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Abstract

This paper presents a high-performance general-purpose no-reference (NR) image quality assessment (IQA) method
based on image entropy. The image features are extracted from two domains. In the spatial domain, the mutual
information between different color channels and the two-dimensional entropy are calculated. In the frequency
domain, the statistical characteristics of the two-dimensional entropy and the mutual information of the filtered
subband images are computed as the feature set of the input color image. Then, with all the extracted features, the
support vector classifier (SVC) for distortion classification and support vector regression (SVR) are utilized for the
quality prediction, to obtain the final quality assessment score. The proposed method, which we call entropy-based
no-reference image quality assessment (ENIQA), can assess the quality of different categories of distorted images, and
has a low complexity. The proposed ENIQA method was assessed on the LIVE and TID2013 databases and showed a
superior performance. The experimental results confirmed that the proposed ENIQA method has a high consistency
of objective and subjective assessment on color images, which indicates the good overall performance and
generalization ability of ENIQA. The implementation is available on github https://github.com/jacob6/ENIQA.

Keywords: Image entropy, Mutual information, No-reference image quality assessment, Support vector classifier,
Support vector regression

1 Introduction
In this era of information explosion, we are surrounded
by an overwhelming amount of information. The diver-
sification of information is dazzling, and images, as the
source of visual information, contain a wealth of valuable
information. Considering the incomparable advantages of
image information over other types of information, it is
important to process images appropriately in the different
fields [1]. In image acquisition, processing, transmitting,
and recording, image distortion and quality degradation
are an inevitable result of the imperfection of the imaging
system, the processing method, the transmissionmedium,
and the recording equipment, as well as object move-
ment and noise pollution [2–4]. There is a direct effect
of image quality on people’s subjective feelings and per-
ception of information. For example, the quality of the
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collected images directly affects the accuracy and relia-
bility of the recognition results in an image recognition
process [5, 6]. Another example is that remote conferenc-
ing and video-on-demand systems are affected by such
factors as transmission errors, network latency, and so
on [7–9]. Online real-time image quality control is thus
introduced to ensure that the service provider dynami-
cally adjusts the source location strategy, in order to meet
the service quality requirements [10]. It is therefore not
surprising that research into image quality assessment
(IQA) has received extensive attention during the last two
decades [11].
In accordance with the need for human participation,

IQA methods can be divided into two classes: subjective
image quality assessment methods and objective image
quality assessment methods [12]. Subjective assessment is
quantified by the human eye. In contrast, an objective IQA
method focuses on automatic assessment of the images via
a specific automated, computer assisted method, with the
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ultimate goal of enabling a computer to model image pro-
cessing properties of the human visual system (HVS) in
viewing and perceiving images [13]. In practice, subjective
assessment results are difficult to apply in real-time imag-
ing systems due to their strong randomicity. Therefore,
objective IQA methods have been widely studied [14].
According to the availability of a reference image, objec-
tive IQA methods can be classified as full-reference (FR),
reduced-reference (RR), and no-reference (NR) methods
[15]. In a FR method, an original "distortion-free" image
is assumed to be supplied, as the assessment result is
obtained through the comparison of the two images. With
the advances of recent studies, the accuracy of this kind
of method is getting better, despite its disadvantage of
requiring a complete reference image, which is often not
available in practical applications [16]. A RR method,
which is also known as a partial reference method, does
not make a complete comparison between the distorted
image and the pristine one, but only compares certain fea-
tures [17]. Conversely, a NRmethod, which is also called a
blind image quality assessment (BIQA) method, requires
no image as reference. Instead, the quality is estimated
according to the features of the distorted image [15]. In
many practical applications, a reference image will be
inaccessible, and thus the NR-IQAmethods have the most
practical value and a very wide application potential [18].
In general, the current NR-IQAmethods can be divided

into two categories: application-specific and general-
purpose assessment [19]. The former kind of method
assesses the image quality of a specific distortion type
and calculates the corresponding score. Common types of
distortion include JPEG, JPEG2000 compression (JP2K),
blur, contrast distortion, and noise. For images with com-
pression degradation, Suthaharan et al. [20] proposed the
visually significant blocking artifact metric (VSBAM) to
estimate the degradation level caused by compression.
For images with blur degradation, Ciancio et al. [21]
utilized various spatial features and adopted a neural net-
work model to assess the quality. The maximum local
variation (MLV) method proposed by Khosro et al. [22]
provides a fast method of blur level estimation. Rony et
al. [23] put forward the concept of just noticeable blur
(JNB) and the improved version of cumulative probability
of blur detection (CPBD) [24]. For images with contrast
distortion, Fang et al. [25] extracted features from the
statistical characteristics of the 1-D image entropy dis-
tribution and developed an assessment model based on
natural scene statistics (NSS) [26]. Hossein et al. [27] used
higher orders of the Minkowski distance and entropy to
apply an accurate measurement of the contrast distortion
level. For images with noise, Yang et al. [28] proposed
frequency mapping (FM) and introduced it into qual-
ity assessment. Gu et al. [29] proposed a training-free
blind quality method based on the concept of information

