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Abstract

This paper proposes a method estimating an index that indicates human gait normality based on a sequence of 3D
point clouds representing the walking motion of a subject. A cylinder-based histogram is extracted from each cloud
to reduce the number of data dimensions as well as highlight gait-related characteristics. A model of deep neural
network is finally formed from such histograms of normal gait patterns to provide gait normality indices supporting
gait assessment tasks. The ability of our approach is demonstrated using a dataset of 9 different gait types performed
by 9 subjects and two other datasets converted from mocap data. The experimental results are also compared with
other related methods that process different input data types including silhouette, depth map, and skeleton as well as
state-of-the-art deep learning approaches working on point cloud.
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1 Introduction
Gait normality index estimation is one of the most com-
mon studied problems to support healthcare systems.
Many researchers employed complex marker-based and
multi-camera systems to acquire more details for gait
analysis. One of their drawbacks is that they require spe-
cific devices with high price and/or have high computa-
tional cost. Therefore, some recent studies employed a
single camera to deal with gait analysis problems. Depend-
ing on the used sensors, the input of those methods is
either subject’s silhouette or depth map. The former infor-
mation has been used to propose numerous gait signa-
tures such as motion history image (MHI) [9], gait energy
image (GEI) [11], and active energy image (AEI) [17]. Each
signature is a compression of a sequence of consecutive
2D silhouettes and is represented as a single grayscale or
binary image. They were usually applied for the task of
person identification. However, in the case of gait nor-
mality index estimation, using only the gait signature is
not enough. Nguyen et al. [20] employed MHI to estimate
four-dimensional features. They processed each individ-
ual silhouette as well as segmented each input sequence
of frames into gait cycles where the temporal context
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was embedded in. The gait assessment was performed on
each gait cycle using a one-class model that was trained
with normal gait patterns, i.e., unsupervised learning.
Bauckhage et al. [4] also proposed an approach detect-
ing unusual movement. They put a camera to capture
the frontal view of a walking subject. Each silhouette was
encoded by a flexible lattice that followed a vector conver-
sion of coordinates corresponding to a set of predefined
control points. The temporal characteristic was then inte-
grated into each feature vector by concatenating vectors of
consecutive frames. Differently from [20], the gait normal-
ity decision was determined based on a binary SVMwhere
both normal and abnormal gait samples appeared in the
training set. However, in many applications, using only a
sequence of silhouettes as the input would lose important
gait information because of the missing depth.
In order to deal with that limitation, depth sensors

replaced color cameras in some studies. A popular device
is the Kinect, which is provided by Microsoft with a
low price and a SDK containing the functionality of per-
frame 3D human skeleton localization [29, 30]. Such
skeletons played the main role in some recent studies
of gait-related problems such as pathological gait anal-
ysis [8], gait recognition [16], and abnormal gait detec-
tion [21]. These approaches, however, still have a draw-
back since each skeleton is determined based on a depth
frame. Concretely, self-occlusions in depth maps might
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lead to unusual skeleton postures, and embedded gait
characteristics would thus be deformed.
In this paper, we present an approach dealing with the

problem of gait normality estimation. We focus on a setup
of cheap equipments to capture the motion from differ-
ent view points. We employ a time-of-flight (ToF) depth
camera together with two mirrors so that the system can
work in the manner of a collection of cameras while keep-
ing the cost much lower than multi-camera systems [22].
A subject performs her/his walking gait on a treadmill
at the center of the setup. A depth map captured by our
setup is presented in Fig. 1. As shown in the figure, there
are 3 regions (highlighted with ellipses) corresponding to
partial subject’s surfaces seen from different view points.
A point cloud representing the subject can thus be easily
formed as a combination of 3 collections of reprojected
points (from 2D to 3D) including (a) the real cloud in the
middle and (b) reflections (through mirror planes) of vir-
tual clouds that are behind the twomirrors. An example of
such reconstructed 3D point cloud is presented in Fig. 2.
More details on this reconstruction method are given in
[22]. The input of our method is a sequence of these 3D
point clouds that are formed based on consecutive depth
frames captured by the depth camera. The output is gait
normality indices provided by a model of normal walking
postures. To our knowledge, this is the first work that per-
forms gait normality index estimation on a sequence of 3D
point clouds representing a walking person.
Our contributions are summarized as follows:

• Proposing a deep auto-encoder that learns common
features of gait normality based on histograms of

Fig. 1 A depth map captured by our setup that shows 3 devices
including two mirrors and a treadmill where each subject performs
her/his walking gait. Three collections of subject’s pixels are
highlighted by ellipses

point clouds and a discussion on cloud-oriented deep
networks for gait analysis

• Demonstrating the potential of point cloud in gait
analysis problems compared to typical input data
types such as skeleton, depth map, and silhouette

2 Proposedmethod
Our method consists of three main steps. First, a 2D
histogram of each point cloud is formed to normalize
the data dimension as well as highlight gait-related char-
acteristics. Then, the second stage generates a model
representing postures corresponding to normal walking
gait based on a collection of 2D histograms. Finally,
this model is used to compute a normality index for
gait analysis.

