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Abstract

Distance transform, a central operation in image and video analysis, involves finding the shortest path between
feature and non-feature entries of a binary image. The process may be implemented using chamfer-based sequential
algorithms that apply small-neighborhood masks to estimate the Euclidean metric. Success of these algorithms
depends on the cost function used to optimize chamfer weights. And, for years, mean absolute error and mean
squared error have been used for optimization. However, studies have revealed weaknesses of these cost
functions—sensitivity against outliers, lack of symmetry, and biasedness—which limit their application. In this work,
we have proposed a robust and a more accurate cost function, symmetric mean absolute percentage error, which
attempts to address some weaknesses. The proposed function averages the absolute percentage errors in a set of
measurements and offers interesting mathematical properties (smoothness, differentiability, boundedness, and
robustness) that allow easy interpretation and analysis of the results. Numerical results show that chamfer masks
designed under our optimization criterion generate lower errors. The present work has also proposed an automatic
algorithm that converts coefficients of the designed real-valued masks into integers, which are preferable in most
practical computing devices. Lastly, we have modified the chamfer algorithm to improve its speed and then
embedded the proposed weights into the algorithm to compute distance maps of real images. Results show that the
proposed algorithm is faster and uses fewer number of operations compared with those consumed by the classical
chamfer algorithm. Our results may be useful in robotics to address the matching problem.

Keywords: Symmetric mean absolute percentage error, Euclidean, Distance transform, Optimization, Mean squared
error

1 Introduction
In computer vision and image processing fields, a dis-
tance transform (DT) refers to an operation that measures
the degree of closeness between object and non-object
features in a binary image. The result of DT defines a
map that holds grayscale values, with each value denoting
the distance of an object from the nearest edge. DTs are
useful in various image analysis tasks, such as skeletoniza-
tion, segmentation, shape description, object detection
and recognition, multi-scale morphological filtering, and
feature analysis [1, 2].
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Traditionally, the Euclidean metric—a distance function
that obeys four well-established axioms: non-negativity,
symmetry, identity of indiscernibles, and subadditivity—
has been used to compute DTs. The Euclidean distance
transform (EDT) possesses an isotropic nature, a desir-
able property required by sophisticated applications. But
implementation of EDT follows irregular patterns that
limit the development processes. Also, certain simple
applications only demand rough distance estimations,
which can quickly be computed in linear times. Therefore,
variants of EDT algorithms that reasonably approximate
the classical Euclidean metric have been proposed to
address these research gaps [3–15].
Among a class of efficient algorithms to approximate

EDT include those based on the chamfer metric [1, 16–25].
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The chamfer-driven DTs use weighted masks to propa-
gate local distances over an image. The chamfering pro-
cess can be engineered in two modes: parallel, which
applies the whole mask to estimate EDT; and sequential,
which requires that the mask is split into two halves, for-
ward and backward masks. The parallel mode demands a
special computing device with optimized computational
resources. Our work is built on chamfer-based sequential
algorithms, which can be implemented in both special and
general purpose processors.
The challenging task in DTs based on the chamfer met-

ric is to design weights for the masks that can estimate
more accurately the Euclidean metric. Chamfer masks are
usually designed using cost functions and, for decades,
mean absolute error (MAE) and mean squared error
(MSE) have been used for this purpose. But bothMAE and
MSE endure some weaknesses: biasedness, lack of sym-
metry, and sensitivity to outliers [26], which may limit
their usefulness.
In this work, we have proposed an alternative cost

function, symmetric mean absolute percentage error
(SMAPE), to design chamfer masks. SMAPE, which is
widely used in weather forecasting applications, is a
bounded function (0 − 100%)—a property that makes it
easier to analyze and interpret—that computes average of
the relative accuracy between reference and estimated val-
ues. SMAPE robustly rejects outliers and efficiently lowers
influences of noise in the data [27, 28].
In resource-limited settings, practitioners discourage

real-valued chamfer masks because they limit speed
and waste hardware computational resources. We have
addressed this issue by developing an algorithm that auto-
matically maps values in the designed masks into inte-
gers. The proposed weights were applied to the modified
chamfer algorithm to produce distance maps of real edge
images.
Experimental results demonstrate that most distance

maps generated through the proposed weights give lower
values of SMAPE, MAE, and MSE compared with those
produced by previous studies. The observation confirms
that our weights are relatively more accurate and may be
applied in critical tasks.
Additionally, we have analyzed the first-pass stage of

the original chamfer algorithm and developed a strat-
egy to discard unnecessary operations. Experiments on
synthetic single-feature images show that the proposed
strategy raises significantly speed of the classical cham-
fer algorithm, a result that may add value in real-world
applications of DTs.