maximization. These methods, however, require prior
knowledge of the distortion type, which limits their appli-
cation range. Therefore, general-purpose NR-IQA meth-
ods based on training and learning are highly desirable.
General-purpose NR-IQA methods can be further

divided into two types: explicit methods and implicit
methods [30]. An explicit method usually contains two
steps: feature extraction and model mapping [31]. Gen-
erally speaking, the features extracted in the first step
represent the visual quality, while the mapping model
in the second step bridges the gap between the features
and the ground-truth quality score. An implicit general-
purpose NR-IQAmethod constructs a mapping model via
deep learning. Although deep networks nowadays gener-
ally have an independent feature extraction capability, it is
difficult for the existing IQA databases to meet the huge
demand for training samples, let alone the large amount
of redundant data and network parameters. In addition,
compared to preselected features, no clear physical mean-
ing can be given by these automatically extracted features.
Thus, manual feature extraction is still an effective and
accurate way to summarize the whole image distortion.
According to the existing literature, the features

extracted by explicit general-purpose NR-IQA methods
are mainly concentrated in two categories: (1) The param-
eters of a certain model are obtained after a preprocessing
operation such as mean-subtracted contrast-normalized
(MSCN) coefficients [32]. The typical models are the
generalized Gaussian distribution (GGD) model [33], the
asymmetric GGD (AGGD) model [34], the Weibull distri-
bution (WD) model [35], etc. (2) Physical quantities that
reflect the characteristics of the image are obtained after
preprocessing such as blocking and transformation. The
typical methods are image entropy [36], wavelet subband
correlation coefficients [37], etc. The mapping models
from features to image quality are divided into three main
types: (1) Classical methods such as BIQI [33], DIIVINE
[37], DESIQUE [38], and SSEQ [36] follow a two-stage
framework. The probability of each type of distortion in
the image is gaged by a support vector classifier (SVC)
and denoted as pi in the first stage. The quality of the
image along each of these distortions is then assessed
by support vector regression (SVR) and denoted as qi
in the second stage. Finally, the quality of the image is
expressed as a probability-weighted summation: Index =∑

piqi. (2) Methods such as NIQE [39] and IL-NIQE [35]
are classified as “distortion-unaware,” and they calculate
the distance between a model fitted by features from a
distorted image and an ideal model to estimate a final
quality score, without identifying the type of distortion.
(3) Methods such as BLIINDS-II [40] and BRISQUE [34]
implement direct mapping of the image features to obtain
a subjective quality score, also without distinguishing the
different distortion types.
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The existing general-purpose NR-IQA methods are
faced with the following problems: (1) The color space
of the image is less considered in these methods. (2)
Some of the methods take advantage of the statistical
features of the pixels only, and they ignore the spatial
distribution of the features. Liu et al. [36] calculated
the 1-D entropy of image blocks in the spatial and fre-
quency domains, respectively, and used the mean, along
with the skewness [41], of all the local entropy values
as the image features to implement the SSEQ method.
Gabarda et al. [42] approximated the probability den-
sity function by the spatial and frequency distribution
to calculate the pixel-wise entropy on a local basis. The
measured variance of the entropy is a function of orienta-
tion, which is used as an anisotropic indicator to estimate
the fidelity and quality of the image [43]. Although some
aggregated features of image grayscale distribution can be
embodied in these one-dimensional entropy-based meth-
ods, the spatial features of the distribution cannot be
obtained.
In this paper, we introduce a NR-IQA method based

on image entropy, namely, ENIQA. Firstly, by using the
two-dimensional entropy (TE) [44] instead of the one-
dimensional entropy [45], the proposed method better
embodies the correlativity of pixel neighbors. Secondly,
we calculate the mutual information (MI) [46] between
the different color channels and the TE of the color image
in two scales. We split the image into patches in order
to exploit the statistical properties of each local region.
During this process, visual saliency detection [47] is per-
formed to weight the patches, and the less important
ones are then excluded. Thirdly, a log-Gabor filter [48, 49]
is applied on the image to simulate the neurons’ selec-
tive response to stimulus orientation and frequency. After
that, the MI between the different subband images and
the TE of the filtered images are computed. The MI, as
well as the mean and the skewness of the TE, is then
utilized as the structural feature to determine the per-
ceptual quality of the input image. Specifically, SVC and
SVR are used to implement a two-stage framework for
the final prediction. The experiments undertaken with
the LIVE [50] and TID2013 [51] databases confirmed
that the proposed ENIQA method performs well and
shows a high consistency of subjective and objective
assessment.
The rest of this paper is structured as follows. In

Section 2, we introduce the structural block diagram of
the novel IQA method proposed in this study and present
a detailed introduction to image entropy, correlation anal-
ysis of the RGB color space, and the log-Gabor filter.
Section 3 provides an experimental analysis, and describes
the testing and verification of the proposed method from
multiple perspectives. Finally, Section 4 concludes with a
summary of our work.