2.1 Cylindrical histogram estimation
There are some inconveniences when performing gait
assessment on 3D point clouds: (1) the number of points
inside each cloud is not normalized, (2) such cloud may
contain redundant information that are not useful for gait-
related tasks, and (3) there may be some noises in each
cloud, i.e., points reconstructed from depth values con-
taining noise in the depth map. Therefore, each 3D point
cloud is converted into a 2D histogram by fitting a cylin-
der with equal sectors. It is worth noting that this step of
normalization also plays an important role when working
with neural networks since such models require inputs of
fixed dimensions. Its axis coincides with the normal vec-
tor of the treadmill surface and goes through the cloud’s
centroid. Illustrations of the cylinder fitting and histogram
formation are shown in Fig. 3.
Let us notice that the coordinate system in that figure

is flexible. The only constraint is that the y-axis must be
normal to the treadmill surface. The coordinate system in
Fig. 3 is to show the relation between cylindrical sectors
and their mapped elements in the corresponding 2D his-
togram. Such arrangement of elements inside a histogram
is to highlight the balance of human posture embedded
in the point cloud. In other words, our cylindrical his-
togram is considered as a smart projection of a 3D point
cloud onto a frontal (or back) grid. The element values
of each histogram are finally scaled to give a grayscale
image of 256 levels. This representation is convenient
for data range normalization and for storing. An exam-
ple of grayscale histogram and the corresponding human
posture is given in Fig. 4.

2.2 Model of normal gait postures
Many recent studies embedded the temporal context into
features that were then employed to create a model sup-
porting gait classification. Our model, however, considers
only individual postures. The temporal factor can then be
integrated by extracting statistical quantities based on a
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Fig. 2 The point cloud reconstructed from a depth map using the method [22]

sequence of posture assessments. An unsupervised learn-
ing is appropriate since we are focusing on estimating gait
normality index. A model that is formed from a train-
ing set containing both normal and abnormal gaits may
have a low generalization. The reason is that patterns
of abnormal gaits would significantly affect the classi-
fier because there are too numerous possible types of
walking postures with abnormality in practical situations.
Therefore, we attempt to create a model describing com-
mon characteristics of normal gait postures. A typical
way of performing this task is learning a vocabulary of
code words extracted from histograms of normal gait.
Recently, such approaches have demonstrated good per-
formance on common problems such as content-based
image retrieval [2, 42] and image classification [3, 40, 41].
Another approach is the use of pretrained deep networks
for feature extraction such as [27, 31]. These methods,
however, are applied on natural images with an appropri-
ate resolution, in which each code word is formed from

an image patch. Therefore, vocabulary learning is not suit-
able to deal with our histograms of small size 16×16. Since
deep learning has provided very good results in recent
studies, we decide to employ such structures that can
automatically determine useful features itself and work as
a one-class classifier. The deep auto-encoder [26] is thus
chosen in our approach to model normal gait postures.
Our model structure is similar to a typical neural net-

work but has some specific constrains. First, the model is
a stack of blocks with the same layers inside. The only dif-
ference between these blocks is the number of input and
output connections. Each block contains a fully connected
layer, a nonlinear activation layer, and an optional dropout
layer. The dropout layer is considered to reduce the risk
of overfitting [32]. We selected 3 popular activation func-
tions including sigmoid, tanh, and leaky ReLU (rectified
linear unit) for the middle (or last if no dropout) layer in
each block. The original ReLU function is not considered
because it may cause the problem of dead neuron [18]

a b c

Fig. 3 Visualizations of a, b fitting a cylinder onto a 3D point cloud and c the conversion from 16 cylinder’s sectors to a 2D histogram with size of
4 × 4. The coordinate system in the three sub-figures is to present the mapping between each cylindrical sector and the corresponding elemental
index in the histogram
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Fig. 4 Example of 2D histogram estimated by fitting a cylinder onto a 3D point cloud: a posture, b grayscale histogram, and c pseudo-color
histogram for better visualization. The size of this histogram is 16 × 16

when embedded into a deep fully connected neural net-
work where the learning rate is not small enough.
Let us consider a block l where its fully connected layer

is parametrized by weightsW (l) and biases b(l), the output
of an ith unit given an input x(l) is computed as

⎧
⎪⎨

⎪⎩

y(l)
i = W (l)

i x(l) + b(l)
i

z(l)i = f
(
y(l)
i

)