2 Methods
2.1 Preliminaries
Chamfer masks may be characterized based on two fac-
tors: size, which defines the physical dimensions of the

mask, and local weights (Fig. 1). In the chamfering pro-
cess, the algorithm estimates distance maps by propagat-
ing the local weights over an image. Larger chamfer masks
holding accurate and optimized weights generate lower
estimation errors.
The classical EDT gives a uniform disc of radius, r;

the chamfer algorithm generates a regular polygon with
number of sides dependent on the size of the mask. For
example, a 3 × 3 mask produces an octagon. Each side
of the polygon obeys the equation Uy + Vx = r, where
U and V represent coefficients that define mask size. For
instance, the 3 × 3 mask contains a ∈ R and b ∈ R as its
local weights: U = b − a and V = a.
Figure 2a illustrates an octant part of the chamfer poly-

gon generated by the 3 × 3 mask. We shall use this figure
to generalize formulations for all mask sizes. Let f (θ) be a
function that defines the length of �t, an arbitrary distance
from the polygon’s side to the center. Using side-angle
relationship rules from trigonometry, we have

f (θ) = r sin θ1
V sin(θ + θ1)

(1)

and

sin θ1 = V√
U2 + V 2

. (2)

Combining (1) and (2), then simplifying the resulting
equation, we get

f (θ) = r
U sin θ + V cos θ

, (3)

in which f (θ) may be regarded as the radius of a chamfer
polygon that estimates the Euclidean disc: U (coefficient
of sin θ ) and V (coefficient of cos θ ) are functions of the
chamfer weights.
SMAPE, detailed in the next sections, between r and f is

then calculated as

Z(θ) = r − f (θ)

r + f (θ)
= U sin θ + V cos θ − 1

U sin θ + V cos θ + 1
, (4)

Fig. 1 Chamfer masks. From the center moving outwards, thick lines
indicate 3×3, blue; 5×5, red; and 7×7, green. Forward and backward
masks are obtained by splitting the mask along the dotted lines
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which signifies mean of the positive difference between r
and f. Chamfer polygons are symmetrical with respect to
the coordinate axes, and thus the function Z is analyzed
in an octant part or within θ ∈[ 0, 45◦]. Z = 0% when
r = f , perfect match; and Z = 100% when f = 0, per-
fect mismatch. Robustness of SMAPE against outliers can
be attributed from the averaging operation 1/(r + f ) in
Z. Therefore, for a series of data, SMAPE minimizes the
effect of unusual measurements.

2.2 Optimization of chamfer masks
2.2.1 General principles
The primary goal when designing chamfer masks is to
compute optimal weights in the masks that minimize the
maximum possible error. In our case, SMAPE has been
opted as an optimization criterion. Equivalently, we want
to compute weights that minimize the maximum SMAPE
within the defined region of the chamfer polygon.
For demonstration purposes, we give two scenarios to

justify our decision to select SMAPE as an optimization
rule:

(1) Imagine two sets of measurements: r1 = 1,
f1(θ) = 0.75 and r2 = 0.75, f2(θ) = 1. Note that
(r1, r2) may be regarded as radii of the Euclidean disc,
and (f1, f2) as the lengths of vectors touching
perpendicularly the polygon’s side. The absolute
error in both cases is 0.25. But applying MAE on the
measurements yields 25% and 33% for the first and
the second cases, respectively. This variability of
results makes MAE a poor statistical estimator. On
the contrary, each of the pairs of measurements give
a SMAPE value of 14.30%—signaling stability of the
metric.

(2) Let f (θ) be corrupted by an additive noise, η.
Incorporating this condition into (4) and simplifying
the result, we get

Zη(θ) = 1 − f (θ)

r + η
r

1 + f (θ)

r + η
r

. (5)

The term η
r in (5) minimizes the influence of noise in

f (θ) or lowers the quantity |Zη(θ) − Z(θ)|.
In an unoptimized case, chamfer masks of sizes above

three generate SMAPE curves with a single major error
lobe—which defines the longest polygon’s edge and asso-
ciates the global peak of Z—and several minor error lobes
controlled by local weights with insignificant impacts
on the maximum error (unless for improperly designed
chamfer weights; a 3×3mask contains a single error lobe).
Butt et al. proposed large-neighborhood masks to

achieve even better approximations to the Euclidean dis-
tance [29]. The authors recommended that the main lobe
can be optimized by using the following techniques:

(1) Considering −Z(0◦) = Zm, where

Zm =
√
U2 + V 2 − 1√
U2 + V 2 + 1

(6)

denotes the global maximum of Z that occurs at

θm = arctan
(
U
V

)
; and (7)

(2) Ensuring that the border line segments subtended by
an angle

α = arccos
(
V − U

√
U2 + V 2 − 1

U2 + V 2

)
(8)

in the chamfer octant are equal.

The maximum error can also be located at α. Hence,
the maximum SMAPE on the major error lobe can be
computed by the equation

M = max{|Zm|, |Z(α)|}. (9)

a b
Fig. 2 Octant portion of the chamfer polygon generated by a 3 × 3 mask. AC and A′C′ satisfy the equation l : (b − a)y + ax = r, where a and b

represent local distances of the mask. a Euclidean weights, A = (r, 0) and C =
(

r√
2
, r√

2

)
. b Optimized weights, A′ = ( r

a , 0
)
, C′ = ( r

b ,
r
b

)
, and

OA′ = OC′
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General proofs shared by all chamfer masks are shown
in Appendices 1, 2, and 3: existence of the maximum
on the SMAPE curve, intercepts of Z on the θ-axis, and
computation of optimal chamfer weights, respectively.