2 Methods
In order to describe the local information of the image, the
proposed ENIQA method introduces the MI and the TE
in both the spatial and frequency domains. Given a color
image whose quality is to be assessed, the MI between
the three channels R, G, and B is first calculated (f1–f3).
We convert the input image to grayscale and divide it
into patches to calculate patch-wise entropy values. The
obtained local entropy values are then pooled to com-
pute the mean and the skewness (f7–f8). For the frequency
domain features, we apply log-Gabor filtering at two cen-
ter frequencies and in four orientations to the grayscale
image and obtain eight subband images, on which block-
ing and entropy calculation are applied. The eight pairs
of mean and skewness values are obtained from each
subband (f11–f26). Furthermore, in order to acquire the
relationship of the subband images, the MI between any
two of the subband images in the four different orien-
tations (f43–f48) and that between the two center fre-
quencies (f55) are also calculated, respectively. The image
is down-sampled using the nearest-neighbor method to
capture multiscale behavior, yielding another set of 28 fea-
tures (f4–f6, f9–f10, f27–f42, f49–f54, and f56). Thus, ENIQA
extracts a total of 56 features for an input color image, as
listed in Table 1. We group the features for a clearer repre-
sentation. The right half of Fig. 1 illustrates the extraction
process of the five feature groups.
After all the features are extracted, the proposed ENIQA

method utilizes a two-stage framework to obtain a score
index of the test image. In the first stage, the presence of
a set of distortions in the image is estimated via SVC, giv-
ing the amount or probability of each type of distortion.
In the second stage, for each type of distortion we con-
sider, a support vector machine [52] is trained to perform
a regression that maps the features to the objective qual-
ity. Finally, the quality score of the image is produced by
a weighted summation, where the probabilities from the
first stage are multiplied by the corresponding regressed
scores from the second stage and then added altogether.
The left half of Fig. 1 shows the structure of the two-stage
framework.

Table 1 Features used for ENIQA

Group Feature vector Feature description

1 f1–f6 MI between the RGB channels for two scales

2 f7–f10 Mean and skewness of the TE of the
grayscale image for two scales

3 f11–f42 Mean and skewness of the TE of the eight
subband images for two scales

4 f43–f54 MI of the subband images in different orien-
tations for two scales

5 f55–f56 MI of the subband images at different center
frequencies for two scales
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Fig. 1 The framework of the proposed ENIQA method

2.1 Two-dimensional entropy
Image entropy is a statistical feature that reflects the
average information content in an image. The one-
dimensional entropy of an image represents the informa-
tion contained in the aggregated features of the grayscale
distribution in the image but does not contribute to the
extraction of the structural features. In order to character-
ize the local structure of the image, TE that describes the
spatial correlation of the grayscale values is introduced.
After the color image X is converted to grayscale, the

neighborhood mean of the grayscale image is selected as
the spatial distribution feature. Let p(x) denote the pro-
portion of pixels whose gray value is x in image X, the
one-dimensional entropy of a gray image is defined as
follows:

H1(X) = −
255∑

x=0
p(x) log2 p(x) (1)

The gray level of the current pixel and the neighborhood
mean then form a feature pair, which is denoted as (x1, x2),
where x1 is the gray level of the pixel (0 ≤ x1 ≤ 255) and
x2 is the mean value of the neighbors (0 ≤ x2 ≤ 255). The
combined probability density distribution function of x1
and x2 is given by the following:

p(x1, x2) = f (x1, x2)
MN

(2)

where f (x1, x2) is the frequency at which the feature pair
(x1, x2) appears, and the size of X isM × N .
In our implementation, x2 is based on the eight adja-

cent neighbors of the center pixel, as shown in Fig. 2. The
discrete TE is defined as follows:

H2(X) = −
255∑

x1=0

255∑

x2=0
p(x1, x2) log2 p(x1, x2) (3)

The TE based on the above can describe the compre-
hensive features of the grayscale information of the pixel
and the grayscale distribution in the neighborhood of
the pixel. We determined the TE for a reference image
(monarch.bmp in the LIVE [50] database) and the five
corresponding distorted images with the same distortion
level but different distortion types. The statistical char-
acteristics are shown in Fig. 3a and b. All the differential
mean opinion score (DMOS) [53] values are around 25 in
Fig. 3a and 50 in Fig. 3b, and the distortion types span
JPEG and JP2K compression, additive white Gaussian
noise (WN), Gaussian blue (GBlur), and fast fading (FF)
Rayleigh channel distortion. Similarly, the same experi-
ments were carried out on monarch.bmp and the five
corresponding distorted images with the image distortion
type but different distortion levels (taking WN and GBlur
as examples), whose statistical characteristics are shown
in Fig. 3c and d. In Fig. 3, the abscissa axis represents the
entropy and the vertical axis represents the normalized

Fig. 2 A pixel and its eight neighborhoods



Chen et al. EURASIP Journal on Image and Video Processing         (2019) 2019:77 Page 5 of 14