ẑ(l)i = Ui
(
p,N

(
x(l))) ∗ z(l)i

(1)

where f indicates one of the three mentioned activations,
N(x(l)) is the number of units connected from the pre-
vious block, and U(p, n) is a function that produces n
binary values where p is the probability of zero ones.
The block output ẑ(l) is the input of the next block,
i.e., x(l+1) ← ẑ(l).
The second constrain is that when the data is propa-

gated from one block to the next, the number of dimen-
sions is reduced by half. This property is reasonable since
auto-encoders are to compress and highlight useful fea-
tures inside the input. These two constrains are illustrated
in Fig. 5. Since we consider one of three activation func-
tions including sigmoid, tanh, and leaky ReLU, there are
thus 6 different structures that can be employed for con-
structing our model. Notice that in the partial network of
decoder, the number of units in a next block is doubled
but the order of layers inside each block is the same. The
auto-encoder structure in our work is symmetric, i.e., we
stack k − 1 blocks with increasing data dimension after
using k blocks to encode an input histogram. We use the
term block-level depth (or simply depth) to indicate such
value of k, a model of depth k will thus have 2k − 1 hidden
blocks. The input of our network is a vector of 256 ele-
ments that is vectorized from each 16×16 histogram. The
loss function used in our work is the mean squared error

(MSE) combined with a L2-regularization to prevent the
model from overfitting:

L(H, Ĥ) = 1
n

n∑

i=1

∥
∥
∥Hi − Ĥi

∥
∥
∥
2

2
256

+ λ
∑
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∥
∥
∥W (l)

∥
∥
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2

2
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where H and Ĥ respectively denote a batch of n input
vectorized histograms of 256 elements and their recon-
struction, W (l) indicates weights of the fully connected
layer in block l, and λ is the regularization rate that
controls the effect ofW s on the total loss L.

a

b
Fig. 5 Structure of our auto-encoder that models characteristics of
normal gait postures: a an example of model of block-level depth k
with the number of units indicated inside each block, and b two
possible block structures used in our auto-encoder
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2.3 Normality index
Since the input and output of our auto-encoder are the
same in the training stage, we expect that the model can
learn common characteristics embedded in normal walk-
ing gait.We also expect that the loss of information in case
of abnormal posture inputs will be significantly higher
compared with normal gaits. The normality index is com-
puted for each individual posture as theMSE loss between
the input and output vectors of the same size, i.e.,

I(h) = 1
256

‖h − M(h)‖22 (3)

where h is an input vectorized cylindrical histogram and
M denotes the model estimating a reconstruction from
h. The gait assessment can be performed with or with-
out considering the temporal factor depending on specific
problems. Recent studies working on time series data (e.g.,
action recognition or video retrieval) embedded this fac-
tor into their processing in various fashions such as by
considering the variance among successive key frames
[38], concatenating consecutive frames [35], or using spe-
cific neural network layers [36]. In our work, we directly
measure a normality index given a sequence of n cylin-
drical histograms by simply averaging their frame-level
indices:

I(h1..n) = 1
n

n∑

i=1
I(hi) (4)

This measure is appropriate for the task of gait normal-
ity index estimation because of the following reason. A
sequence of walking postures can be considered as a hier-
archy: it is a collection of walking cycles and each cycle
is a group of poses. Unlike related tasks such as action
classification or behavior understanding, walking move-
ment tends to be periodic. Given an input sequence that is
long enough to cover a number of gait cycles, the average
of frame-level normality indices is expected to implicitly
indicate the overall measure through the gait cycles.
The details of our model parameters and the ability of

measuring gait normality index for distinguishing normal
and abnormal walking gaits are shown in the next section.

3 Experiments
3.1 Dataset
Our approach was experimented on a dataset that
includes normal walking gaits and 8 simulated abnormal
gaits [19]. The abnormal gaits were created by embedding
asymmetry into walking postures. Concretely, this task
was performed by one of the following actions: (a) padding
a sole with 3 possible heights (5/10/15 cm) under the left
or right foot or (b) attaching a 4-kg weight to the left or
right ankle. There are thus 8 possible walking gaits with
anomaly. The normal and abnormal gaits were performed

by 9 volunteers using a Kinect 2. Each gait was repre-
sented by a sequence of 1200 consecutive point clouds.
They were formed by applying the method proposed in
[22] at a frame rate of 13 fps. The speed of the tread-
mill was set at 1.28 kph. Beside 3D point clouds, our data
acquisition also captured corresponding skeletons and sil-
houettes using existing functionalities in the Kinect SDK.
These two data types were employed for a comparison
between our method and two other related studies. In
summary, the dataset contains 1200 point clouds, 1200
silhouettes, and 1200 skeletons for each gait type of a
subject. Our experimental procedures involving human
subjects were approved by the Institutional Review Board
(IRB). The experiments focus on assessing the efficiency
of the proposed models and demonstrating the potential
of point cloud in gait normality index estimation com-
pared with typical inputs such as skeleton, silhouette, and
depth map.
The dataset was split into two sets according to the sug-

gestion in [19]. The first one including gaits of 5 subjects
was used in the training stage. The gaits of the 4 remaining
subjects were tested to evaluate the ability of our trained
models. The same split was also used in our experiments
on related works in order to provide a comparison. Beside
that data separation, the leave-one-out cross validation
(on subject) was also considered to evaluate our method
in a more general fashion.

