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Abstract

This paper proposes a method for computing efficiently the significance of a parametric pattern inside a binary image.
On the one hand, a-contrario strategies avoid the user involvement for tuning detection thresholds and allow one to
account fairly for different pattern sizes. On the other hand, a-contrario criteria become intractable when the pattern
complexity in terms of parametrization increases. In this work, we introduce a strategy which relies on the use of a
cumulative space of reduced dimensionality, derived from the coupling of a classic (Hough) cumulative space with an
integral histogram trick. This space allows us to store partial computations which are required by the a-contrario
criterion and to evaluate the significance with a lower computational cost than by following a straightforward
approach. The method is illustrated on synthetic examples on patterns with various parametrizations up to five
dimensions. In order to demonstrate how to apply this generic concept in a real scenario, we consider a difficult crack
detection task in still images, which has been addressed in the literature with various local and global detection
strategies. We model cracks as bounded segments, detected by the proposed a-contrario criterion, which allow us to
introduce additional spatial constraints based on their relative alignment. On this application, the proposed strategy
yields state-of the-art results and underlines its potential for handling complex pattern detection tasks.
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1 Introduction
Since the seminal articles of Desolneux et al. [1, 2], detec-
tion approaches based on the Number of False Alarms
(NFA) criterion became more and more popular in the
field of image processing over the last decade. In these
approaches, the words “a-contrario” refer to the fact that
detection is performed by contradicting a “naive” model
that represents the statistics of the outliers (the null
hypothesis in statistical decision theory). Then, the inliers
are detected as too regular to appear “by chance” accord-
ing to the naive model. The main asset of such approaches
is their independence from threshold parameters, since
they cast the detection as an optimization problem by
maximizing the significance defined from deviation rela-
tively to the naivemodel. Then, to interpret this maximum
of significance (or, equivalently, minimum NFA value) in
terms of the presence or absence of structured pattern,
one refers to the NFA definition itself: the NFA of a
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pattern candidate is the expected number of false pos-
itives (random patterns) occurring in the search space
when accepting all patterns at least as significant as the
candidate. By setting the NFA detection threshold to 1
irrespective of the detection task, the a-contrario frame-
work simply states that the upper bound for detecting a
random rare event is at most one occurrence.
After the introductory illustration of a-contrario meth-

ods on alignment detection [1] grounded in the Gestalt
continuity principle, a number of works has developed
around the idea of using this fundamental pattern in
order to detect derived structures such as segments
[3–5], vanishing points [6, 7], or scratches [8], while recent
works [9, 10] show the ongoing interest about detection of
basic alignments. Nevertheless, a-contrario methods have
simultaneously evolved to deal with the detection of more
complex patterns, such as circles and ellipses [11, 12] as
well as coherent clusterings in a broader sense [13–18].
Considering pattern recognition problems, in order to

find themost significant subset among the ones represent-
ing patterns, one should theoretically compute the signifi-
cance of every possible pattern. If the researched patterns
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correspond to parametric objects (e.g., lines, ellipses), the
dimension (and thus the actual cardinality being used)
of the solution space to explore grows with the num-
ber of parameters. Then, in order to maintain tractability,
discretizing the parameter space or relying on heuris-
tics [4] for exploration are commonly employed strate-
gies. In this work, we show how a cumulative space may
be used in order to compute efficiently the significance
of a given parametric pattern. Cumulative approaches,
widely used in pattern recognition and introduced in [19],
rely on a quantization of the entire feasible parameter
space denoted as accumulator, in which every observation
increments the count of every discrete cell (i.e., pattern)
consistent with the existence of that observation. At the
end of the process, each cell records the total number of
supporting observations.
In our work, we show that in some favorable cases

there is an equivalence between considering cells in a
high-dimensionality cumulative space and recasting them
as n-orthotopes in an alternative cumulative space of
decreased dimensionality (by 1 or 2 in the proposed
examples). Now, using a trick similar to the integral his-
togram [20], the fact of considering n-orthotopes allows
for an efficient computation of the required NFA val-
ues. Specifically, the integral histogram is the result of
the propagation of an aggregated histogram from ori-
gin through the whole image lattice. In this way, the
histogram of any rectangular region may be computed
by simple arithmetic operations between four points
of the integral histogram. By leveraging the use of
this cumulative space of reduced dimensionality, we are
thus able to lower significantly the complexity of pat-
tern research and to extend the limits of the param-
eter space dimension due to the available computer
memory size.
Then, as a second contribution, we show how crack

detection in still images can benefit from the proposed
coupling between an a-contrario criterion and a cumula-
tive space.