2.2.2 3 × 3 neighborhood
In a 3× 3 mask, two non-redundant local distances, a and
b, should be optimized (Fig. 1). Let �t be a vector from the
disc’s origin to an edge of the chamfer polygon, and r be
the radius of a disc generated by the global Euclidean met-
ric. Then, optimization demands values of a and b that
minimize the maximum of an error |r − ‖�t|‖/(r + ‖�t‖).
We analyze errors in the wedge-shaped region {(x, y) :
x ≥ 0, y ≥ 0, and y ≤ x} because the chamfer poly-
gon supports symmetry properties along the axes and
diagonals (Fig. 2). In this region, points on portion of
the polygon’s side, line segment AC, satisfy the equation
(b − a)y + ax = r.
The length of �t is given by

f (θ) = r sin θ1
a sin(θ + θ1)

, (10)

where

θ1 = arctan
(

a
b − a

)
.

Simplifying (10) yields

f (θ) = r
(b − a) sin θ + a cos θ

. (11)

Plugging (11) into the SMAPE formula, we have

Z(θ) = (b − a) sin θ + a cos θ − 1
(b − a) sin θ + a cos θ + 1

. (12)

Thus, (comparing Eqs. 4 and 12) U = b − a and V = a.
For the Euclidean metric, a = 1 and b = √

2. Therefore,
the maximum of Z becomes

Zm =
√

(
√
2 − 1)2 + 1 − 1√

(
√
2 − 1)2 + 1 + 1

= 3.96% (13)

and is located at

θm = arctan(
√
2 − 1) = 22.5◦. (14)

Under optimal conditions, b = √
2a or OA′ = OC′ in

Fig. 2b, and

−a − 1
a + 1

=
√

(b − a)2 + a2 − 1√
(b − a)2 + a2 + 1

or −Z(0◦) = Zm, which simplify to the optimal weights

aopt = 1
4
√

(
√
2 − 1)2 + 1

= 0.9612

and bopt = 1.3593. These proposed weights give a maxi-
mum SMAPE of 1.979%, a value that improves an error of
EDT by 50% (Fig. 3).

2.2.3 5 × 5 neighborhood
The 5×5mask holds three non-redundant local distances:
a, horizontal/vertical; b, diagonal; and c, off-diagonal
knight’s move (Fig. 1). If all weights are used, the mask
generates a regular hexadecagon that contains wedge-
shaped octants, each extended by two line segments.
Same as before, symmetry allows us to analyze errors
within an octant.
From Fig. 4, applying the sine rule yields the length

of �t as
f1(θ) = r sin θ1

a sin(θ + θ1)
= r

(c − 2a) sin θ + a cos θ
(15)

and that of �s as

f2(θ) = r sin θ2
(c − b) sin(θ + θ2)

= r
(2b − c) sin θ + (c − b) cos θ

,

(16)

where

θ1 = arctan
(

a
c − 2a

)
and θ2 = arctan

(
c − b
2b − c

)
.

The SMAPE formulae corresponding to f1 and f2 are

Z1(θ)= (c − 2a) sin θ + a cos θ − 1
(c − 2a) sin θ + a cos θ + 1

for θ ∈[ 0◦, 26.57◦] ,

(17)

major error lobe; and

Z2(θ) = (2b − c) sin θ + (c − b) cos θ − 1
(2b − c) sin θ + (c − b) cos θ + 1

for θ ∈[ 26.57◦, 45◦] ,

(18)

minor error lobe.
Considering the major error lobe, we have U = c − 2a

and V = a. In the Euclidean case, a = 1 and c = √
5.

These unoptimized values give a maximum SMAPE of

Z1m =
√

(
√
5 − 2)2 + 1 − 1√

(
√
5 − 2)2 + 1 + 1

= 1.36%

that occurs at arctan
(√

5 − 2
)

= 13.28◦.
Using the similar optimization strategy, AE in Fig. 4

must be pushed outwards such that −Z1(0◦) = Z1m and
c = √

5a. These conditions give

aopt = 1
4
√

(
√
5 − 2)2 + 1

= 0.9865

and copt = 2.2059 as optimal weights of the chamfermask.
In this case, the maximum SMAPE reduces to Z1opt =
0.68% (Fig. 5).
The value of b should be selected carefully such that

growth of the minor lobe is restricted to the bound given
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a b

c d
Fig. 3 Symmetric mean absolute percentage error (left column) and edge geometry (right column) generated by 3 × 3 chamfer mask. a Euclidean
weights, a = 1 and b = √

2. b Euclidean weights, a = 1, b = √
2, and r = 1 c. Our weights, a = 0.9612 and b = 1.3593 d. Our weights, a = 0.9612,

b = 1.3593, and r = 1

by Z1opt. That is, allowable ranges of b can be obtained by
solving
∣∣∣∣∣∣∣
(2b − copt)2 + (copt − b)2 −

√
(copt − b)2 + (2b − copt)2

(2b − copt)2 + (copt − b)2 +
√

(copt − b)2 + (2b − copt)2

∣∣∣∣∣∣∣
≤ Z1opt.