3.2 Auto-encoder hyperparameters
This section presents our selection for typical hyperpa-
rameters and the strategy for finding a reasonable value
for the block-level depth k of our auto-encoder.

3.2.1 Typical hyperparameters
First, we consider the algorithm that performs the weight
update after each iteration. We employed the RMSProp
[33] since the learning rate is adaptively changed instead
of being a constant value. An initial learning rate of 0.0001
was thus reasonable. The momentum that controls con-
vergence speed was set to 0.9 according to the suggestion
in [33].
Such selection of learning rate leads to the choice

of the constant that affects the negative slope of the
element-wise nonlinear activation leaky ReLU, i.e., α in
the equation f (x) = 1(x < 0)(αx) + 1(x ≥ 0)(x). This
parameter was set to 0.1 in our model because a too small
value (such as 0.01) still sometimes causes the problem of
dead neuron.
Another layer that also requires a predefined parameter

is dropout. In our model, the probability of forcing input
elements to zero was set to 0.3. Using a larger value may
cause difficulties for the model in attempting to recover
meaningful information during iterations in the training
stage.
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The λ coefficient controlling the L2-regularization was
set to 0.25 after evaluating some randomized generating
values. For the training process, we used a batch size of
512 and 800 epochs for each possible network without
dropout layer. The number of epochs used for training
the models with dropout was higher (1600 in our work)
as suggested in [32]. The model weights were initialized
according to the method proposed by [10]. Many tra-
ditional auto-encoders initialized their weights based on
greedy layer-wise pre-training [7, 13]. Our model, how-
ever, is considered as a typical deep neural network where
the input is a hand-crafting feature, our selection of weight
initialization is thus reasonable. The collection of such
hyperparameters is summarized in Table 1.

3.2.2 Depth determination
An important factor that is not considered in the pre-
vious section is the block-level depth of network [i.e., k
in Fig. 5a]. This is the last parameter which needs to be
determined in order to form a specific network structure.
We selected an appropriate value using a cross-validation
strategy applied on the training data consisting of gaits of
5 subjects.
Concretely, the cross-validation was performed with 5

folds, in which each one corresponds to the gaits of a
subject. For each value k, we tested 6 networks [3 non-
linear activations with/without dropout layer]. Since an
auto-encoder is considered as a lossy compression, it is
obvious that increasing the number of blocks will increase
the loss, i.e., the distance between an input and its recon-
structed image. Therefore, we need a more meaningful
criterion for depth selection instead of simply perform-
ing a loss comparison. Let us recall that our auto-encoder
would be trained with the goal of modeling normal walk-
ing gait, and the ability of providing gait indices that can
well distinguish normal and abnormal gaits is thus suit-
able for assessing the optimal value of k. For a problem of

Table 1 Empirically selected hyperparameters in our
auto-encoders

Training algorithm RMSProp

Loss function MSE

Initial learning rate 0.0001

λ (L2-regularization) 0.25

Momentum 0.9

Batch size 512

α (leaky ReLU) 0.1

Number of epochs (without dropout) 800

Number of epochs (with dropout) 1600

Dropout probability 0.3

Weight initialization Xavier [10]

binary decision, the area under curve (AUC) of a receiver
operating characteristic (ROC) curve is an appropriate
measurement and was used here.
The stage of our fivefold cross-validation was performed

as follows. Given a block-level depth value k0, we con-
structed 6 networks with 2k0 − 1 hidden blocks. Each
network would provide 5 applicable models since the
training data was separated into 5 folds. Each model was
trained with the normal gaits of 4 folds (4800 histograms)
to get a collection of 10800 MSE loss values when eval-
uating both normal and abnormal gaits (1200 and 9600
frames, respectively) of the remaining fold. A visualiza-
tion of this separation is shown in Fig. 6. An AUC was
finally estimated from such sequence of losses to repre-
sent the model’s ability. Therefore, each of the 6 networks
provided 5 AUCs in the stage of cross-validation given a
specific depth. ThemeanAUCwas calculated to represent
the strength of each network for different depths in Fig. 7.
Notice that we did not consider the choice of block struc-
ture, the cross-validation is just to find a reasonable depth
for our auto-encoders.
According to Fig. 7, assigning 4 as the network block-

level depth is a good choice since it provided the highest
mean AUC and a relatively small standard deviation (that
can be considered as a stability criterion). Our final net-
work was thus trained with 7 hidden blocks (i.e., depth of
4) with hyperparameters in Table 1 using all normal gaits
in the training data. The overall architecture of our model
can be represented as a sequence of blocks F128AD-
F64AD-F32AD-F16AD-F32AD-F64AD-F128AD-F256, in
which FxAD indicates a block where F is a fully con-
nected layer that outputs x units, A is a nonlinear
activation (sigmoid, tanh, or leaky ReLU), and D is a
dropout layer. When performing experiments on the
models of non-dropout blocks, we simply set the dropout
probability to 0.