2 Methods
2.1 Related work
In previous works involving NFA criterion, two “naive”
models have been widely used, namely the Gaussian and
Bernoulli models that stand for gray level and binary
images, respectively. In this study, we focus on the
second case. Pixels take then values in {0, 1} set (or{
false, true

}
set). Assuming a Bernoulli distribution of

parameter p for pixel binary values, the probability to
have a given number κ of true samples, called 1-valued
pixels in the following of the paper, among a given
number ν of pixels is a Binomial distribution of param-
eter p. Then, according to [21], the Number of False
Alarms is

NFAB (κ , ν, p) = η2

ν∑

i=κ

(
ν

i

)
pi (1 − p)ν−i , (1)

where η2 is the “number of tests” coefficient that depends
on the number of possible patterns of ν pixels.
The significance value, being defined as S (κ , ν, p) =

− ln(NFAB(κ , ν, p)), may be derived from Eq. (1). Using
the Hoeffding’s approximation like in [22], wemay express
S (κ , ν, p) in terms of the Kullback-Leibler divergence
(K-L) between the 1-valued pixel probability restricted to
a particular area, pa = κ

ν
, and the naive model probability

p: ∀ (κ , ν) such that κ
ν

> p,

S(κ , ν, p)≈ν

[
κ

ν
ln

(
κ/ν

p

)
+

(
1− κ

ν

)
ln

(
1 − κ/ν

1 − p

)]
−ln η2

(2)

2.2 Proposed approach: NFA computation using a
cumulative space

According to Eqs. (1) or (2), in order to compute the signif-
icance of a given pattern, we need both its geometric area
or its number of pixels and its number of 1-valued pixels.
The main idea of this work is to use a cumulative space

to store partial sums of numbers of points in order to
decrease the computational cost. Then, the number of
points in any pattern of given parameters can be directly
retrieved from the values stored in the cumulative space,
allowing us to accelerate the algorithm and/or to cope
with a finer discretization of the parameter space.
In the following part of this section, we explain our

approach and we illustrate how it works through four clas-
sic examples, namely detection of rectangular tiles, strips,
rings and bounded strips.

2.2.1 Use of cumulative space
The cumulative space on which we will focus varies with
respect to the considered pattern. Specifically, it arises
from the chosen parametric form for the pattern of inter-
est. Now, all the parametric forms (of a given pattern)
are not equivalent in terms of involved cumulative space.
Let us point out the representations as a set of “simpler”
patterns (simpler in the sense that they involve less param-
eters), such that the set is defined by varying one (or two)
parameter(s) of the simpler pattern into an interval. For
instance, a strip may be represented either as a straight
line having a strictly positive width or as a set of paral-
lel lines such that their respective distance to the origin
(ρ parameter in polar representation) varies between two
bounds. Now, let us remark that, for such a parametric
form, when two parameters represent the bounds of an
interval, it is possible to handle them both on a single
axis/dimension of the associated cumulative space. In the
example of the strip, the first representation involves a
3D cumulative space, whereas the second representation
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allows us to use the same 2D cumulative space as that of
straight lines, namely the classic Hough transform space.
Figure 1 illustrates the possible representations for a

strip, in particular as a point in a 3D space involving polar
coordinate parameters (φ, r) ∈ [−π ,+π ] × R+ or as a
line segment in a 2D space involving polar coordinate
parameters (θ , ρ) ∈ [0,+π ] × R. In this latter case, the ρ

parameter variation (along the line segment, ρ ∈ [ρ0, ρ1])
simultaneously codes the two parameters (r,w) of 3D rep-
resentation so that to find the points voting for a strip,
we can simply sum the votes between (θ , ρ0) and (θ , ρ1).
According to this last representation, the “strip” pattern
(with 3 parameters) can be processed as a set of “straight
lines” that are simpler patterns (having only 2 parameters).
Therefore, among several parametric forms of a given

pattern, denoted b, we favor the one that is a set of simpler
patterns, denoted a, potentially having several parameters
that can be represented on a same axis of the cumu-
lative space. Such a representation allows us to reduce
the dimensionality of the cumulative space and save pro-
cessing time by storing partial sums, in a similar fashion
to integral histograms [20]. Specifically, it allows us to
compute the pattern as follows.
Let l denote the number of parameters required to

