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Abstract

It is a great challenge to maintain details while suppressing and eliminating noise of the image. Considering the
nonconvexity property of the diffusion function and the hypersensitivity of the Laplace operator to noise in the Y-K
model, a fourth-order PDE image denoising model (Con_G&L model) is proposed in this paper. This model is
constructed by a new convexity-preserving diffusion function which guarantees the corresponding energy
functional has a globally unique minimum solution. At the same time, the Gaussian filter is combined with the
Laplace operator in this model, and as a result, the noisy image is smoothed before the diffusion process, which
improves the ability of capturing the details and edges of the noisy image greatly. Furthermore, by analyzing the
statistical properties of the undecimated discrete wavelet transform (UDWT) coefficients of noisy image, we observe
that the noise information is mainly distributed in the high-frequency sub-bands, and based on this, the proposed
Con_G&L model is applied in the high-frequency sub-bands of the UDWT to get the denoising method. The
proposed method removes the image noise effectively with the image texture and other details of the image
being maintained. Meanwhile, the generation of false edges and the staircase effect can be suppressed. A large
number of simulation experiments verify the effectiveness of the proposed method.

Keywords: Undecimated discrete wavelet transform (UDWT), Fourth-order partial differential equations, Diffuse
function, Convexity-preserving, Image denoising

1 Introduction
In the process of image formation and transmission,
some noise will be introduced, having a great impact on
the subsequent applications. Therefore, effectively sup-
pressing and eliminating noise in images has always been
a popular research topic in the image processing area.
Several of image modeling methods have been proposed
to study the relationship between the image background
and the noise component [1–3]. Generally, a good
denoising method should be able to remove the noise
from the image while maintaining the information of the
edges, contours, and details of the image. In other
words, it should remove noise and retain the spatial
resolution of the images at the same time.
In recent years, the partial differential equation (PDE)

method has become one of the most important

mathematical tools for image modeling and representation
due to its good property of flexibility and local adaptabil-
ity. Based on the continuous mathematical image model,
this kind of method makes the image follow a specified
PDE, the processing result of which is considered the ex-
pected result [4–6]. In the field of image denoising, the
second-order PDE nonlinear diffusion equation (P-M
model) proposed by Perona and Malik is a pioneer
method in PDE image denoising [7]. This model combines
image denoising with edge detection organically and takes
into account the preservation of details while denoising.
However, in the process of iteration, this model is un-
bounded for the boundary detector oscillation when large
noise is introduced, and the condition given by the model
is smooth, which will affect the results. Also, the model is
ill-posed. To tackle these, Alvarez et al. proposed regular-
ized P-M model [8]. However, the regularized model is
not stable when the difference is zero in the diffusion
process. Additionally, the diffusion degree is weakened by
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the first-order partial differential at the edge and texture
regions because of the second-order characteristics of the
model, and after several iterations, the image gray level
will appear as a piecewise constant, and the “block” effect
will make it difficult to retain the texture details of the ori-
ginal image. To solve these problems, researchers ought to
find a PDE model with higher order. The fourth-order
PDE model is noted for its stability and computational ef-
ficiency. The Y-K model proposed by You and Kaveh in
[9] and the LLT model proposed by Lysaker in [10] are
some typical models. They efficiently suppress the “block”
effect introduced by the second-order PDE model. How-
ever, the Y-K model causes an obvious gray difference be-
tween some points and their surroundings. In addition,
black and white outliers usually emerge in the denoised
image. The reason is that the Laplace operator in the
model is sensitive to speckle noise, which restrains the dif-
fusion of the model. The LLT model is based on the mini-
mum L1 norm about the second derivative of the image,
and there is a fast computational method of numerical so-
lution [11]. Nevertheless, it is essentially a high-order fil-
ter, which is more sensitive to the high-frequency
information of the image and will inevitably blur the
image details and edge information with the diffusion
deepening.
The wavelet transform is an effective tool for time-

frequency analysis of signals due to its excellent time-
frequency localization ability. Therefore, image denoising
methods based on wavelets have frequently been consid-
ered. The most typical methods are based on a wavelet
domain, including the general threshold method [12],
extreme threshold method [13], St. Ein unbiased risk
threshold method [14], and Bayesian threshold method
[15–17]. These methods simply and rapidly obtain the
corresponding denoising thresholds by using the fre-
quency characteristics of decomposing the sub-band co-
efficients through image wavelets. However, these
methods either have the tendency of “over-stifling” [12,
13] or “over-reserving” [14] the wavelet coefficients. The
accuracy of the Bayesian threshold method in estimating
the variance of sub-band noise remains to be improved.
Based on the above discussions, in this paper, a novel