(19)

Fig. 4 Octant portion of the chamfer polygon generated by a 5 × 5
mask. Lines that overlap the polygon’s sides are defined by
l1 : (c − 2a)y + ax = r and l2 : (2b − c)y + (c − b)x = r. Critical

corner points are A
( r
a , 0

)
, C

( r
b ,

r
b

)
, E

( 2r
c ,

r
c

)
, and F

(
r

c−b , 0
)
. For the

Euclidean local neighborhood, a = 1, b = √
2, and c = √

5

Simplifying (19) yields

25Jb4 − 60Jb3copt +
(
56Jc2opt − 5

)
b2 +

(
6copt − 24Jc3opt

)
b

+
(
4Jc4opt − 2c2opt

)
= 0,

(20)

where

J =
(1 ± Z1opt
1 ∓ Z1opt

)2
. (21)

The roots of (20) are 1.2193, 1.3189, 1.3281, and 1.4276.
Hence, we recommend to select b between 1.2193 <

b < 1.3189 or 1.3281 < b < 1.4276. Figure 6a
shows how b influences SMAPE values within the minor
lobe.

2.2.4 7 × 7 neighborhood
This mask uses five non-redundant local distances,
namely a, b, c, d, and e, to generate a 32-sided reg-
ular polygon, which is more accurate compared to
those generated by 3 × 3 and 5 × 5 masks. Some
weights in the 7 × 7 mask are unimportant because
they form multiples of other variables in the mask
(Fig. 1).
Consider the four-sided portion of the chamfer polygon

generated by a 7 × 7 mask (Fig. 7). Also, let f1(θ), f2(θ),
f3(θ), and f4(θ) be the lengths of �t, �s, �q, and �p, respectively.
Applying the sine rule, we get
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a b

dc
Fig. 5 Symmetric mean absolute percentage error or SMAPE (left column) and edge geometry (right column) generated by a 5 × 5 chamfer kernel.
a Euclidean weights, a = 1, b = √

2, and c = √
5. b Euclidean weights, a = 1, b = √

2, c = √
5, and r = 1. c Our weights, a = 0.9865, b = √

2, and
c = 2.2059. d Our weights, a = 0.9865, b = √

2, c = 2.2059, and r = 1

f1(θ) = r sin θ1
a sin(θ + θ1)

= r
(d − 3a) sin θ + a cos θ

,

(22)

f2(θ) = r sin θ2
(d − c) sin(θ + θ2)

= r
(3c − 2d) sin θ + (d − c) cos θ

,

(23)

f3(θ) = r sin θ3
(2c − e) sin(θ + θ3)

= r
(2e − 3c) sin θ + (2c − e) cos θ

, (24)

and

f4(θ) = r sin θ4
(e − 2b) sin(θ + θ4)

= r
(3b − e) sin θ + (e − 2b) cos θ

,

(25)

a

c d

b

Fig. 6 Variation of symmetric mean absolute percentage error (SMAPE) with non-redundant local distances controlling minor lobes. a 5 × 5 kernel.
b 7 × 7 kernel. c 7 × 7 kernel, e = 3.5830. d 7 × 7 Kernel, c = √

5
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Fig. 7 Octant portion of the chamfer polygon generated by a 7 × 7 mask. l1 : (d − 3a)y + ax = r, l2 : (3c − 2d)y + (d − c)x = r,
l3 : (2e − 3c)y + (2c − e)x = r, and l4 : (3b − e)y + (e − 2b)x = r. ∠AOE = 45◦ and corner points are A( r

a , 0), B(
3r
d ,

r
d ), C( 2rc ,

r
c ), D( 3re ,

2r
e ), E( r

b ,
r
b ),

P( r
d−c , 0), Q( r

2c−e , 0), and R( r
e−2b , 0)

where

θ1 = arctan
(

a
d − 3a

)
, θ2 = arctan

(
d − c

3c − 2d

)
,

θ3 = arctan
(

2c − e
2e − 3c

)
, and θ4 = arctan

(
e − 2b
3b − e

)
.

(26)

Therefore, the SMAPE formulae corresponding to f1, f2,
f3, and f4 are

Z1(θ) = (d − 3a) sin θ + a cos θ − 1
(d − 3a) sin θ + a cos θ + 1

θ ∈[ 0◦, 18.43◦],

(27)

Z2(θ) = (3c − 2d) sin θ + (d − c) cos θ − 1
(3c − 2d) sin θ + (d − c) cos θ + 1

θ ∈[ 18.43◦, 26.57◦] ,

(28)

Z3(θ) = (2e − 3c) sin θ + (2c − e) cos θ − 1
(2e − 3c) sin θ + (2c − e) cos θ + 1

θ ∈[ 26.57◦, 33.69◦] ,

(29)

and

Z4(θ) = (3b − e) sin θ + (e − 2b) cos θ − 1
(3b − e) sin θ + (e − 2b) cos θ + 1

θ ∈[ 33.69◦, 45.00◦] .