Fig. 3 Histograms of TE values. a The six curves correspond to an
undistorted image and its distorted counterparts with the same
distortion level but different distortion types. The DMOS values are
around 25. b The six curves correspond to an undistorted image and
its distorted counterparts with the same distortion level but different
distortion types. The DMOS values are around 50. c The six curves
correspond to an undistorted image and its distorted counterparts
with the same distortion type but different distortion levels. The
distortion type is WN. d The six curves correspond to an undistorted
image and its distorted counterparts with the same distortion type
but different distortion levels. The distortion type is GBlur

number of blocks. It can be seen that both the distor-
tion level and the distortion type can be distinguished by
TE. Consequently, the TE can be considered a meaning-
ful feature. Inspired by [26, 36, 54], we utilize the mean
and skewness as the most typical features to describe the
histogram.
The HVS automatically sets different priorities of atten-

tion for different regions of the observed image [47]. Thus,
before calculating the statistical characteristics of the TE,
we conducted visual saliency detection on the image, i.e.,
only the more important image patches were involved in
the subsequent computation. To realize this, we first split
the image into patches, pooled the patches according to
human vision priority, and screened out the more sig-
nificant ones. Then, according to the saliency values, we
sorted the patches and calculated the mean and skew-
ness of the local TE on the 80% more important patches
only. In the experiments, we used the spectral residual
(SR) method [55] to generate the saliency map of the
image to be measured. It is worth noting that the fre-
quencies of different pixel values (integers from 0 to 255)
are counted in every important patch to estimate the
probability distributions in Eq. (3).

2.2 Mutual information
The application of colors in image display can not only
stimulate the eye, but also allows the observer to per-
ceive more information. The human eye has the ability to
distinguish between thousands of colors, in spite of the
perception of only dozens of gray levels [56]. There is a
strong correlation between the RGB components of an
image, which is embodied by the fact that the changes of
individual color components reflected in the same region
tend to be synchronized, i.e. when the color of a certain
area of a natural color image changes, the pixel gray values
of the corresponding R, G, and B components also change
at the same time. Moreover, although the gray value of a
pixel varies with the color channels, different RGB com-
ponents have a high similarity and consistency in textures,
edges, phases, and grayscale gradients [57]. Therefore, it
is meaningful to characterize the MI between the three
channels of R, G, and B.
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Taking R and G as an example, xr and xg are the gray
values of the red and green components of the input color
image X, while p(xr), p(xg) are the grayscale probability

distribution functions in the two channels. p(xr , xg) is the
joint probability distribution function. The MI between
the R and G channels is then formulated as follows:

Fig. 4 Illustration of the discriminatory power of different feature combinations (zoom in to get the markers more discriminative). a Elements 1, 2,
and 3. b Elements 9 and 10. c Elements 12, 14, and 16 (d). Elements 14 and 22. e Elements 52, 53, and 54. f Elements 55 and 56
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I(XR;XG) = H1(XR) + H1(XG) − H2(XR,XG)

=
255∑

xr=0

255∑

xg=0
p(xr , xg) log2

p(xr , xg)
p(xr)p(xg)

(4)

where H1(XR) and H1(XG) are the one-dimensional
entropy of the corresponding channel, and H2(XR,XG)

represents the two-dimensional entropy between the two
images, which is defined as follows:

H2(XR,XG) = −
255∑

xr=0

255∑

xg=0
p(xr , xg) log2 p(xr , xg) (5)

2.3 Log-Gabor filtering
It is known that the log-Gabor filter function conforms
to the HVS and is consistent with the symmetry of the
cellular response of the human eye at logarithmic fre-
quency scales [58]. The log-Gabor filter eliminates the
DC component, overcomes the bandwidth limitation of
the conventional Gabor filter, and has a typical frequency
response with a Gaussian shape [48]. Thus, it is much
easier, as well as more efficient, for a log-Gabor filter
to extract information on a higher band. The transfer
function of a two-dimensional log-Gabor filter can be
expressed as follows:

G(f , θ) = exp
(

− (log(f /f0))2

2(log(σr/f0))2

)

exp
(

− (θ − θ0)2

2σ 2
θ

)

(6)

In Eq. 6, f0 gives the center frequency and θ0 represents
the center orientation. σr and σθ are the width parameters
for the frequency and the orientation, respectively.
We distill the features in the frequency domain by con-

volving the image with the log-Gabor filter. The log-Gabor
filter bank designed in this study consists of eight fil-
ters, with orientations of 0◦, 45◦, 90◦, and 135◦, and two
frequency bands. Eight subband images in four orienta-
tions and two bands are obtained after the input image is
filtered.

3 Results and discussion
In order to assess the performance of the proposed
method, we carried out experiments on the LIVE [50]
and TID2013 [51] databases. The LIVE database consists
of 29 reference images and 779 distorted images of five
distortion types, while the TID2013 database contains 25
reference images and 3000 distorted images of 24 distor-
tion types. Of these 25 images, only 24 are natural images,
so we only used the 24 natural images in the testing. In
order to ensure the consistency of the training and testing,
we carried out the cross-database testing over the four of
the five distortion types that are in commonwith the LIVE
database, namely, JP2K, JPEG, WN, and GBlur.
The indices used to measure the performance of the

proposed method are the Spearman’s rank-order cor-
relation coefficient (SROCC), the Pearson linear cor-
relation coefficient (PLCC), and the root-mean-square
error (RMSE) between the predicted scores and the
ground-truth DMOS [59]. A value close to 1 for SROCC
and PLCC and a value close to 0 for RMSE indicates bet-
ter correlation with human perception. Note that PLCC
and RMSE were computed after the predicted scores were
fitted by a nonlinear logistic regression function with five
parameters [53]:

f (z) = β1

[
1
2

− 1
1 + exp(β2(z − β3))

]

+ β4z + β5 (7)

where z is the objective IQA score, f (z) is the IQA
regression fitting score, and βi(i = 1, 2, · · · , 5) are the
parameters of the regression function.