image denoising method is proposed by the improved Y-
K model and UDWT. First, a novel convexity-preserving
diffusion function is proposed by introducing the Gauss-
ian convolution process to the traditional Y-K model,
which ensures the unique minimum solution of the
model and decreases the sensitivity of the Laplace opera-
tors with respect to speckle noise. Then, the statistical
property of noisy image UDWT coefficients is studied;
we observe that the noise information is mainly distrib-
uted in the high-frequency sub-bands, and based on this,
the proposed Con_G&L model is applied in the high-
frequency sub-bands of the UDWT to get the denoising

method. A large number of experiments are carried out
to verify the effectiveness of the proposed method. The
results show that the proposed method can effectively
remove the noise in the image while retaining the image
edge, texture, and other information details.
The rest of the paper is organized as follows: Section 2

provides the statistical analysis of UDWT coefficient and
gives the proposed denoising model, Section 3 gives the
description of the datasets and the details of the experi-
ments, and Section 4 presents the conclusions.

2 Methods
2.1 Statistical analysis of UDWT coefficients of noisy
images
The traditional discrete wavelet transform can decom-
pose an image to multi-scales and multi-directions.
However, due to the downsampling and upsampling
process, the wavelet transform is not shift-invariant. To
solve this, the undecimated discrete wavelet transform
(UDWT) was proposed by Shensa [18], which not only
retains the properties of wavelet transform, but also has
the good property of shift-invariant. UDWT does not
utilize the downsampling operation in the process of sig-
nal decomposition, and instead, it inserts zeroes every
two coefficients to expand the filter in the process of
high-pass and low-pass filtering. The length of low-
frequency and high-frequency signals obtained by
UDWT decomposition is the same as that of the original
signal, which not only preserves the time-frequency local
characteristics and multiresolution analysis characteris-
tics of the wavelet transform but also ensures preserva-
tion of the translation invariant characteristics. These
characteristics lay a foundation for overcoming the
drawbacks of traditional denoising methods and effect-
ively suppress the generation of the pseudo-Gibbs
phenomenon.
Assuming that the scale function and the wavelet ðϕ;

ψ; ~ϕ; ~ψÞ are designed by the filter ðh; g; ~h; ~gÞ, UDWT can
efficiently decompose the input signal c0 into {ω1,⋯, ωJ,
cJ} through the following porous algorithm (àtrous) [19],
where ωj (j ∈ {1, 2,⋯, J}) represents the wavelet coeffi-
cients on the scale j and cJ represents the wavelet coeffi-
cients on the coarsest resolution:

c jþ1 l½ � ¼ h
jð Þ�c j

� �
l½ � ¼

X
k

h k½ �c j l þ 2 jk
� �

ω jþ1 l½ � ¼ g jð Þ�c j
� �

l½ � ¼
X
k

g k½ �c j l þ 2 jk
� �

8>><>>: ð1Þ

when l/2j is an integer, h(j)[l] = h[l], or h(j)[l] = 0; for ex-
ample, h(1) = (⋯, h[−2], 0, h[−1], 0, h[1], 0, h[2], ⋯), cj
can be reconstructed by
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c j l½ � ¼ ~h
jð Þ�c jþ1

� �
l½ � þ ~g jð Þ�ω jþ1

� �
l½ � ð2Þ

Since there is no downsampling process, the filter

banks ðh; g; ~h; ~gÞ only need to satisfy the complete recon-
struction conditions in (3) and do not need to satisfy the
de-aliasing conditions.