(30)

Considering Z1(θ), the major error lobe, we have U =
d − 3a and V = a. For the Euclidean case, a = 1 and
d = √

10. These values produce a maximum SMAPE of

Z1m =
√

(
√
10 − 3)2 + 1 − 1√

(
√
10 − 3)2 + 1 + 1

= 0.65%

that occurs at arctan(
√
10−3) = 9.22◦. To reduce Z1m, we

consider the conditions d = √
10a and −Z1(0◦) = Z1m

and obtain the optimal weights

aopt = 1
4
√

(
√
10 − 3)2 + 1

= 0.9935

and dopt = 3.1417, which give a maximum SMAPE of
Z1opt = 0.32% (Fig. 8).
The values of b, c, and e are less important, but they

should be chosen such that the minor lobes fail to explode
above Z1opt, or∣∣∣∣∣

U2 + V 2 − √
U2 + V 2

U2 + V 2 + √
U2 + V 2

∣∣∣∣∣ ≤ Z1opt, (31)

where Z2, (U ,V ) = (3c − 2d, d − c); Z3, (U ,V ) = (2e −
3c, 2c − e); and Z4, (U ,V ) = (3b − e, e − 2b). Substitut-
ing definitions of U and V into (31), then rewriting and
simplifying the resulting equations, we get

100Jc4 − 280Jdoptc3 +
(
296d2optJ − 10

)
c2

+
(
14dopt − 140Jd3opt

)
c +

(
25Jd4opt − 5d2opt

)
= 0,

(32)

25Je4 − 160Jce3 + (386Jc2 − 5)e2 + (16c − 416c3J)e
+ (169Jc4 − 13c2) = 0,

(33)

and

169Jb4 − 260Jeb3 + (
152Je2 − 13

)
b2 + (

10e − 40Je3
)
b

+ (
4Je4 − 2e2

) = 0,
(34)

where J is as defined in (21). As depicted by Fig. 6b–d,
solving (32) yields 2.1483 < c < 2.1979 and 2.2006 <

c < 2.2502 as valid ranges of the local weight c. The
natural choice is the Euclidean value c = √

5. Solving
(33) and (34) is rather challenging because the values of b
and e depend on each other and are implicitly defined in
the equations. To address the problem, we substituted the
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a b

c d

Fig. 8 Symmetric mean absolute percentage error and edge geometries generated by a 7 × 7 chamfer kernel. a Euclidean weights, a = 1, b = √
2,

c = √
5, d = √

10, and e = √
13. b Euclidean weights, a = 0.9935, b = √

2, c = √
5, d = 3.1417, and e = 3.5830. c Our weights, a = 0.9935,

b = √
2, c = √

(5), d = 3.1417, and e = 3.5830. d Our weights, a = 0.9935, b = √
2, c = √

5, d = 3.1417, and e = 3.5830

chosen value of c into (33) and solved for the valid range
of e, then selected the value of e in the range and sub-
stituted it into (34) to get the possible valid values of b.
Lastly, the computed range of b was inspected for a subset
that restricts errors in both minor and major lobes within
the acceptable range (0% to 0.32%). Following this strat-
egy, we achieved 3.5266 < e < 3.6288, e = 3.5830; and
1.4051 < b < 1.4224, b = √

2. Figure 6b, d show the vari-
ations of SMAPE with the local weights b and e in minor
error lobes, respectively.

3 Integer approximations
In previous sections, we have proposed real-valued cham-
fer weights for various sizes of masks. However, time-
driven tasks require integers to accelerate computations.
Additionally, integer-steered masks allow hardware plat-
forms to use computational resources more efficiently, an
advantage that lowers manufacturing costs. Therefore, an
automatic and a simple technique has been developed to
generate integers from real-valued masks. Our desire is to
achieve the following qualities of integers: lower relative
errors, common divisor, and convenient magnitudes—
preferably in the order of ones, tens, or hundreds.
The proposed algorithm operates as follows: firstly,

weights are multiplied by integers, i, between two and the
selected maximum, say 1000. Next, each multiplication is
treated by floor and ceil operators, one after another. Next,
corresponding absolute values are taken. Finally, the value
of i that minimizes errors due to all multiplied weights
become a common divisor.

Algorithm 1 summarizes our approach to compute
inter-valued chamfer masks. From the Algorithm, 0 <

ε < 1 defines fidelity of the results and can be manually
set: smaller values of ε give more accurate integer weights.
This work used ε = 0.0025 as a thresholding constant to
convert real-valued chamfer weights into integers. And,
for simplicity, we have selected a 3× 3 mask—but the idea
may be extended to larger chamfer masks.

4 Fast chamfer algorithm
Distance transforms may be implemented through the
chamfering process that uses two masks, forward and
backward, to propagate local distances over an image. The
process undertakes two passes to estimate EDT and oper-
ates as follows: in the first pass, non-feature entries of
a target image are initialized with a suitably large num-
ber, as Fig. 9a depicts. Next, the forward mask is pushed
from left-right and top-down directions of an image, and
at each movement step, masks’ weights are added to the
corresponding image’s entries below them. Then, an entry
in the image just below the zero-valued mask’s location
(center of the whole mask) is replaced by minimum of
the additions, as shown in Fig. 9b. These procedures are
repeated until the forward mask covers pixels in the bot-
tom right portion of the image. Lastly, the second pass
applies the backward mask and uses similar operations
like those in the forward mask to propagate distance vec-
tors from the image’s right-left and bottom-up directions.
Figure 9c shows the distance image after both first and
second passes have been executed.
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Algorithm 1: Computing integer-valued chamfer
masks.
Input : Real-valued local weights, a and b
Output: Integers aint and bint
// maxIter denotes number of

iterations
1 for ( i = 2; i < maxIter; i = i + 1 ) {
2 Ai = a ∗ i;
3 Bi = b ∗ i;
4 α1 = |�a ∗ i
 − Ai|;
5 α2 = |�a ∗ i� − Ai|;
6 β1 = |�b ∗ i
 − Bi|;
7 β2 = |�b ∗ i� − Bi|;

