s)

Classic
optimization

ADMM Classic
optimization

ADMM

Figure 2a 256 × 256 85 20 17.18 1.12

Figure 3a 142 × 146 245 22 36.96 2.10

functions to design characteristic functions. The original
Vese-Chan method uses N = 4 with one empty region,
TV regularization method and our method use N = 3
without empty regions. Three methods get the same seg-
mentation results as shown in Fig. 4b–d, which contain
three meaningful regions (Fig. 4e–g, i–k, and m–o) and
one empty region (Fig. 4h, l, and p). The differences of
their computation efficiency are listed lately together with
other experiments.
Figure 5 presents a three-phase segmentation problem

also, but the image is a synthetic one with noises as
shown in Fig. 5a. Figure 5 b–d show the segmentation

results via the original Vese-Chan method, TV regulariza-
tion method, and our method, respectively. Comparison
between four characteristic functions of every method
(Fig. 5e–p) shows that three methods obtain the same
segmentation result.
In Fig. 6, we compare the original Vese-Chan method,

TV regularization method, and our method for a three-
phase CT image slice of brain, and the segmentation
results using these three methods are given in Fig. 6b–d,
respectively. Different regions of threemethods are shown
in the last three rows. From experiment results, we con-
clude that three methods can obtain the similar segmen-
tation effectiveness.
Figure 7 a shows a synthetic image consists of six

regions, and we need three binary label functions to
design characteristic functions. The original Vese-Chan
method uses N = 8 with two empty regions, TV
regularization method, and our model use N = 6 without
empty regions. Three methods get the same segmentation
results as shown in Fig. 7b–d, which can obtain the same

Fig. 4 Comparison of original Vese-Chan method, TV regularization method, and our method using two label functions. a The input nature image. b
The segmentation of original Vese-Chan method. c The segmentation of TV regularization method. d The segmentation of our method. e–h
Different regions obtained via the original Vese-Chan method. i–l Different regions obtained via TV regularization method.m–p Different regions
obtained via our method
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Fig. 5 Three-phase segmentation of original Vese-Chan method, TV regularization method, and our method. a The input synthetic image. b The
segmentation of original Vese-Chan method. c The segmentation of TV regularization method. d The segmentation of our method. e–h Different
regions obtained via the original Vese-Chan method. i–l Different regions obtained via TV regularization method.m–p Different regions obtained
via our method

Fig. 6 Three-phase segmentation for a CT image slice of brain. a The input CT image slice of brain. b The segmentation of original Vese-Chan
method. c The segmentation of TV regularization method. d The segmentation of our method. e–h Different regions obtained via the original
Vese-Chan method. i–l Different regions obtained via TV regularization method.m–p Different regions obtained via our method
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Fig. 7 Six-phase segmentation of original Vese-Chan method, TV regularization method and our method. a The input synthetic image. b The
segmentation of original Vese-Chan method. c The segmentation of TV regularization method. d The segmentation of our method. e–l Different
regions obtained via our method

meaningful phases. Therefore, we only show six different
regions obtained via our method in Fig. 7e–j.
We record iterations and computational time of three

methods for Figs. 4a, 5a, 6a, and 7a in Table 3. From
Table 3, we reach that TV regularization method and our
method both consume less computational time than origi-
nal Vese-Chanmethod, and the reason of which is the first
two methods reduce estimation of redundant parameters.
Our method can obtain the highest computational effi-
ciency. Next, we will study the reasons for this result.
TV regularization method uses an acceleration method,

and ourmethod also uses ADMMaccelerationmethod. In
order to further explore the efficiency of our method, we
compare four methods, including TV regularization with-
out acceleration method (TV-RWAM), our method with-
out ADMM, TV regularization method, and our method.
The first two methods use upwind differential scheme
as shown in Section 3.2 to compute label function φ.
Figure 8 presents a six-phase segmentation problem, the
image is a remote sensing one of coastline as shown in

Fig. 8a. Figure 8 b–e show the segmentation results via
the above four methods, respectively. Figure 8f–i are gray
images according to four final segmentations. The itera-
tions and computational time of four methods are showed
in Table 4.
From Table 4, our method without ADMM consumes

less iterations and computational time than TV regular-
ization without acceleration method, because we add area
constraints of redundant regions and simplify the expres-
sion of characteristic functions. Besides, our method
consumes less computational time than TV regulariza-
tion method, and the reason of which is we use ADMM
method to compute energy optimization, improving the
computational efficiency.

4.2 Numerical experiments for color image segmentation
Color image segmentation is an extension of gray
image segmentation. We compare the original Vese-Chan
method and TV regularization method with our method
presented in Section 3.4 for color images.