3.1 Correlation of feature vectors with human opinion
In this experiment, we assessed the discriminatory power
of different feature combinations. With the feature groups
listed in Table 1, we visually illustrate the relationship
between image quality and features in the form of two-
dimensional/three-dimensional scatter plots. As shown in
Fig. 4, the different feature combinations are used as the
axes, and each image in the LIVE database corresponds
to a scatter point in the coordinate system. Furthermore,

Table 2 Median SROCC/PLCC/RMSE values across 1000 train-test trials on the LIVE database

Index Model JP2K JPEG WN GBlur FF All

SROCC

ENIQA1 0.3209 0.8366 0.9526 0.1994 0.3218 0.5704

ENIQA2 0.8784 0.9501 0.9589 0.9198 0.8168 0.9054

ENIQA3 0.9058 0.8235 0.9580 0.9293 0.8390 0.8540

PLCC

ENIQA1 0.5052 0.8974 0.9565 0.5557 0.4989 0.6663

ENIQA2 0.9197 0.9769 0.9726 0.9248 0.8701 0.9218

ENIQA3 0.9397 0.8362 0.9697 0.9242 0.8672 0.8474

RMSE

ENIQA1 24.8268 15.4386 9.5981 19.9254 26.6129 23.2067

ENIQA2 11.4210 7.4958 7.6829 9.0478 14.9870 12.0568

ENIQA3 9.8370 19.2657 8.0514 9.1473 15.3000 16.5505
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Table 3 Median SROCC value of ENIQA on the LIVE database with different window sizes

K, L
SROCC

Time (s)
JP2K JPEG WN GBlur FF ALL

6, 6 0.9102 0.9122 0.9728 0.9408 0.8468 0.9199 9.8541

8, 8 0.9255 0.9515 0.9762 0.9481 0.8491 0.9378 4.4856

12, 12 0.9065 0.9058 0.9656 0.9402 0.8257 0.9143 3.0859

16, 16 0.9157 0.9137 0.9673 0.9368 0.8445 0.9199 2.0547

32, 32 0.9017 0.9021 0.9672 0.9207 0.8341 0.9120 2.4387

The highest SROCC value of each column is italicized

we use different markings to distinguish the five types of
distortion and map the score of each image to the preset
colormap. The ideal case is that the points with differ-
ent distortion types are well separated. In this paper, we
selected only a few representative images as examples. It
can be seen from Fig. 4a and b that the scatter points of
JPEG and WN have a very different spatial distribution
than the other points, which allows them to be better dis-
tinguished. From Fig. 4c and d, we can see that GBlur can
be distinguished, to some extent, from the other types of
distortion. However, for GBlur points with lower distor-
tion levels, they cannot be easily separated from FF and
JP2K, since the distributions of the scatter points of these
three distortion types are very similar. As can be observed
in Fig. 4e and f, images with higher distortion levels of
WN, GBlur, and FF are more easily distinguished from
images with good quality. Nonetheless, GBlur and FF are
indistinguishable. And still, JP2K points cause the reduc-
tion of distinguishability, as some of them are scattered
close to the highly-distorted GBlur and FF points. Accord-
ing to Fig. 4, the number of features we selected seems
too small to distinguish all the distortion types. Due to
the limitation of human spatial cognition, it is not pos-
sible to show the discriminative ability of the features in
a graphical way, such as a four-dimensional scatter plot,
by selecting feature combinations of a higher dimension.
In Section 3.6, we prove that if more features are selected
(actually, we chose 56-dimensional features), the discrim-
inatory power of the feature vector on the distortion type
is further enhanced, which indicates the accuracy and
reliability of our selection of features.

3.2 Correlation of individual feature vectors with human
perception

In order to quantitatively study the predictive ability of
each feature vector [60, 61], we performed a recombi-
nation of the features in Table 1, separately deployed
specific subsets (feature vectors), and designed three lim-
ited models: (1) The feature vector f1–f6 represents theMI
between the three color channels on two scales, denoted
as ENIQA1. (2) The feature vector f7–f42 represents the
mean and skewness of the TE on two scales, denoted as
ENIQA2. (3) The feature vector f43–f56 represents the MI

between the subband images on two scales, denoted as
ENIQA3.
We performed the assessment of these three limited

models by 1000 train-test iterations of cross-validation. In
each iteration, we randomly split the LIVE [50] database
into two non-overlapping sets: a training set comprising
80% of the reference images as well as their correspond-
ing distorted counterparts, and a test set composed of the
remaining 20%. Finally, the median SROCC, PLCC, and
RMSE values over 1000 trials are reported as the final per-
formance indices, as shown in Table 2. It is not difficult
to see that each feature vector has a different degree of
correlation with the subjective assessment. Among them,
the TE contributes the most to the performance of the
method, followed by the MI between the subband images.
Although the MI between the color channels contributes
the least, it is a valuable extension of the TE feature.