// In the conditional statements
below, ε > 0 denotes a
thresholding constant

8 if (α1 < ε) and (β1 < ε) then
9 aint = �Ai
;

10 bint = �Bi
;
11 break;
12 end
13 if (α1 < ε) and (β2 < ε) then
14 aint = �Ai
;
15 bint = �Bi�;
16 break;
17 end
18 if (α2 < ε) and (β1 < ε) then
19 aint = �Ai�;
20 bint = �Bi
;
21 break;
22 end
23 if (α2 < ε) and (β2 < ε) then
24 aint = �Ai�;
25 bint = �Bi�;
26 break;
27 end
28 }

The chamfer algorithm based on sequential masks is rel-
atively fast because it involves only two passes to generate
the distance image. Some previous works have shown that
the computational times of both parallel and sequential
driven algorithms are comparable ([30, 31], and references
therein). Speed of the traditional chamfer algorithm can,
however, be further improved.
Traditional implementation of the chamfer algorithm

requires every location of an image to be operated by the
masks. Observing results from the first pass, as demon-
strated by Fig. 9b, we see that the process leaves some
pixels in the image unchanged. In particular, for a 7 × 7
image with one feature pixel at its center, more than 55% of
the pixels retain their initial states after execution. In this
work, we have developed a simple strategy to skip these
unnecessary operations in the first pass.
For demonstration purposes, consider a one-feature

image with M1 rows and M2 columns. Then our tech-
nique operates as follows: Firstly, position (row, column) of
a feature pixel is determined. Secondly, the for loops in the
first pass are explored and their initial indices are updated
accordingly to contain values of the determined position.
Thirdly, the forward mask is moved along row from col-
umn to M2. Fourthly, column is decremented by one and
a condition to check its lower bound is evaluated. The
mask is allowed to move in this fashion until it reaches the
bottom-right corner pixel of the image. As Fig. 9b depicts,
the final image in the first pass contains a trapezium-
shaped geometrical structure of the real-valued distance
values. This way, less important operations are ignored.
To count the algorithmic number of operations, we

employed a simple strategy of embedding counters into
the inner for loops of the algorithm. During program
execution of the forward pass, the first counter itera-
tively gets updated to record the temporary value of the
number of operations. In the backward pass, the sec-
ond counter builds from the first one to accumulate the
total algorithmic operations count. The algorithm can be
tested on all types of binary images, but superior results
may be achieved for larger images with many non-feature
entries.

a b c
Fig. 9 First and second passes of the chamfer algorithm. The asterisk represents a real number. a Initialization. b Forward pass. c Backward pass
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Algorithm 2 summarizes the technique to improve
speed of the chamfering process. Figure 10 shows that the
proposed chamfer algorithm executes fewer operations
compared with those pursued by the classical chamfer
algorithm. This speed improvement may benefit applica-
tions that demand real-time processing of input images.

5 Experiments
Several experiments were conducted to test performances
of our methods. In the first experiment, we evaluated the
speed of the modified chamfer algorithm using single-
feature binary images of different resolutions, 300 × 300
to 6000 × 6000. The second experiment compared per-
formances of our local weights and those proposed from
previous studies: Euclidean DT [11, 32–34], Butt et al.
[29], and Verwer [35]. Therefore, masks of different sizes
were applied to estimate chamfer balls of radii r = 1.
Next, three error metrics, namely SMAPE, MAE, and

Algorithm 2: Fast chamfer algorithm.
// Definitions:
// I-binary image; (a, b)-local

weights; Q-distance image;
(M1,M2)-rows and columns of I.

// Our contributions are colured in
blue.

Input : I, a, b
Output: Q

1 [ rowsZero, colsZero]= find(I == 0);
2 rows = min(rowsZero) + 1;
3 cols = min(colsZero) + 1;
// Loop for the forward pass

4 for ( k1 = rows; k1 ≤ M1; k1 = k1 + 1 ) {
5 for ( k2 = cols; k2 ≤ M2; k2 = k2 + 1 ) {
6 I(k1, k2) = min([ I(k1 − 1, k2 − 1) +

b, I(k1 − 1, k2) + a, I(k1 − 1, k2 + 1) +
b, I(k1, k2 − 1) + a, I(k1, k2)] );

7 }
8 cols = cols − 1;
9 if cols ≤ 2 then

10 cols = 2;
11 end
12 }
13 for ( k1 = M1 − 1; k1 ≥ 2; k1 = k1 − 1 ) {
14 for ( k2 = M2 − 1; k2 ≥ 2; k2 = k2 − 1 ) {
15 I(k1, k2) =

min([ I(k1, k2), I(k1, k2+1)+a, I(k1+1, k2−
1)+b, I(k1+1, k2)+a, I(k1+1, k2+1)+b] );

16 }
17 }
18 Q = I;

Fig. 10 Performances of the classical and proposed chamfer
algorithms

MSE, were used to compute the approximation errors.
In the third experiment, the purpose was to compute
distance fields from real images. To this end, we used cam-
eras embedded in the surface mount technology machine
of our laboratory to capture images of surface mount
devices with small-outline packages. Then, the images
were thresholded to create edge maps that DT operators
could act upon (Fig. 11). Lastly, the images were oper-
ated by DTs to produce their corresponding distance and
error maps. As in the first experiment, we used SMAPE,
MAE, and MSE to evaluate accuracies of both designed
and classical weights.