ĥ
�
vð Þb~h vð Þ þ ĝ� vð Þb~g vð Þ ¼ 1 ð3Þ

Furthermore, the above porous algorithm can be ex-
tended to two-dimensional image decomposition in the
following two-dimensional tensor product form:

c jþ1 k; l½ � ¼ h
jð Þ
h

jð Þ�c j
� �

k; l½ �; w1
jþ1 k; l½ � ¼ g jð Þh

jð Þ�c j
� �

k; l½ �
w2

jþ1 k; l½ � ¼ h
jð Þ
g jð Þ�c j

� �
k; l½ �; w3

jþ1 k; l½ � ¼ g jð Þg jð Þ�c j
� �

k; l½ �

8<:
ð4Þ

where hg ∗ c is the convolution performed with separable
filters hg, which means being convolved with h by col-
umn and then with g by row. Three detailed scale images
w1, w2, and w3 are obtained at each scale, which have
the same size as the original image.
To study the distribution of noise coefficients of the noisy

images after UDWT transform, we use the maximum likeli-
hood estimation (ML) method shown in (5) to obtain the
variance estimation of each noisy observation sub-band [20]:

σ̂2y ¼
1

n� n

X
i

y2 ið Þ ð5Þ

where n × n is the size of sub-band and y is the observed
image.
In this paper, Tank, Elaine, and Sea (512 × 512, 8 bpp)

are used as test images (see Fig. 1); Gaussian white noise
with a mean value of 0 and variance of 30 dB and 50 dB are
added using MATLAB. At the same time, three-layer
UDWT decomposition is performed for the original image
and noisy image, and three high-frequency sub-bands and
one low-frequency sub-band are obtained. The standard

deviation statistics about the low-frequency sub-bands and
high-frequency sub-bands of the two kinds of images are
given in Table 1.
As seen in Table 1, after decomposition by UDWT, the

noise mainly distributes in the coefficients of the high-
frequency sub-bands and the standard deviation of the
low-frequency sub-band coefficients of the noisy images,
and the images without noise are very close. That is, the
influence of noise on the low-frequency sub-band of
UDWT coefficients is very small. Hence, in the process of
improved PDE model image denoising based on UDWT,
we only need to deal with the high-frequency sub-band
and keep the low-frequency sub-band state unchanged. In
this way, we can improve the computation efficiency of
diffusion and avoid the tendency of “over-strangling” the
approximation sub-band coefficients.

2.2 Proposed PDE model of the convexity-preserving
diffusion function
2.2.1 Analysis of Y-K model
For a continuous functional in the region Ω,

E uð Þ ¼
Z

Ω
f j∇2uj� �

dxdy ð6Þ

where ∇2 is the Laplace operator, and when f(⋅) ≥ 0
and f′(⋅) > 0 is satisfied, E(u) reaches its minimum value.
The minimum is considered as a variational minimum
problem, and the Euler-Lagrange equation of (6) could
be obtained by the gradient descent method.

∇2 g j∇2uj� �
∇2u

� � ¼ 0 ð7Þ
where g(x) = f′(x)/x. According to this, You and Kaveh

proposed the Y-K model [4] as (8)

∂u x; y; tð Þ
∂t

¼ −∇2 g j∇2uj� �
∇2u

� �
u x; y; 0ð Þ ¼ u0 x; yð Þ

(
ð8Þ

where ∇2u ¼ ∂2u
∂x2 þ ∂2u

∂y2 , u0(x, y) is the original image,

Fig. 1 Three test images. a Tank. b Elaine. c Sea
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u(x, y, t) is the image after smoothing, and u0(x, y) is
in the time scale t, and we select gðsÞ ¼ 1

1þðs=kÞ2 as dif-

fusion coefficient, where k is the edge threshold
(constant).
The Y-K model reduces the block effect of low-order

PDE models in the image denoising process and achieves a
good balance between removing noise and preserving
edges. However, in the process of denoising, the Y-K model
will produce a “speckle” effect, which leads to secondary
contamination of the image. The reasons are as follows:
The energy functional E(u) of (6) has the same concav-

ity and convexity with f(⋅), and if f(⋅) is a convex func-
tion, we can know f′(s) ≥ 0 and f″(s) ≥ 0, when ∀s > 0. In
this condition, E(u) has a globally unique minimum
value. However, in the Y-K model, f(⋅) is determined by
the selected diffusion function g(s) through f′(s) = sg(s).
Overall, we obtain

f
0
sð Þ ¼ s

1þ s=kð Þ2

f ″ sð Þ ¼ k2 k2−s2
� �

k2 þ s2
� �2

8>>><>>>: ð9Þ

Clearly, f″(s) < 0 when s > k, which means f(⋅) is no lon-
ger guaranteed to be convex. Therefore, it is not guaran-
teed that E(u) has a globally unique minimum solution.