3.3 Variation with window size
As mentioned above, since the local saliency difference
of the image is considered, the proposed ENIQA method

Fig. 5 Line charts between the selected window size and the overall
SROCC value as well as the average time consumed on evaluating a
single image according to Table 3. When the window size is set to
8 × 8, the method achieves best SROCC performance
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blocks the image with a window and counts the frequency
of the gray values in each block to generate feature pairs
before calculating the local TE. Table 3 shows the effect
of different window sizes (K × L) on the performance of
the proposed method, where the highest SROCC value of
each column is italicized. The average time consumption
for assessing a single image is also reported in Table 3.
All the experiments are performed on a PC with Intel-i7-
6700K CPU@4.0GHz, 16G RAM, MATLAB R2016a. The
elapsed time is themean valuemeasured through 10 times
of evaluations on the same 384 × 512 × 3 image.

In order to visualize the trend, we also drew two line
charts in Fig. 5, which intuitively illustrate the change of
the elapsed time and the overall SROCC value with the
selected window size.
It can be observed that the performance of the pro-

posed method varies with the size of the window. As the
window size increases, the SROCC value shows a trend
of increasing first and then decreasing, reaching a peak
at 8 × 8. At the same time, the runtime of the method
mostly decreases monotonically with the increase of the
window size. To make a compromise, we used K = L = 8

Table 4 Median SROCC/PLCC/RMSE values on the LIVE database

Index Method JP2K JPEG Noise Blur FF All

SROCC PSNR 0.9053 0.8866 0.9844 0.8120 0.8981 0.8850

SSIM 0.9517 0.9671 0.9631 0.9306 0.9404 0.9255

VIF 0.9160 0.9482 0.9435 0.9600 0.9617 0.9287

BIQI 0.8401 0.8425 0.9362 0.8924 0.7383 0.8340

DIIVINE 0.9363 0.9051 0.9692 0.9478 0.8778 0.9261

BLIINDS-II 0.9389 0.9449 0.9596 0.9447 0.8653 0.9362

BRISQUE 0.9349 0.9480 0.9725 0.9616 0.8821 0.9411

NIQE 0.9171 0.9094 0.9697 0.9678 0.8715 0.9142

ILNIQE 0.9199 0.9335 0.9730 0.9526 0.8991 0.9219

SSEQ 0.9355 0.9509 0.9689 0.9554 0.8943 0.9349

ENIQA 0.9255 0.9515 0.9762 0.9481 0.8491 0.9378

PLCC PSNR 0.9176 0.9130 0.9887 0.8277 0.9169 0.8825

SSIM 0.9508 0.9751 0.9783 0.8739 0.9203 0.9241

VIF 0.9360 0.9594 0.9679 0.9689 0.9748 0.9318

BIQI 0.8778 0.8827 0.9551 0.8873 0.7987 0.8494

DIIVINE 0.9541 0.9416 0.9791 0.9443 0.8994 0.9309

BLIINDS-II 0.9564 0.9721 0.9698 0.9533 0.8855 0.9412

BRISQUE 0.9550 0.9789 0.9838 0.9601 0.9151 0.9510

NIQE 0.9485 0.9443 0.9396 0.9699 0.9040 0.8734

ILNIQE 0.9549 0.9670 0.9766 0.9487 0.9250 0.8987

SSEQ 0.9514 0.9638 0.9823 0.9691 0.9227 0.9380

ENIQA 0.9503 0.9741 0.9828 0.9447 0.8791 0.9437

RMSE PSNR 9.9129 12.8262 4.2127 10.3076 11.1624 12.7229

SSIM 7.7506 6.9422 5.7534 9.1163 10.8487 10.3565

VIF 8.8859 8.8635 7.0133 4.5270 6.2119 9.8436

BIQI 13.7600 16.4621 9.7859 11.0204 18.7142 16.4823

DIIVINE 8.5666 11.8295 6.7472 7.9227 13.6016 11.4397

BLIINDS-II 8.1849 8.2528 8.0538 7.1483 14.0510 10.5832

BRISQUE 8.5280 7.1899 5.9282 6.6549 12.3081 9.6662

NIQE 9.1488 11.5084 11.4903 5.7870 13.2733 15.1785

ILNIQE 8.5310 8.9270 7.0934 7.5084 11.7819 13.6439

SSEQ 8.8145 9.3283 6.8836 6.5752 12.2893 10.6405

ENIQA 8.9964 7.9640 6.1051 7.7741 14.5150 10.3234

The top performances of the FR-IQA and NR-IQA indices are italicized. The second-best results of the NR-IQA indices are highlighted in bold
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Fig. 6 Box plot of SROCC distributions of the compared IQA methods over 1000 trials on the LIVE database

in this study. It should be pointed out that the overall
SROCC value maintains above 0.9 when the window size
is 16 × 16, which implies that the window size can be
appropriately increased to trade accuracy in time-critical
applications.