Fig. 6 The formation of training and validation sets for one of 5
models corresponding to a specific network structure in the stage of
cross-validation
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Fig. 7 AUCs estimated in our cross-validation stage with different
choices of network depth

There were 6 possible auto-encoders corresponding to
6 block structures. They were employed independently
in our evaluations. Our networks were implemented in
Python with the use of TensorFlow [1].

3.3 Reimplementation of related methods
In order to provide a comparison with other related works
that employed different input data types, we also per-
formed experiments on skeletons and silhouettes using
the methods proposed in [21] and [5], respectively. The
recent study [23] was also considered since it represents
features of interest as an intermediate between 2D (sil-
houette) and 3D (depth map) information. Let us describe
briefly these three approaches. The researchers in [21]
directly employed the position of lower limb joints in
skeletons provided by a Kinect to extract feature vectors
representing the subject’s walking postures. A sequence
of such vectors was then converted into a sequence of
codewords using a clustering technique in order to sim-
plify the feature space. The sequence was segmented into
gait cycles by considering the change of distance between
two feet. This step is necessary since the researchers
focused on building a model of normal walking gait cycles
using a specific Hidden Markov Model (HMM) struc-
ture. The gait normality index was finally estimated for
each input cycle as the log-likelihood provided by the
trained HMM. Similarly to [21], the authors in [5] also
performed the feature extraction on each silhouette using
a lattice and embedded the temporal factor by concate-
nating vectors estimated from a number of consecutive
frames. A difference of this method from [21] and ours
is that the researchers employed a supervised learning
(binary support vector machine (SVM)) with two-class

training dataset to distinguish normal and abnormal walk-
ing gaits. The method [23] estimated a gait-related score
as a weighted sum of two scores corresponding to 2D and
3D information. Concretely, the researchers measured a
LoPS (level of posture symmetry) score using a cross-
correlation technique to describe the symmetry of 2D
subject’s silhouette, and simultaneously employed aHMM
to compute a PoI (point of interest) score according to key
points determined from the corresponding depth map. A
combination of those two scores provided good results
in distinguishing between normal and abnormal walking
gaits. In our experiments, we reimplemented a HMM of
normal walking gait cycle for the study [21], a binary SVM
for [5], and a combination model of HMM and cross-
correlation for [23]. We also slightly modified the SVM
to create a one-class SVM where the training stage only
dealt with samples of normal gaits. Thesemodels and ours
were trained and evaluated on the same dataset split but
with different input types, i.e., point cloud, skeleton, and
silhouette. Notice that depth maps for experimenting the
study [23] were formed based on a projection of 3D point
clouds according to the calibration information.

3.4 Evaluation metric
The ability of each proposed network was measured
according to an equal error rate (EER) estimated based
on the collection of MSE loss values. Since some related
works attempted to embed the temporal context into their
measurement, we also consider it by computing a sim-
ple average EER over a short segment (length of 120 in
our experiments) of histograms as well as over the entire
sequence (i.e., length of 1200) corresponding to each walk-
ing gait. Since we did not focus on selecting the best block
structure in this work, the average loss of the 6 networks
(with k = 4) was also computed. We also need to consider
the measure for comparison since the three related works
employed different quantities: the AUC for [21], the classi-
fication accuracy for [5], and the EER for [23]. We selected
the EER estimated from the ROC curve to represent the
evaluation result of all models because this measure is
related to both AUC and classification accuracy.

4 Results
The experimental results on the suggested data split (5
training subjects and 4 test subjects) and the leave-one-
subject-out cross-validation are respectively presented in
Tables 2 and 3. The last seven models are proposed in
our work, in which the term multi-network indicates the
assessment of gait normality indices estimated as the aver-
age of the losses resulting from the 6 other models. Notice
that the notation segment has different meanings: a sub-
sequence of 120 histograms in our approach, a gait cycle
that was automatically determined in [21], a per-frame
feature that embedded the temporal context of � = 20
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Table 2 Classification errors (≈ EERs) resulting from experiments on our auto-encoders and related studies with different data types

Model Training data Data type
Classification error (4 test subjects)†

Per-frame Segment Entire seq.