2.2.2 Construction of the model
For the nonconvexity of the diffusion function in the Y-K
model, a new convexity-preserving diffusion function is
constructed. Considering that the functional purpose of the
diffusion function in the Y-K model is to detect edge infor-
mation in images and that the Laplace operator ∇2 is very
sensitive to noise, it is difficult to detect edge information
effectively in noisy images. For this reason, we combine the

Gaussian filter with the Laplace operator, and Gaussian
smoothing is performed before edge detection using the
constructed convexity-preserving diffusion function. Based
on this smoothing, an image diffusion denoising model
(named Con_G&L) is proposed, combining the constructed
convexity-preserving diffusion function with the Gaussian
filter and Laplace operator. The specific form is

∂u x; y; tð Þ
∂t

¼ −∇2 gConvexðj∇2 Gσ � uð ÞjÞ∇2u
� �

u x; y; 0ð Þ ¼ u0 x; yð Þ

(
ð10Þ

where Gσð�Þ ¼ 1ffiffiffiffiffiffi
2πσ

p expð− j�j2
2σ2Þ is a Gaussian convolution

kernel with variance σ(σ > 0), ⊗ is the two-dimensional
convolution operation, ∇2 is the Laplace operator, u0(x,
y) is the original image, and u(x, y, t) is the image after
smoothing in the time scale t, gConvex(⋅) is the diffusion
function proposed whose specific form is

gConvex sð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s=kð Þ2p

q ; p∈ 0; 1ð �; s > 0: ð11Þ

Here, k is the threshold parameter to distinguish the
edges and smooth areas of the image. If the value of k is
too small to distinguish the noise points well, it is prone
to a step effect. If the value of k is too large, the image
will be blurred by excessive denoising. To increase the
locally adaptive property, according to [21], k is set as
k = 1.4826 × median‖(|∇2u| −median(|∇2u| ))‖.
Furthermore, g(s) is a nonnegative monotonously de-

creasing function, which satisfies

gConvex 0ð Þ ¼ 1; lim
s→∞

gConvex sð Þ ¼ 0: ð12Þ

In addition, p ∈ (0, 1] is the regulatory factor. The larger
the p is, the faster the function gConvex(s) decreases. Then,

Table 1 The standard deviation estimate of each sub-band coefficients

Test
image

Noiseless
height
frequency
sub-band
standard
deviation

High-frequency noisy sub-band Noiseless
low-
frequency
sub-band
standard
deviation

High-frequency noisy sub-band

30 dB noise 50 dB noise 30 dB noise 50 dB noise

Standard
deviation

Disparity Standard
deviation

Disparity Standard
deviation

Disparity Standard
deviation

Disparity

Tank 6.341 8.946 2.605 12.372 6.031 134.649 134.648 0.001 134.764 0.115

5.973 14.507 8.534 22.912 16.939

5.494 27.205 21.711 44.715 39.221

Elaine 7.684 9.956 2.272 13.203 5.519 143.211 143.21 0.001 143.521 0.31

4.912 14.125 9.213 22.777 17.865

5.553 27.301 21.748 44.828 39.275

Sea 7.218 9.581 2.363 12.911 5.693 119.241 119.246 0.005 119.429 0.188

7.264 15.101 7.837 23.332 16.068

6.142 27.345 21.203 44.913 38.771
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the better the edge information is preserved, the less the
noise near the edges is removed. By contrast, the smaller P
is, the slower the function gConvex(s) decreases. Then, the
worse the edge information is preserved, the stronger the
noise near the edges is removed. Figure 2 shows the diagram
of gConvex(⋅) with s when k is 1 and P is 1, 0.9, 0.7, and 0.5.
Effectiveness analysis of the Con_G&L model is as follows:
Theorem. Based on the diffusion function gConvex(s),

the energy functional E(u) = ∫Ωf(|∇
2u| )dxdy has a glo-

bally unique minimum value.
Proof: For the energy functional E(u) = ∫Ωf(|∇

2u| )dxdy,
f(⋅) has the same concave-convex quality. According to
the constructed diffusion function gConvex(s), we set f(⋅) as

∂u x; y; tð Þ
∂t

¼ −∇2 g j∇2uj� �
∇2u

� �
u x; y; 0ð Þ ¼ u0 x; yð Þ

(
; p∈ 0; 1ð � ð13Þ

Furthermore, we can obtain

f } sð Þ ¼ 1−p

1þ s=kð Þ2p� �3=2 ð14Þ

due to p ∈ (0, 1], we can know f ' ' (x) ≥ 0. Thus, f(s) is a con-
vex function, and E(u) has a globally unique minimum value.