determine the considered pattern b. We denote by β =
(βi)i∈[1,l] the tuple of these parameters which take values
in A (A depends on the image lattice and on the applica-
tion that may introduce some specific constraints on the
parameters).
Let C be the considered cumulative space. If pattern b

has been parametrized as a set of “well-chosen” patterns
a, C is the cumulative space associated to a parametriza-
tion of a. Since a has less parameters than b, some pairs
of b parameters are bounds for intervals of a parameters.
Then, we distinguish in C the axes that represent only

one parameter βi and the axes that represent two differ-
ent βi (playing the role of bounds for some a parameters).
For example, in Fig. 1, C is the polar representation space,
denoted by the two parameters (θ , ρ), with one axis that
represents the angle θ , and the other axis that represents
the two bounds for ρ parameter. Since this last axis car-
ries in fact two parameters, it is called bi-parameter axis,
in opposition to an axis that carries only one parameter
such as θ-axis in this example. If m is the number of bi-
parameter axes, with 0 ≤ m ≤ l

2 , C dimensionality is
l−m, and l− 2m is the number of mono-parameter axes.
Note that in C, a simpler pattern is represented by a point
and a pattern of interest by a n-orthotope (also called
hyperrectangle). Indeed, any pattern of interest b is then
represented by a n-orthotope of C having l − 2m dimen-
sions reduced to a single point and the other dimensions
which are non-null intervals. Now, since C is a cumula-
tive space associated to pattern a, the number of votes for
a given pattern a is provided by the value of the corre-
sponding point in C, and the number of votes for a given
pattern b is the sum of the point values in C over the
corresponding hypercube.
Finally, following the integral histogram idea [20], we

have to compute and store partial sums over C. Figure 2
illustrates how integral histogram allows us to compute
any sum or integral on a rectangular domain from the
storage of the partial sums (integrals) from the origin to
any point M, i.e., in 2D case as illustrated in the figure,
from (0, 0) toM (xM, yM). To be able to specify the partial
sum computation, we have to order the parameters.
Without loss of generality, the elements of β tuple

are mapped to the C axes, denoted (αi)i∈[1,l−m], as fol-
lows: the l − 2m first components are mapped to the
l − 2m first C parameter axes (that are thus mono-
parameter axes) and the 2m last components are mapped

Fig. 1 Possible representations of strips. Case of three strips represented as follows: pixel sets in the image domain (left), points in the 3D parameter
space corresponding to polar line representation enriched with width parameter (middle), and line segment in the 2D parameter space
corresponding to polar line representation (right). Note that in this latter ρ parameter can take negative values to handle strips crossing the space
origin
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Fig. 2 Illustration of the Integral Histogram trick. Case of two bi-parameter axes, x and y; left: visualisation on the 2D integration or summation
domain associated to J(M) value; right: illustration of the computation of the integral (sum) on any rectangular domain ABDC by finite difference
between J values at its four corners: J(D) − J(C) − J(B) + J(A)

to the m last C parameter axes (that are thus bi-
parameter axes) so that the βi parameters are reordered

as
(

(αi)i∈[1,l−2m],
(
αj

)

j∈[l−2m+1,l−m]
,
(
αj

)
j∈[l−2m+1,l−m]

)
,

where αj denotes an interval lower bound and αj denotes
an interval upper bound.
In the following, for conciseness and since we focus

on bi-parameter axes, the list of parameters of mono-
parameter axes (that may possibly be empty) is denoted
by dots. Then, if JC denotes the cumulative space instance
where the value of a point represents its number of votes
and if we choose a unit step for the cumulative space res-
olution, the cumulative space instance containing partial
sums JC is computed as follows: ifm = 1,

JC
(
. . . ,αl−1

)= JC
(
. . . ,αl−1

)+1[αl−1>1]JC
(
. . . ,αl−1−1

)
,

(3)

where 1[αi>1] denotes the indicator function that takes the
value 1 if the condition between square brackets is true
and value 0 if otherwise; and ifm = 2,

JC
(
. . . ,αl−3,αl−2

)=JC
(
. . . ,αl−3,αl−2

)−1[
αl−3>1
αl−2>1

]JC
(
. . . ,αl−3−1,αl−2−1

)

+ 1[
αl−3>1

]JC
(
. . . ,αl−3 − 1,αl−2

)

+ 1[
αl−2>1

]JC
(
. . . ,αl−3,αl−2 − 1

)
.