HMM [21] Normal only Skeleton - 0.335 0.250

One-class SVM [5] Normal only Silhouette 0.399 0.227 0.139

Binary SVM [5] Normal + abnormal Silhouette 0.104 0.157 0.139

HMM [23] Normal only Depth map - 0.396 0.281

Cross-correlation [23] Normal only Silhouette - 0.381 0.250

HMM + cross-correlation [23] Normal only Silhouette + depth map - 0.377 0.218

(Our) Sigmoid Normal only Point cloud 0.332 0.264 0.250

(Our) Sigmoid + dropout Normal only Point cloud 0.328 0.261 0.250

(Our) Tanh Normal only Point cloud 0.298 0.158 0.111

(Our) Tanh + dropout Normal only Point cloud 0.289 0.136 0.111

(Our) Leaky ReLU Normal only Point cloud 0.326 0.125 0.028

(Our) Leaky ReLU + dropout Normal only Point cloud 0.296 0.103 0.028

(Our) Multi-network Normal only Point cloud 0.288 0.125 0.083

†Our system was originally implemented in Mathematica [37]. The models without dropout provided better results compared with the ones performed by TensorFlow [1] in
this table. This may be because of the underlying algorithm implementation
The italic values indicate the best results in different evaluations

recent frames in [5], and � = 9 recent frames in [23].
These values were suggested by the authors in their orig-
inal works. The term entire sequence indicates EERs cal-
culated based on the average loss over 1200 histograms in
our method, lowest mean of log-likelihoods estimated on
3 consecutive walking cycles of a sequence in [21], alarm
triggers in [5], and the average score in [23].
According to Tables 2 and 3, employing the temporal

factor improved the accuracy in estimating the gait nor-
mality index compared with per-frame (i.e., without con-
sidering recent frames) estimation except for the binary
SVMwhich is a supervised learning. Therefore, we should

focus only on the assessment performed on segment and
entire sequence. The classification errors almost always
significantly decreased when the gait normality index was
estimated over the input sequence instead of short seg-
ments. Let us notice that our method measures the index
of a sequence as a simple average of per-frame losses while
the studies [5] and [21] used nonlinear computations, i.e.,
decisions respectively based on triggers and minimum
3-cycles means of log-likelihoods. In other words, those
two methods assume that segment-based estimation pos-
sibly contains noises (or outliers), a post-processing is
thus required to provide a decision. Our method directly

Table 3 Average classification errors (≈ EERs) resulting from our leave-one-subject-out cross validation

Model Training data Data type
Classification error (leave-one-out)

Per-frame Segment Entire seq.

HMM [21] Normal only Skeleton – 0.396 0.198

One-class SVM [5] Normal only Silhouette 0.418 0.274 0.136

Binary SVM [5] Normal + abnormal Silhouette 0.110 0.152 0.111

HMM [23] Normal only Depth map – 0.473 0.431

Cross-correlation [23] Normal only Silhouette – 0.321 0.097

HMM + cross-correlation [23] Normal only Silhouette + depth map – 0.319 0.083

(Our) Sigmoid Normal only Point cloud 0.362 0.240 0.160

(Our) Sigmoid + dropout Normal only Point cloud 0.363 0.241 0.148

(Our) Tanh Normal only Point cloud 0.298 0.144 0.049

(Our) Tanh + dropout Normal only Point cloud 0.301 0.168 0.074

(Our) Leaky ReLU Normal only Point cloud 0.297 0.173 0.099

(Our) Leaky ReLU + dropout Normal only Point cloud 0.311 0.185 0.123

(Our) Multi-network Normal only Point cloud 0.303 0.178 0.086

The italic values indicate the best results in different evaluations
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calculates the index considering every measured loss.
There were also several noticeable factors related to the
approach [23]. First, the combination of silhouette and
depth map in [23] has a lack of generalization compared
with our method. Since our dataset (with 8 abnormal
gaits) is an extended version of the one in [23] (with-
out gaits with a 4-kg weight attached to the left or right
ankle), Table 2 shows that the system [23] encountered
difficulty in distinguishing those two additional abnormal
gaits from normal ones. Another possible factor affect-
ing the accuracy of method [23] is the size of training set
(5 subjects in our experiments vs. 6 subjects in the origi-
nal paper [23]). This was clearly demonstrated in Table 3,
in which the method [23] provided good results when
there were 8 training subjects in each fold. It also showed
that the generalization ability of our deep neural network
is better compared with the combination of HMM and
cross-correlation given a small training set.
In order to demonstrate the effect of the length of input

walking postures, i.e. , n in Eq. (4), we provide the assess-
ment on various values of the temporal factor in Fig. 8.
These assessment results of default split and leave-one-
out cross-validation schemes were respectively obtained
from the models with leaky ReLU and tanh activations
that provided best results in Tables 2 and 3. Figure 8
shows that the gait normality index estimation tent to
be improved with the increasing number of successive
postures. Therefore, estimating gait index on a pre-
assigned sufficiently large number of frames is an appro-
priate choice besides the typical consideration of walking
gait cycle.