2.2.3 Discretization of the Con_G&L model
In image processing, an image is usually defined as a
rectangular field Ω, and it satisfies the following rect-
angular network in Ω:

x ¼ iΔx; i ¼ 0; 1;⋯; I−1;
y ¼ jΔy; j ¼ 0; 1;⋯; J−1;

	
ð15Þ

where I × J is the size of an image, and we usually select
Δx = 1, Δy = 1 for an image.
Let u(⋅, ⋅) be the processed image, u0(⋅, ⋅) be the ori-

ginal image, Δt be the time step, h be the space step,
k be the iteration count in this condition, and mark
u(i, j) = ui, j, u0ði; jÞ ¼ u0i; j . Taking account of the ac-

curacy of calculation, the central difference method is
adopted in numerical calculation. The specific calcula-
tion format is

uxxð Þki; j ¼
ukiþ1; j−2u

k
i; j þ uki−1; j
h2

uyy
� �k

i; j ¼
uki; jþ1−2u

k
i; j þ uki; j−1
h2

∇2uki; j ¼ uxxð Þki; j þ uyy
� �k

i; j

∇2 Gσ � uð Þki; j ¼ Gσ � uð Þxx
� �k

i; j þ Gσ � uð Þyy
� �k

i; j

8>>>>>>>>><>>>>>>>>>:
ð16Þ

Let

c ∇2u
� � ¼ gConvex j∇2 Gσ � uð Þj� �

∇2u

cki; j ¼ c ∇2uki; j
� �(

; ð17Þ

we have

∇2cki; j ¼
ckiþ1; j þ cki−1; j þ cki; jþ1 þ cki; j−1−4c

k
i; j

h2
ð18Þ

Then, the explicit difference scheme of the proposed
Con_G&L model is

Fig. 2 The diagram of gConvex(s) when k = 1
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ukþ1
i; j ¼ uki; j−Δt∇

2cki; j: ð19Þ

2.3 UDWT image denoising algorithm based on the
Con_G&L model
From the analysis and discussion in Section 2.1, it can
be seen that noise information is mainly contained in
high-frequency sub-bands after UDWT decomposition
of the noisy images. Based on that, this paper decom-
poses the noisy image into three layers via UDWT and
then denoises the three high-frequency sub-bands using
the proposed Con_G&L model, while the low-frequency
sub-band information remains unchanged. Finally, the
final denoised image is obtained by reconstructing the
low-frequency sub-band and the denoised high-
frequency sub-band. The flow chart of the algorithm is
shown in Fig. 3.
The specific implementation process of the algorithm

is as follows:

Step 1. Deal with the noisy images via UDWT.
Step 2. Denoise the high-frequency sub-band components
by using the Con_G&L model after UDWT
decomposition.
Step 2.1 calculates 2(Gσ u) of the high-frequency
sub-band and then calculates gConvex(|

2(Gσ u)| )
according to formula (11).
Step 2.2. Diffuse the Con_G&L model according to
the discrete form (16)–(19).

Step 2.3. If j ukþ1
i; j −uki; j j< 0:01, proceed to Step 3;

otherwise, return to Step 2.1.
Step 3. Apply the inverse UDWT transform for the high-
frequency sub-band components after diffusion, which
combines the low-frequency sub-band components; then,
we obtain the denoised images.

3 Results and discussions
To verify the effectiveness of the proposed algorithm, a
large number of simulation experiments have been car-
ried out in this paper. The experiment was done with
MATLAB (R2018a). The test images are “Elaine,” “Tank,
” “Sea,” “Plane,” and “Panzer” with size 512 × 512. In our
experiments, the test images are corrupted by simulated
additive noise with a standard deviation equal to 20, 30,
40, 50, and 60, respectively. Besides, we compare our
model with the UDWT threshold, LLT, Y-K, and the
denoising method proposed in [22]. The images are
decomposed by three-layer UDWT (filter is db9/7 wave-
let), the space step h is 1, the time step Δt is 0.2, and P
is 1. Also, PSNR is used as the objective evaluation index
of denoising effect:

PSNR ¼ 10� lg
2552 �m� nXm

i¼1

Xn
j¼1

u� i; jð Þ−u0 i; jð Þ� �2 ð20Þ

where u∗(⋅, ⋅) is the denoised image, u0(⋅, ⋅) is the

Fig. 3 Algorithm flow chart
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noiseless original image, m is the length of the image,
and n is the width.
Figure 4 shows the denoising results of five test images

after adding Gaussian white noise with a variance of 30.
Figure 5 is the denoising results of a local region of
“Sea” when enlarging two times.
Table 2 shows the PNSR statistical results for the five

denoised images of the algorithm in this paper and
UDWT threshold method, LLT model, Y-K model, and
the denoising method proposed in [22]. All the images
are corrupted with Gaussian white noise with variances
of 20, 30, 40, 50, and 60 before denoising.
It can be observed from Figs. 4 and 5 that, compared

with the UDWT threshold method, LLT model method,
Y-K model method, and the denoising method proposed
in [22], the proposed method is better at maintaining the
image texture, edges and details of the information, while

removing noise. It can be seen from Table 2 that our
method achieves superior evaluation indexes in most situ-
ations; proposed algorithm has higher PSNR than the
other four denoising methods through comparing PSNR
values in Table 2, especially for high variance noise.

4 Conclusions
As a typical representative of the fourth-order PDE
model, the Y-K model can effectively suppress the
“blocky” effect produced by the second-order PDE
model in the process of denoising and achieves a good
balance between image denoising and edge preservation.
However, the nonconvexity of the diffusion function in
the model makes it impossible for the energy function to
have a globally unique minimum solution, which results
in the “speckle” effect in the process of denoising. In
addition, the Laplace operator used in the model is

Fig. 4 The comparison of the denoising results for the test images
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Fig. 5 The comparison of the denoising results of a local region when enlarging two times

Table 2 The PSNR of denoising for images of different methods

Image Noise
variance

PSNR (dB) Proposed

Noisy image UDWT threshold LLT Y-K Ref .[22]

Elaine 20 22.13 29.61 29.84 29.64 30.15 30.22

30 18.62 28.67 28.15 28.01 28.94 29.34

40 16.11 27.77 27.21 25.86 28.2 28.35

50 14.13 27.09 24.54 23.86 27.18 27.28

60 12.57 26.63 23.11 21.52 27.23 26.71

Tank 20 22.11 28.47 28.24 28.97 27.42 29.37

30 18.57 27.93 27.23 28.41 26.18 28.64

40 16.09 27.48 24.95 27.18 25.62 27.86

50 14.13 26.85 22.57 25.52 24.88 26.96

60 12.58 25.98 20.31 23.35 24.12 26.17

Sea 20 22.09 28.19 27.72 27.87 29.25 28.29

30 18.61 27.63 27.01 27.48 27.77 27.79

40 16.09 26.82 24.93 25.56 26.86 27.06

50 14.16 26.18 22.62 23.63 26.14 26.31

60 12.59 25.34 20.36 21.69 25.39 25.46

Plane 20 22.12 31.67 30.39 31.45 29.76 31.87

30 18.61 30.51 28.21 28.57 28.85 30.65

40 16.07 29.12 25.48 25.87 27.97 29.31

50 14.14 28.01 22.81 23.69 26.88 28.21

60 12.58 26.91 20.55 21.79 26.14 27.09

Panzer 20 22.12 25.17 26.72 26.78 23.47 26.81

30 18.61 24.91 26.11 26.38 22.04 26.39

40 16.08 24.71 24.25 24.61 21.24 25.86

50 14.14 24.51 22.19 22.84 20.64 25.29

60 12.57 24.31 20.19 21.26 20.1 24.73
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hypersensitive to noise, making it difficult to detect edges
in noisy images. Thus, the model loses the transformation
and detail information of the image in the process of
denoising. In this paper, we construct an image denoising
model, Con_G&L, based on a convexity-preserving diffu-
sion function and Gaussian convolution. Then, the glo-
bally unique minimum solution of the energy functional is
guaranteed by the convexity-preserving diffusion function,
and the secondary pollution in the denoising process is
avoided. At the same time, the ability to recognize details,
such as edges in images, is improved by smoothing the
Gaussian convolution. Then, an image denoising method
based on UDWT and the Con_G&L model is proposed.
In this method, the Con_G&L model is applied to deal
with the high-frequency sub-band of the UDWT in the
noise image, which effectively suppresses the false edges
and staircase effect. In short, this method removes the
image noise effectively and maintains the image texture
and other details at the same time.

Abbreviations
PDE: Partial differential equations; UDWT: Undecimated discrete wavelet
transform
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