Table 3 Iterations and computational time for Figs. 4a, 5a, 6a , and 7a

Image Size Binary label
function

Iterations Computational time(s)

Original
Vese-Chan
method

TV regularization
method

Our
method

Original
Vese-Chan
method

TV regularization
method

Our
method

Figure 4a 160×160 2 83 57 46 2.44 1.56 1.11

Figure 5a 160×160 2 72 49 38 2.61 1.98 1.36

Figure 6a 150×150 2 64 44 37 1.52 1.06 0.54

Figure 7a 455×451 3 71 50 24 49.94 25.12 16.21
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Fig. 8 Comparison of TV regularization method and our method both solved without/with acceleration method. a The remote sensing image of
coastline. b–e The segmentation of TV-RWAM, our method without ADMM, TV regularization method and our method. f–i Gray images obtained
via the final segmentation results

Figure 9 presents a three-phase segmentation problem,
the color image is a part of flower as shown in Fig. 9a.
Figure 9b–d show the segmentation results via the above
three methods respectively. Figure 9e–h show different
regions via the original Vese-Chan method. Because the
TV regularization method and our method obtain the
same result, we only show different regions about our
method (Fig. 9i–l). Comparison between empty regions
(Fig. 9h and l) shows that our method and TV regulariza-
tion method give better segmentation result.
Figure 10a presents a six-phase synthetic color image,

the segmentation results using the original Vese-Chan
method, TV regularization method and our method are
given in Fig. 10b–d, respectively, which obtain the same
meaningful regions. Therefore we only show six meaning-
ful regions via our method in Fig. 10e–j.
Figures 11a, 12a, and 13a are synthetic color images with

nine, ten and eleven different regions respectively, so we

Table 4 Iterations and computational time for Fig. 8a

Method Iterations Computational time(s)

TV-RWAM 220 29.24

Our method without ADMM 216 24.68

TV regularization method 135 17.95

Our method 90 10.29

need four binary label functions to design characteristic
functions. We use three methods: the original Vese-Chan
method, TV regularization method and the proposed
method. The first one uses N = 16 for three images,
causing seven, six and five empty regions separately. Our
method uses N = 9, N = 10 and N = 11 without empty
regions respectively. For Fig. 11a, results are shown in
Fig. 11b–d. Three methods obtain the same segmentation
results. As a representative, Fig. 11e–m show nine differ-
ent regions obtained via our method. Figure 12b–d show
segmentation results for a ten-phase image. The first eight
different regions for Fig. 12 are the same as Fig. 11, and
two other regions as shown in Fig. 12e–f. The segmenta-
tion results for Fig. 13a are shown in Fig. 13b–d, and its 11
different regions include Figs. 11e–l, 12e, and 13e–f.
We record total iterations and computational time of

the above three methods for Figs. 9a, 10a, 11a, 12a,
and 13a in Table 5, from which we can conclude that
compared to the original Vese-Chan method and TV
regularizationmethod, and ourmethod can improve com-
putational efficiency for color images. With increase of
the empty regions of images, it is more obvious that
the computational efficiency is improved. Besides, the
iterations and computational time are positively corre-
lated with the image sizes.
From the above experiments, we can conclude that the

computational cost of our method includes two parts:
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Fig. 9 Three-phase segmentation of a color image. a The input color image. b The segmentation of original Vese-Chan method. c The
segmentation of TV regularization method. d The segmentation of our model. e–h Different regions obtained via the original Vese-Chan method.
i–l Different regions obtained via our method

Fig. 10 Six-phase segmentation of a color image. a The input color synthetic image. b The segmentation of original Vese-Chan method. c The
segmentation of TV regularization method. d The segmentation of our method. e–l Different regions obtained via our method
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Fig. 11 Nine-phase segmentation of a color image. a The input color synthetic image. b The segmentation of original Vese-Chan method. c The
segmentation of TV regularization method. d The segmentation of our model. e–m Nine meaningful regions obtained via our method

parameter computations for φ, w, λ and parameter esti-
mations for u, both of which are relative to the image sizes.
Besides, the former one is also relative to the number
of binary label function m. When there exist redundant
regions in the images, (i.e., N < 2m), parameter estima-
tions are relevant to N.

The number of regions N can be detected according to
the number of target objects in the image. In the paper, the
segmented images are simple and easy to determine the
value of N. However, if the image is complex, the value of
N is difficult to determine, which is a limit that needs to
be solved in the future.

Fig. 12 Ten-phase segmentation of a color image. a The input color synthetic image. b The segmentation of original Vese-Chan method. c The
segmentation of TV regularization method. d The segmentation of our model. e–f Two meaningful regions obtained via our method
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Fig. 13 Eleven-phase segmentation of a color image. a The input color synthetic image. b The segmentation of original Vese-Chan method. c The
segmentation of TV regularization method. d The segmentation of our model. e–f Two meaningful regions obtained via our method

Table 5 Iterations and computational time for Figs. 9a, 10a, 11a, 12a, and 13a

Image Size Binary
label
function

Iterations Computational time(s)

Original
Vese-Chan
method

TV regularization
method

Our
method

Original
Vese-Chan
method

TV regularization
method

Our
method

Figure 9a 200×236 2 80 41 35 3.66 1.51 1.02

Figure 10a 200×194 3 98 72 40 6.73 3.82 2.44

Figure 11a 270×180 4 100 66 28 48.15 19.20 9.53

Figure 12a 300×200 4 122 87 55 59.91 29.17 22.02

Figure 13a 330×220 4 149 101 72 70.32 38.60 32.01
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5 Conclusions
In order to improve the computation efficiency of the
Vese-Chan model for multiphase image segmentation in
a systematic form, we have designed a modified Vese-
Chan model by introducing some simple area constraints.
The forms of characteristic functions are unified, and the
redundant parameter estimations are not needed, there-
fore, the cost of computation is reduced. Obviously, the
computational efficiency is higher with the increase of
the empty regions. Additionally, we formulate the ADMM
for the proposed model to further improve efficiency.
Some numerical examples for gray image and color image
multiphase segmentation are presented to demonstrate
that the proposed model has the same or better segmen-
tation effects and higher efficiency. Our method can be
applied into motion segmentation, surface segmentation,
and 3D reconstruction in the future work.
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