5 Comparison with deep learningmodels
With the fast development of deep learning, some net-
works have been proposed to deal with 3D point cloud

Fig. 8 EERs obtained when the gait normality index was estimated on
different lengths of posture sequence

for popular objectives such as classification, reconstruc-
tion, and segmentation. We adaptively modified1 three
recent models including FoldingNet [39], PointNet [24],
and RSNet [14] to obtain auto-encoder structures sup-
porting the task of gait normality index estimation in the
same fashion as ours. The former network is an auto-
encoder, while the two others are segmentation networks.
Details of the reimplementation and experimentation are
as follows.
First, each model requires its inputs having the same

shape, i.e., a fixed number of points. Therefore, we
employed random sampling [34] to downsample the num-
ber of points in each input cloud to 2048 for FoldingNet
and PointNet and 4096 for RSNet. Second, we adapted
the last layer and the objective function of PointNet and
RSNet to obtain new architectures of point cloud recon-
struction. Concretely, the number of channels in their
last layer (corresponding to the number of segmentation
categories) was replaced by the number of input chan-
nels (i.e., 3 for the coordinates). The softmax loss was
changed into MSE loss to force the models learning a
way of reconstructing point position instead of perform-
ing point classification. The FoldingNet originally uses
Chamfer distance for the reconstruction since its input
and output clouds have different sizes; we thus did not
perform any modification on this model structure. The
loss of these models were used to indicate the gait normal-
ity index. In order to provide a comparison on processing
time, we converted the framework of FoldingNet from
Caffe [15] to TensorFlow [1].
Similarly to previous experiments, we evaluated the

three networks using two schemes: the suggested
data split and the leave-one-subject-out cross-validation.
These models were respectively trained for 24000 and
9600 iterations with batch size of 1 for the two schemes.
Notice that these numbers of iterations are just to evaluate
the potential of models instead of guaranteeing a conver-
gence. We also retrained our best networks (according to
Tables 2 and 3) in the same fashion for comparison. Since
there was no classification model in this evaluation, we
used AUC as the performance measure. The AUCs esti-
mated on the gait indices outputted from all networks are
shown in Fig. 9. Notice that we consider only per-frame
index.
The experimental results show that our method and

FoldingNet have a similar potential for estimating gait
normality index. There are some possible reasons for the
efficiency of FoldingNet. First, it considers local property
of each point via the k-NN point-graph and local covari-
ance of its neighborhood. This consideration would thus
lead to a good feature extraction/description as typical
convolutional neural networks. Second, the reconstructed
cloud contains just a small number of outlier points since
it is warped from a 2D point grid. Therefore, the use of
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Fig. 9 AUCs estimated from our evaluation on deep learning models

Chamfer distance in gait index calculation is not signif-
icantly affected by noise in the input cloud. Recall that
there was no enhancement step performed on clouds in
our experiments. On the contrary, PointNet and RSNet
were directly designed for predicting point’s label instead
of explicitly emphasizing informative hidden attributes
to support the cloud reconstruction. Besides, the point
neighborhood is determined using a small network in
PointNet and a pooling layer in RSNet while FoldingNet
directly considers the distance-based point graph. We
believe that this is a reason for the large efficiency gap
between FoldingNet and the two others in the task of
cloud reconstruction.
A summary of single-cloud processing time correspond-

ing to basic steps in our experiments is given in Table 4.
The evaluation was performed on a single GTX 1080
using Torch 0.4.1 (for RSNet) and TensorFlow 1.10.1 (for
the others) with Python 3.5. It is obvious that FoldingNet
takes very long times in both training and inference stages
compared with our models. This is because we repre-
sent each input cloud by a 16 × 16 matrix and this size
does not increase during propagation in the network.
On the contrary, FoldingNet operates on cloud coordi-
nates together with the distance-based graph, performs
multiple concatenations, and uses the costly Chamfer dis-
tance as the loss function. It should also be noticed that

RSNet may be slightly slower when using TensorFlow
since the study [28] reported that Torch is faster than
TensorFlow.

6 Experiments on additional datasets
In addition to the dataset used for experiments in previous
sections, we also performed some testing on two smaller
datasets formed from mocap data. In detail, some mocap
walking sequences including normal and looking-like-
abnormal gaits (unbalance, hobble, skipping, swaggering)
were sampled from the CMU2 and SFU3 databases. These
mocap data were converted to point clouds by fitting a
3D model (created with MakeHuman4) and using the set
of 3D vertices as the point clouds. A summary of the two
additional datasets used in this experiment is given in
Table 5.
In order to provide a comparison, we also reimple-

mented two recent studies [6, 25] that perform gait anal-
ysis on human movement. The method [25] decomposes
gait input signals into an ensemble of intrinsic mode func-
tions to extract gait frequency properties and then ana-
lyzes their association and inherent relations. The study
[6] also considers periodical factors, but the gait features
were manually estimated from 3D skeletons including
average step length, mean gait cycle duration, and leg
swing similarity. Both methods focus on efficient gait

Table 4 Average processing time of basic operations in experimented models

Model Framework Preprocessing (using C++) Forward and backward (in training stage) Forward (in inference stage)