(4)

From JC , the number of 1-valued pixels in a given pat-
tern such that (αi, i ∈ [1, l − 2m]) = �b1 (possibly nonex-
istent if l = 2m) and ∀i ∈ [l − 2m + 1, l − m], αi ∈[
αi,αi

]
is:

• ifm = 1,

κ (b)=
αl−1∑

αl−1=αl−1

JC
(�b1,αl−1

)
=JC

(�b1,αl−1
)
−JC

(�b1,αl−1

)
,

(5)

• ifm = 2,

κ (b) =
αl−3∑

αl−3=αl−3

αl−2∑

αl−2=αl−2

JC
(�b1,αl−3,αl−2

)
,

=JC
(�b1,αl−3,αl−2

)
+ JC

(�b1,αl−3 − 1,αl−2 − 1
)

− JC
(�b1,αl−3 − 1,αl−2

)
− JC

(�b1,αl−3,αl−2 − 1
)
.

(6)

In summary, the main idea of the paper is that the
NFA can be computed more efficiently with cumula-
tive space pre-computation: for an image of size N2,
using the integral histogram trick in a well-chosen cumu-
lative space of reduced dimension l − m (instead of l)
with each single dimension of size M, the complexity
is roughly N2 (JC computation) +Mm (JC computation)
+Ml. Then, reducing the complexity compared to a com-
plete brute force approach in N2 × Ml allows for more
precise results by providing finer estimation of pattern
parameters.
Let us now consider four classic examples, namely

rectangular tiles, strips, rings, and bounded strips, by
specifying for each case the corresponding cumulative
space. These patterns are detected on an image having
Nc columns and Nr rows and half diagonal length ρd =
1
2
√
N2
c + N2

r .
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• Rectangular tiles are parametrized as sets of 2D
points, using the coordinates of two opposite corners:
(xUL, yUL, xLR, yLR) where xUL and yUL (respectively
xLR and yLR) denote the image coordinates (column
and row) of the upper left (respectively lower right)
corner of the tile; xUL ∈ [1,Nc], yUL ∈ [1,Nr],
xLR ∈ [xUL,Nc] and yLR ∈ [

yUL,Nr
]
. The cumulative

space T has two dimensions: the column axis x
representing xUL and xLR and the row axis y
representing yUL and yLR. JT is the binary image itself
and JT , the cumulative space containing the partial
sums of JT , is derived from Eq. (4) with l = 4,m = 2,
αl−3 = x and αl−2 = y.

• Strips are parametrized as sets of parallel straight
lines, through the polar coordinates of the two border
lines: (θ , ρ0) and (θ , ρ1), where θ is the parallel line
direction (one single value) and ρ0 and ρ1 the
distances of the border lines to the space origin.
Choosing the image center as origin, ρ0 and ρ1 are
signed values so that there is no discontinuity in ρ

values for strips containing the origin. Then,
θ ∈ [0,π), ρ0 ∈ [−ρd, ρd], ρ1 ∈ [ρ0, ρd]. The
cumulative space S has two dimensions: the angular
axis θ and the distance axis ρ representing ρ0 and ρ1.
JS is the classic Hough transform [19], and JS is the
cumulative space containing the partial sums of JS ,
derived from Eq. (4) with l = 3,m = 1 and αl−1 = ρ.

• Rings are parametrized as sets of concentric circles,
through the circle center coordinates (x0, y0) and two
rays ρ0 and ρ1 respectively, where x0 ∈ [1,Nc],
y0 ∈ [1,Nr], ρ0 ∈ [0, ρd], ρ0 ∈ [ρ0, ρd]. The
considered cumulative spaceR has three dimensions:
the column and row axes x and y for the coordinates
of the center, and the ray axis ρ representing ρ0 and
ρ1. JR is the circle Hough transform, and JR is the
cumulative space containing the partial sums of JR,
derived from Eq. (4) with l = 4,m = 1 and αl−1 = ρ.