3.4 Comparison with other iQAmethods
To further illustrate the superiority of the proposed
method, we compared ENIQA with 10 other state-of-the-
art IQA methods. The three FR-IQA approaches were the
peak signal-to-noise ratio (PSNR), the structural similar-
ity index (SSIM) [12], and visual information fidelity (VIF)
[62], and the seven NR-IQA approaches were BIQI [33],
DIIVINE [37], BLIINDS-II [40], BRISQUE [34], NIQE
[39], ILNIQE [35], and SSEQ [36]. To make a fair compar-
ison, we used the same 80% training/20% testing protocol
over 1000 iterations on all the models. The source code
of all the methods was provided by the authors. In the
training of a NR model, the LIBSVM toolkit [63] was
used to implement the SVC and SVR, both adopting a
radial-basis function (RBF) kernel. We selected an e−SVR

model for regression, and both the cost and γ for RBF
are set to 1e−4. Since the FR approaches do not require
a training procedure, they were only performed on dis-
torted images, i.e., the reference images were not included.
For the results listed in Table 4, The top performances
of the FR-IQA and NR-IQA indices are italicized. The
second-best results of the NR-IQA indices are highlighted
in bold.
It can be seen that the proposed ENIQA method per-

forms well on the LIVE database. To be specific, ENIQA
obtains the highest SROCC values for JPEG andWN, and
the second-highest overall SROCC value among the NR
methods listed in Table 4. In terms of PLCC and RMSE,
ENIQA is superior to all the other NR methods, except
BRISQUE, on JPEG and WN, and also ranks second in
overall performance. Generally speaking, the overall per-
formance of the proposed ENIQA method is superior to
most of the other NR methods and is ahead of some of
the classic FRmethods such as SSIM.Moreover, ENIQA is
rather good at evaluating images with distortions of JPEG
and WN.

Table 5 Results of the t-tests performed between SROCC values

Method PSNR SSIM VIF BIQI DIIVINE BLIINDS-II BRISQUE NIQE ILNIQE SSEQ ENIQA

PSNR 0 −1 −1 1 −1 −1 −1 −1 −1 −1 −1

SSIM 1 0 −1 1 1 1 −1 1 1 −1 −1

VIF 1 1 0 1 1 1 −1 1 1 −1 −1

BIQI −1 −1 −1 0 −1 −1 −1 −1 −1 −1 −1

DIIVINE 1 −1 −1 1 0 1 −1 1 1 −1 −1

BLIINDS-II 1 −1 −1 1 −1 0 −1 1 1 −1 −1

BRISQUE 1 1 1 1 1 1 0 1 1 1 1

NIQE 1 −1 −1 1 −1 −1 −1 0 −1 −1 −1

ILNIQE 1 −1 −1 1 −1 −1 −1 1 0 −1 −1

SSEQ 1 1 1 1 1 1 −1 1 1 0 1

ENIQA 1 1 1 1 1 1 −1 1 1 −1 0
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3.5 Statistical significance testing
In order to compare the performance of the different
methods in a more intuitive way, Fig. 6 shows a box plot of
the SROCC distributions for the 11 IQAmethods (includ-
ing the proposed ENIQA method) across 1000 train-test
trials, which provides key information about the location
and dispersion of the data. We also performed a two-
sample t test [64] between the methods, and the results
are shown in Table 5. The null hypothesis is that the mean
correlation value of the row is equal to the mean correla-
tion value of the column at the 95% confidence level. The
alternative hypothesis is that themean correlation value of
the row is greater (or less) than the mean correlation value
of the column. Table 5 indicates which row is statistically
superior (“1”), statistically equivalent (“0”), or statistically
inferior (“−1”) to which column. Although BRISQUE and
SSEQ are statistically superior to ENIQA in Table 5, it can
be seen from Fig. 6 that ENIQA outperforms all the other
FR and NR approaches, except BRISQUE, in terms of the
median value.

3.6 Classification performance analysis
We analyzed the classification accuracy of ENIQA on the
LIVE database based on the two-stage framework. The
average classification accuracies for all the distortion types
across 1000 random trials are listed in Table 6. It can be
seen that if the feature dimensions reach 56, the classifi-
cation accuracy of JP2K reaches 71.6369%, which is fairly
acceptable. In Section 3.1, however, we showed that it
is extremely difficult to distinguish JP2K images by low-
dimensional feature vectors. Thus, we can speculate that
in the 56-dimensional space composed of the features, the
distorted images of the JP2K type are discernible by the
hyperplane constructed by SVC. Furthermore, in order
to visualize which distortion types may be confused with
each other, we plotted a confusion matrix [65], as shown
in Fig. 7. Each value in the confusion matrix indicates the
probability of the distortion type on the vertical axis being
confused with that on the horizontal axis. The numerical
values are the average classification accuracies of the 1000
random trials.
It can be seen from Table 6 and Fig. 7 that WN can-

not easily be confused with the other distortion types,
while the other four distortion types are more easily con-
fused. As FF consists of JP2K followed by packet loss, it
becomes clear that FF distortion is more easily confused
with JP2K compression distortion. From Fig. 3, we can
also see that the TE distributions of WN and JPEG are
very specific, while JP2K, GBlur, and FF have quite similar

Table 6 Mean classification accuracy across 1000 train-test trials

JP2K JPEG WN GBlur FF All

Class.Acc(%) 71.6369 74.9191 82.5750 74.4694 52.7417 71.2684

Fig. 7Mean confusion matrix of the classification accuracy across
1000 train-test trials

TE distributions, which results in them being more easily
confused.