FoldingNet [39] TensorFlow 0.262 (ms) 1.639 (s) 0.446 (s)

PointNet [24] TensorFlow 0.262 (ms) 1.308 (s) 0.102 (s)

RSNet [14] Torch 0.311 (ms) 0.202 (s) 0.058 (s)

Our 6 models TensorFlow 1.126 (ms) 0.014 (s) 0.002 (s)

The preprocessing indicates the cylindrical histogram formation in our method and the cloud downsampling in the others. The time is reported in seconds and milliseconds
The italic values correspond to fastest running speeds in execution stages
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Table 5 Number of frames and walking sequences in additional
datasets

Dataset Training set (only normal gait)
Test set

Normal Abnormal

CMU 540 (5) 769 (8) 2224 ( 7)

SFU 1082 (5) 1295 (6) 3086 (13)

Each pair of values u (v) indicates a collection of v sequences containing a total of u
frames

characteristics and employ simple learning algorithms for
the assessment.
The experimental results (EER) are presented in Table 6.

It shows that our gait normality index was improved over
a walking sequence instead of on each frame. Notice that
these two datasets were selectively collected from mocap
databases focusing on action recognition. Table 6 also
shows that the cylindrical histogram can be appropriate
for describing various gaits.

7 Discussion
First, let us explore in more detail the classification errors
provided by the proposed auto-encoders. When embed-
ding the temporal context into the estimation of gait
normality index, the model which employed the leaky
ReLU activation together with dropout layers provided
the best results according to Table 2. In the leave-one-
out cross-validation stage, replacing such combination
by tanh activation gave the lowest classification errors.
Therefore, more experiments as well as an extension of
the dataset are needed to confirm the best block structure.
However, the two tables show that using the tanh and/or
leaky ReLU is preferred to sigmoid activation. In addition,
the average of indices resulting from the 6 auto-encoders
corresponding to 6 block structures (last row of Tables 2
and 3) demonstrated the potential of auto-encoder com-
pared with the three other related methods.
Second, it is worth noting that our cylindrical histogram

provides a good visual understanding (see Fig. 3) while
intermediate features extracted from a cloud-oriented
deep neural network would be much more difficult to

Table 6 EERs obtained from experiments on two additional
datasets

Method
CMU SFU

Frame Sequence Frame Sequence

K-means [6] – 0.133 – 0.474

Bayesian GMM [6] – 0.133 – 0.231

One-class SVM [25] – 0.400 – 0.356

Bayesian GMM [25] – 0.267 – 0.350

Ours (leaky ReLU) 0.233 0.067 0.253 0.158

The two methods [6, 25] are not adaptive to perform per-frame assessment
The italic values indicate the best results

interpret. Therefore, our method is more appropriate
for practical applications where users/operators are not
familiar with the more difficult interpretation of interme-
diate features in deep networks.
Another important factor is the coordinate system that

is illustrated in Fig. 3. A setting that does not satisfy this
constraintmight significantly affect the ability of extracted
histograms in reasonably representing gait postures. In
that case, a rigid transformation [12] is an appropriate
solution to guarantee the constraint.
Finally, the local motion of body parts (e.g., limbs) is

not explicitly considered in a sequence of cylindrical his-
tograms. A further investigation of such local descriptions
is expected to increase the applicability of the method to
specific gait problems.

8 Conclusion
This paper proposes an approach that estimates the gait
normality index based on a sequence of point clouds
formed by a ToF depth camera and two mirrors. Using
such system not only reduces the price of devices but
also avoids the requirement of a synchronization protocol
since the data acquisition is performed by only one cam-
era. This work introduces a simple hand-crafting feature,
cylindrical histogram, extracted from raw input clouds
that efficiently represents characteristics of walking pos-
tures. Auto-encoders with a specific block-level depth and
various block structures are then employed to process
such sequence of histograms, and the resulting losses are
considered as gait normality indices. The efficiency of
our method was demonstrated in the experiments using
a dataset of 9 subjects with 9 different walking gaits. The
quality of 3D point clouds provided by our setup was also
highlighted in a comparison with other related works that
employed different input data types (skeleton, silhouette,
and depth map). Our method could be appropriate for
many gait-related tasks such as assessing patient recovery
after a lower limb surgery for instance.
In further works, elaborate experiments will be per-

formed to select the block that is best appropriate with our
model structure. Besides, sparsity constraints will be con-
sidered to give visual understanding about characteristics
embedded inside the cylindrical histograms that are useful
for gait-related tasks. Finally, modeling specific patholog-
ical gaits using our auto-encoders is also an interesting
future study.

Endnotes
1 The modification was performed on official public

resources of these studies.
2 http://mocap.cs.cmu.edu/
3 http://mocap.cs.sfu.ca/
4 http://www.makehumancommunity.org

http://mocap.cs.cmu.edu/
http://mocap.cs.sfu.ca/
http://www.makehumancommunity.org
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