• Bounded strips are sets of parallel segment lines that
can also be represented as unbounded strips with two
extremities. They are parametrized by a 5-tuple
(θ , ρ0,φ, ρ1,ψ) where (θ , ρ0, ρ1) represents the
unbounded strip as previously stated, and φ, ψ are
the angular coordinates of the extremities: θ ∈ [0,π),
(φ,ψ) ∈ [0, 2π)2, ρ0 ∈ [−ρd, ρd], ρ1 ∈ [ρ0, ρd]. The
considered cumulative space B has three dimensions,
namely the strip angle axis θ , the distance axis ρ

representing ρ0 and ρ1, and the extremity angular
coordinate axis φ′ representing φ and ψ . JB is the
half-line Hough transform (e.g., a 1-valued pixel votes
only for the line segments containing it having the
starting point with the lower angular coordinate), and
JB is the cumulative space containing the partial
sums of JB , derived from Eq. (4) with l = 5,m = 2,
αl−3 = ρ and αl−2 = φ′.

2.2.2 Algorithm
Algorithm 1 describes the way the most significant pat-
terns are detected using the NFA criterion coupled with
cumulative spaces. Its inputs are as follows: the considered
binary image I, the cumulative space C determined by the
considered pattern (for conciseness, C bi-parameter axes
are denoted as “bip-axes”), and the set of possible patterns
A, which is determined by image dimensions and possi-
bly by some application-specific constraints. The output
of Algorithm 1 is the collection of themost significant pat-
terns,P . Note that here we use the term collection to avoid
a possible confusion with the term set, which we already
use to refer to a group of simpler patterns. After the initial-
ization step, the algorithm begins a loop that successively
detects the patterns that will be added, one by one, to P
as the most significant pattern at the current iteration. At
each iteration, JC is computed according to Eq. (3) or to
Eq. (4) depending on the value ofm (in this work, we focus
on m ∈ {1, 2} but the generalization is trivial). Then, two
vectors �κ[ .] and �α[ .] of dimensionality N, the number of
pixels assumed to be the maximum size of a pattern, are
allocated. Note that �κ [.] elements are integer values and
�α [.] elements are l-tuples. They will store, for each pat-
tern size j in pixel unit, the maximum number of 1-valued
pixels (in �κ[ j]) and the corresponding pattern parameter
tuple (in �α[ j]). Indeed, for a given pattern area, the signifi-
cance increases with the number of 1-valued pixels within
it. Then, it is not necessary to compute the significance
values for each pattern, but only for the patterns hav-
ing different areas (in pixels) and achieving the maximum
number of 1-valued pixels �κ[ j]. For this reason, the signif-
icance computation is done only after having selected, for
each different size of pattern, the pattern having the high-
est number of 1-valued pixels: the first loop selects these
patterns; then, a second loop computes their associated
significance value while at the same time searching for the
maximum one, which is stored in Smax along with the cor-
responding pattern stored in b. Finally, having found the
most significant pattern α̂ at the current iteration, we add
it to the collection of significant patterns P only if the
global significance of the collection of patterns increases.
If it is not the case, the algorithm ends. Otherwise, before
reiteration, the located pattern is removed from the image.
In our case, when we remove a pattern, we do not set to
false all its pixels, but only the exceeding ones relative to
naive model parameter p. Practically, for each 1-valued
pixel located in the area of a primary pattern, we draw ran-
domly its new value (0 or 1) according to the probability
p. Although sub-optimal, this simple adjustment allows us
to avoid penalizing toomuch patterns which overlap other
patterns previously detected.
Note that because of the non-monotonicity of the pro-

jection of extremities to the strip versus the angular coor-
dinate, in the case of bounded strips, Eq. (6) should be
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Algorithm 1: Detection of the most significant pat-
terns
Data: Binary data image I, cumulative space C having

m bip-axes, set of possible patternsA;
Result: Set of most significant patterns P ;

1 N ← number of pixels in I;
p ← number of 1-valued pixels in I

N ;
2 Initialize set P to ∅ and real number SP to 0;
3 Initialize boolean finished to false;
4 do
5 Initialize JC with the transform of I in C;
6 Modify JC by computing the partial sums along

bip-axes;
7 Initialize vectors �κ [.], �α [.] of dimensionality N to

0;
8 for every l-tuple α = (α1, . . . ,αl) ofA do
9 b ← pattern of parameters α;

10 ν ← area (in pixels) of b pattern;
11 κ (b) ← number of 1-valued pixels in b

deduced from points
12 of JC (according to Eq. (5) ifm = 1 or Eq. (6)

ifm = 2);
13 if κ (b) > �κ[ ν] then
14 �κ[ ν]← κ (b); �α[ ν]← α;
15 end if
16 end for
17 Initialize Smax and b to 0;
18 for ν ∈ [1,N] do
19 if �κ[ν]