6 Results and discussions
Figure 10 demonstrates that the proposed DT algorithm
to estimate EDT is faster because it requires approxi-
mately 37.58% operations of the classical chamfer algo-
rithm. This speed improvement is attributed to the
reduced number of operations in the first-pass stage of
the old chamfer algorithm. In future, it may be interest-
ing to explore the second-pass stage for redundancies and
unnecessary executions.
Results from Table 1 show that the new weights achieve

lower SMAPE in all cases. One would expect this obser-
vation because weights from the classical methods were
designed using MAE and MSE cost functions. Never-
theless, a robust cost function should produce optimal
weights with higher degree of accuracies for all evalua-
tion indices. As expected, the last column of Table 1 shows
that our approach, which is adapted to SMAPE, produces
MAE values slightly higher than those of Butt et al. These
two methods are competitive and hence were considered
further in the next experiments to evaluate a superior one.
Table 2 shows that the proposed real-valued weights

generate lower values of SMAPE, MAE, and MSE com-
pared with those of Butt et al. Furthermore, for the 3 × 3
and 5 × 5 masks, our integer-valued masks demonstrate
superior performances. This evidence suggests a possible
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a b c
Fig. 11 Real devices (first row) and their respective thresholded versions (second row). a SOP1. b SOP2. c SOP3

usefulness of our weights to practical computing devices.
Also, the results emphasizes on the earlier assertion that
SMAPE offers higher robustness capabilities. But the
7 × 7 mask embedded with the proposed integer-valued
weights demonstrates relatively higher error values, and
we think that the result may be attributed to the higher
sensitivity of the larger chamfer masks to local weights: a
marginal departure of the integer-valued weights from the
optimal real-valued weights amplifies the errors. Addi-
tionally, visual results show that the present approach
produces distance maps with lower errors (Fig. 12) and
that are closer to the reference distance maps (Fig. 13).
In [36], the authors proposed the RLog metric to opti-

mize chamfer masks. This metric finds the relative log-
arithm between the estimated and the ideal disc. Both

SMAPE, proposed in the current work, and RLog gen-
erate similar weights of the chamfer masks, but SMAPE
offers an additional advantage of being robust against out-
liers and noise.When applied as a performance evaluation
index, the averaging characteristic of SMAPE helps to
suppress extraneous details. Therefore, derivations of the
chamfer masks may remain accurate even under undesir-
able conditions of data.
Our derivations of chamfer masks have been presented

for two-dimensional cases. Hence, the proposed masks
can be applied on two-dimensional images to compute
distance maps. Future studies may explore possibilities
of extending our ideas to higher dimensional planes.
Derivation of the 3 × 3 three-dimensional chamfer
masks, for instance, require extending Fig. 2 to a sphere

Table 1 Errors generated by chamfer masks

Neighborhood Metric Local weights SMAPE (%) MAE (%)

3 × 3 : (a, b) Euclidean (1,
√
2) 3.9566 7.6120

Verwer (0.9481, 1.3408) 2.6641 5.4741

Butt et al. (0.9619, 1.3604) 2.0174 3.9609

Proposed (0.9612, 1.3593) 1.9790 4.0366

(99,140)/102.995 1.9791 4.0354

5 × 5 : (a, b, c) Euclidean (1,
√
2,

√
5) 1.3557 2.6751

Verwer (0.9801, 1.4060, 2.2044) 1.0050 2.0304

Butt et al. (0.9866,
√
2, 2.2062) 0.6823 1.3582

Proposed (0.9865,
√
2, 2.2059) 0.6796 1.3685

(805,1154,1800)/816 0.6786 1.3665

7 × 7 : (a, b, c, d, e) Euclidean (1,
√
2,

√
5,

√
10,

√
13) 0.6498 1.2913

Verwer (0.9902, 1.4092, 2.2363, 3.1420, 3.5960) 0.4924 0.9897

Butt et al. (0.9935,
√
2,

√
5, 3.1419,

√
13) 0.3261 0.6543

Proposed (0.9935,
√
2, 2.2220, 3.1417, 3.5830) 0.3261 0.6543

(444,632,993,1404,1601)/446.87 0.3268 0.6514
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Table 2 Errors generated by chamfer masks applied to real images

Image ID Mask size Metric SMAPE (%) MAE (%) MSE (%)