3.7 Database independence
In order to test the generalization ability of the assess-
ment model to different samples, we trained the model
on the whole LIVE or TID2013 database and tested it
on the TID2013 or LIVE database, noting that we only
chose distortion types in common with the LIVE database
(JP2K, JPEG, WN, and GBlur). The computed perfor-
mance indices are shown in Table 7, and the top perfor-
mances for the FR-IQA indices and those for the NR-IQA
indices are highlighted in italics. For the NR-IQA indices,
we have also boldfaced the second-best results. On the
one hand, ENIQA achieves the best performance indices
when trained on LIVE and tested on TID2013. On the
other hand, when trained on TID2013 and tested on LIVE,
ENIQA ranks in the top three, though not the best one,
with the SROCC higher than 0.9. It is worth noting that
ENIQA outperforms BRISQUE in both cross-database
experiments, which embodies the good generalization
ability of ENIQA.
Figure 8 shows the results of the scatter plot fitting of

ENIQA on the LIVE and TID2013 databases. As in the
previous experiments, when performing the scatter plot
experiment on the LIVE database, we trained with the
random 80% of the images separated by content in the
LIVE database and then tested with the remaining 20%,
for which the results are shown in Fig. 8a. When conduct-
ing the experiment on the TID2013 database, we trained
the model on the entire LIVE database and then tested
it on the selected portion of the TID2013 database, for
which the results are given in Fig. 8b. It can be observed
from Fig. 8 that the scatter points are evenly distributed
in the entire coordinate system and have a strong linear
relationship with DMOS/MOS, which further proves the
superior overall performance and generalization ability of
the proposed ENIQA method.
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Table 7 Performance indices obtained by training on the LIVE or TID2013 database and testing on the TID2013 or LIVE database

Method
Trained on LIVE, tested on TID2013 Trained on TID2013, tested on LIVE

SROCC PLCC RMSE SROCC PLCC RMSE

PSNR 0.9244 0.9140 5.6710 0.8850 0.8825 12.7229

SSIM 0.8662 0.8723 6.8356 0.9255 0.9241 10.3565

VIF 0.9181 0.9401 4.7645 0.9287 0.9318 9.8436

BIQI 0.8388 0.8447 7.4817 0.5699 0.6315 22.4137

DIIVINE 0.7958 0.7868 8.6283 0.8012 0.8803 15.0072

BLIINDS-II 0.8503 0.8413 7.5559 0.9267 0.9476 10.3571

BRISQUE 0.8817 0.8860 6.4821 0.8969 0.8962 14.1317

NIQE 0.6798 0.6685 10.3965 0.9287 0.9447 10.7151

ILNIQE 0.7793 0.7956 8.4692 0.8537 0.8935 12.9788

SSEQ 0.8294 0.8769 6.7188 0.8827 0.9167 11.5529

ENIQA 0.8916 0.8953 6.2283 0.9026 0.9093 12.2189

The top performances of the FR-IQA and NR-IQA indices are highlighted in italics. The second-best results of the NR-IQA indices are boldfaced

Fig. 8 Scatter plots of DMOS/MOS versus prediction of ENIQA on the
LIVE and TID2013 databases. a DMOS versus prediction of ENIQA on
LIVE. bMOS versus prediction of ENIQA on TID2013

3.8 Runtime analysis
Table 8 shows the average running time of the 11 IQA
methods, which is measured through 10 times of assess-
ments on the same 384 × 512 × 3 image. All MATLAB
source codes of the IQA methods, apart from PSNR, are
the official implementations from the original authors. For
ENIQA, the window size is set to 8 × 8. It can be seen
that ENIQA maintains moderate computation in addition
to its superior performance.

4 Conclusions
In this paper, we proposed a general-purpose NR-
IQA method called entropy-based no-reference image
quality assessment (ENIQA). Based on the concept of
image entropy, ENIQA combines log-Gabor filtering and
saliency detection for feature extension and accuracy
improvement. To construct an effective feature vector,
ENIQA extracts the structural information of the input

Table 8 The average running time of the 11 IQA methods

Method Running time (s)

PSNR 0.0038

SSIM [12] 0.2917

VIF [62] 0.6353

BIQI [33] 0.5562

DIIVINE [37] 7.5354

BLIINDS-II [40] 16.7223

BRISQUE [34] 0.3514

NIQE [39] 0.0961

ILNIQE [35] 3.6027

SSEQ [36] 0.5823

ENIQA 4.4856
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color images, including the MI and the TE in both the
spatial and the frequency domains. The image quality
score is then predicted by the SVC and SVR. The pro-
posed ENIQA method was assessed on the LIVE and
TID2013 databases, and we carried out cross-validation
experiments and cross-database experiments to compare
it with several other FR- and NR-IQA approaches. From
the experiments, ENIQA showed a superior overall per-
formance and generalization ability when compared to the
other state-of-the-art methods.
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