ν
> p then

20 S ← S (�κ[ ν] , ν, p) computed according
to Eq. (2);

21 if S > Smax then
22 Smax ← S;
23 b ← pattern of parameters �α[ ν];
24 end if
25 end if
26 end for
27 S∪ ← significance of P ∪ {b} computed

according to Eq. (2);
28 if S∪ > SP then
29 P ← P ∪ {b}; SP ← S∪; Remove pattern b

from I;
30 else
31 finished ← true
32 end if
33 while not finished;

adapted. For instance, let us consider the case of φ ∈(
π
2 ,

3π
4

]
and ψ ∈ [ 7π

4 , 2π
)
, since theoretically (φ,ψ) ∈

[ 0, 2π)2, an intermediate bound noted by its angle ϕ is
such that ϕ ∈[ 0,φ) ∪ (ψ , 2π); to have ϕ ∈ (φ,ψ)or(ψ ,φ),

in this case, we change ψ ∈ [−π
4 , 0

)
. In a more gen-

eral case, to get the intermediate bound between φ and
ψ , we consider as new bound the pre-image of the image
of ψ closest to φ (thus enforcing the monotonicity of the
projection).
Figure 3 illustrates the detection of the parametric pat-

terns introduced in the section. For each case (tile, strip,
ring and bounded strip), the first row shows the simu-
lated binary image (1-valued pixels in black and 0-valued
ones in white) on which the detected pattern frontiers are
superimposed in thin light gray. The second row shows
the highest significance values versus the cardinality of
the considered pattern (ν parameter in Eqs. (1) and (2)
and in Algorithm 1). In these figures, each point repre-
sents the highest significance value achieved by setting
the cardinality value ν and varying the pattern parame-
ters. It means that, given the type of pattern (tile, etc.) and
the considered binary image, among all the patterns hav-
ing the same number of pixels (ν value on x-axis value),
the significance achieves its maximum value at the y-
value of the point. In the first three examples, there are
three patterns to detect and only one in the last exam-
ple (bounded strips). The different colors correspond to
the different iterations showing the effect of removing a
detected pattern from the image. In other words, they
show the highest significance points obtained consider-
ing either the whole initial set of 1-valued pixels (pre-
sented on first row) or 1-valued pixel subsets derived by
removal of the points belonging to the patterns already
detected. Note that in the case of the tile, one of the the
patterns is detected in two parts. However, we observe
the very good robustness of the proposed detection
process.
The complexity calculation presented in the previous

section allows us to derive the algorithm complexity
in terms of the polynomial order, but for the sake of
brevity, it does not evaluate the leading constants and
introduces simplifications on the cumulative space dimen-
sions (assumed to be all the same). Thus, in order to
provide some experimental values supporting the bene-
fit of our proposal, Table 1 shows the average execution
times in the case of the toy example images (of size
128 × 128 pixels) in which three objects (either tiles,
strips, or rings) have to be detected. The naive imple-
mentation refers to a version that simply computes the
number of 1-valued pixels for every possible instance
of the considered pattern by scanning the binary image.
Note that the computation of the corresponding areas
(also needed) is straightforward since a geometric for-
mula can be applied. From Table 1, the time gain factor
varies between about 103 and 4 × 103 depending on the
considered pattern and on the considered intervals for its
parameters.
Let us now consider actual data and a real application.
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Fig. 3 Toy example. Examples of parametrized objects’ detection using cumulative space to compute significance criterion. First row: simulated
binary image of 1-valued pixels, representing the generic input. Second row: the highest significance values versus the cardinality of the considered
pattern

3 Crack detection in still images
The proposed approach is suited for applications involv-
ing a significance measure or NFA criterion, and ben-
efiting from a finer sampling of the pattern space. For
detection tasks that are quite standard a-contrario prob-
lems, the basic idea is that the detection relies on pat-
tern significance (or NFA) that itself depends on the
number of 1-valued pixels belonging to the considered
pattern. For instance, for detection estimated at region-
level, i.e., in rectangular windows, the refinement of the
space would imply the sampling to be performed with a
1-pixel sliding step in both dimensions, rather than using
a non-overlapping or half-overlapping window sampling
strategy [21]. Undoubtedly, the benefit of the proposed
method will be more important for patterns with a high
number of parameters, i.e., involving high dimensionality
of the parametric space.