SOP1 3 × 3 Butt et al. 1.2548 810.51 102.28

Proposed real-valued weights 1.2473 802.91 101.12

Proposed integer weights 1.2472 802.89 101.12

5 × 5 Butt et al. 0.3735 237.35 30.52

Proposed real-valued weights 0.3729 236.79 30.44

Proposed integer weights 0.3729 236.79 30.44

7 × 7 Butt et al. 0.1553 96.94 13.09

Proposed real-valued weights 0.1473 91.77 12.86

Proposed integer weights 0.1953 125.77 15.84

SOP2 3 × 3 Butt et al. 1.2274 525.85 69.83

Proposed real-valued weights 1.2238 522.69 69.22

Proposed integer weights 1.2237 522.66 69.22

5 × 5 Butt et al. 0.3737 153.78 20.69

Proposed real-valued weights 0.3732 153.47 20.64

Proposed integer weights 0.3731 153.45 20.64

7 × 7 Butt et al. 0.1620 65.57 9.12

Proposed real-valued weights 0.1558 62.25 8.88

Proposed integer weights 0.1952 80.06 10.51

SOP3 3 × 3 Butt et al. 1.3446 846.14 104.86

Proposed real-valued weights 1.3244 832.85 103.15

Proposed integer weights 1.3245 832.93 103.16

5 × 5 Butt et al. 0.3406 206.87 26.65

Proposed real-valued weights 0.3407 206.84 26.64

Proposed integer weights 0.3408 206.91 26.65

7 × 7 Butt et al. 0.1339 82.50 11.31

Proposed real-valued weights 0.1245 75.51 10.74

Proposed integer weights 0.1958 119.00 14.69

a b
Fig. 12 Error maps of portion of SOP3 generated by a 7 × 7 chamfer mask. Mean absolute error (MAE) and mean squared error (MSE) are computed
from the selected portion of the map. The reference error map has all entries zeros (100% black). a Butt et al. (total error = 0.0383). b Proposed (total
error = 0.0173)
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a b c
Fig. 13 Distance maps generated by the 7 × 7 chamfer masks: first row, reference (Euclidean metric); and second row, proposed DT. a SOP1. b
SOP2. c SOP3

containing a chamfer polygon with sides representing
planes. This modification may be useful in various vision-
related tasks, including those based on the analysis and
interpretation of 3D medical images.

7 Conclusion
This work has proposed the cost function, SMAPE,
that helps to derive optimization problems for design-
ing chamfer masks. Results show that the function gen-
erates more accurate local weights—which give lower
errors even when tested under MAE and MSE criteria—
compared with those proposed from previous researches.
Also, the present study has given formulations to show
how ranges of some masks’ weights can be selected, and
this selection procedure is important because it restricts
the maximum error of minor lobes from exploding
beyond the defined limits.
Additionally, an automatic algorithm has been proposed

to compute integer-valued chamfer masks from their cor-
responding real-valued counterparts. The algorithm pro-
duces masks with simple integers that depict lower errors.
The reason for mapping real-valued masks into integers
is to allow DTs optimize computational resources and
accelerate speed.
Furthermore, we have proposed a technique to boost

speed of the classical chamfer algorithm. In particular, the
technique exploits unimportant cells in the image cov-
ered by the moving forward mask and skips unnecessary
operations. Consequently, the evolving system halts pre-
maturely with results similar to those achieved by the old
approach.
Finally, the designed local weights and the modified

chamfer algorithm were applied on real images to gener-
ate distancemaps. Empirical results show that our weights
produce lower visible errors that reflect smaller values of
SMAPE, MAE, and MSE.

Appendix 1: Existence of maximum in SMAPE
Given that the SMAPE error curve, Z(θ) with θ ∈[ 0, 45◦],
is smooth and differentiable to the second order. We want
to prove that Z contains a maximum, which occurs when
the function qualifies the second derivative test, Zθθ ≤ 0.
Computing first and second derivatives of Z gives

Zθ = 2(U cos θ − V sin θ)

(U sin θ + V cos θ + 1)2
(35)

and

Zθθ = −
(
2

U sin θ + V cos θ

(U sin θ + V cos θ + 1)2
+ 4

(U cos θ − V sin θ)2

(U sin θ + V cos θ + 1)3

)
≤ 0,

(36)

where U sin θ + V cos θ �= −1. From Zθθ in (36), Z
possesses the maximum.

Appendix 2: Intercepts on the SMAPE curve
Locations on the chamfer polygon with radius f (θ) = r
and touching the reference disc of radius r have Z = 0.
Substituting the condition in the SMAPE formula, we find
that the curve Z(θ) crosses the θ-axis when

θ = arccos
(
V ± U

√
U2 + V 2 − 1

U2 + V 2

)
. (37)

Appendix 3: Optimum chamfer weights
When designing coefficients in the chamfer kernels, the
optimality conditions are −Z(0◦) = Z(θm), or

−V − 1
V + 1

=
√
U2 + V 2 − 1√
U2 + V 2 + 1

, (38)

and

U = (β + γ )V , (39)
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Table 3 Values of β and γ for different kernel sizes

Kernel size β γ

3 × 3
√
2 -1

5 × 5
√
5 -2

7 × 7
√
10 -3

where β and γ depends on the size of the mask (Table 3).
Substituting the value of U in (39) into (38), we get

V = 1
4
√

(β + γ )2 + 1
. (40)

The general Eqs. (39) and (40) can be used to compute
optimal values for any size of the chamfer masks. Entries
of Table 1 can be extended using the Farey sequences
[29, 37], which define corner points of the chamfer
polygon.
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