Table 1 Comparison of running times (in seconds) of the
proposed approach based on use of cumulative space and a
naive implementation; case of the toy example patterns
involving three objects to detect in each simulated image;
running times averaged on 5 realisations on a standard laptop
computer (Core i7 2670QM@2.2Ghz, 4Go RAM)

Pattern Proposed use of
cumulative space

Naive
implementation

Time gain factor

Tiles 0.842 s 521.4 s 619

Strips 1.622 s 6095 s 3757

Rings 3.622 s 4501 s 1243

In this study, we have chosen to illustrate our refinement
algorithm on the problem of crack detection.
Crack detection has indeed critical importance for

ensuring the security of infrastructures and for minimiz-
ing maintenance costs. In terms of appearance, a crack is a
discontinuity in the backgroundwith respect to the under-
lyingmaterial (e.g., asphalt for roads or concrete for walls).
Then, it may be detected based on some photometric and
geometric features [23] that are exploited by several pro-
posed approaches (e.g., [24, 25]) which perform rather
well on cracks observed on smooth and homogeneous
surfaces (e.g., concrete).
However, thesemethods often fail when the background

exhibits a noisy texture like in the case of road pavement.
In this study, we focus therefore on the noisy back-

ground case (including texture and various artifacts),
considering the dataset proposed in [26] that contains
challenging images of road surfaces. Road texture is
indeed characterized by the presence of numerous asphalt
textons, i.e., sand and gravel aggregates that appear like
ridge details inducing small clusters of light and dark
pixels in the image background. Since the road surface
observations have been acquired by a camera embed-
ded on a vehicle, this aspect is even emphasized by
the camera’s pitch angle that causes these small struc-
tures to appear of non-stationary density and size due
to perspective distortion, varying at the same time
the spatial scale of the noise effect produced by the
rough textons (cf. Fig. 5, first column). Therefore, the
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radiometric features alone do not allow us to distin-
guish the cracks from the road background and the
geometric features should be also considered like in
[27]. However, whereas [27] focuses on the modeling of
the spatial interactions between line segments, in this
work, we focus on the detection of these line segments
based on significance (or NFA) computation. The back-
ground heterogeneity due to asphalt textons resembles
indeed well the null hypothesis. On such a background,
the lines that compose the cracks may be seen as a
deviation from the naive model, thus having high values of
significance.

3.1 Related work
Crack detection approaches generally involve a prepro-
cessing step that aims at computing a new data image on
which the detection will be easier. The preprocessing step
may consist in removing adverse or clutter features (e.g.,
shadow removal [26]), or in enhancing the pattern, e.g., by
subtracting the median filtered image [25], or in stressing
the filiform feature of the cracks e.g. by using Laplacian
of Gaussian or steerable filters [28, 29]. In this work, we
consider the same preprocessing step as in [30]. Basically,
it involves the shadow removal by background subtrac-
tion and the estimation of a new radiometric image, whose
values gather both gray level information and gradient
orientation features.
Then, from the preprocessed image, two analysis scales

may be considered for crack detection itself. In [24, 31],
the detection is based on a local analysis performed across
the whole image space using a sliding window, whereas in
[26, 32, 33] the detection relies on a global process related
to the expected photometric properties of cracks, based
on the computation of minimum cost paths. The local or
global search strategy and the parameters required by the
algorithms set the scale for the patterns to be detected.
Now, we observed that the cracks may be highly vari-
able in terms of scale, thinness, and relative contrast.
Thus, both local and global scales seem relevant and will
then be considered in the proposed approach, through
the measure of significance relatively to the context in a
multi-scale reasoning.
Finally, note that since the used NFA criterion applies

to binary images, we perform an automatic thresholding
operation on the pre-processed image to derive the seed
image, i.e., the binary image where 1-valued pixels are very
likely to belong to the crack. Then, the objective of the
whole algorithm presented in next section is to remove
the false positives and to correct the false negatives on this
seed image.

3.2 Crack detection algorithm
Following amulti-scale strategy, we adopt a two-step algo-
rithm. The input image is the binary image of the seeds

in which the 1-valued pixels represent (in an incomplete
way and including some false positives) the researched
patterns. The first step deals with local scale, and aims
at determining the most significant local alignments of
1-valued pixels, that are called elementary strips in the fol-
lowing. Then, the second step is intended to identify the
significant straight chains of elementary strips.
Algorithm 2 describes the method based on the two

successive steps. In Algorithm 2, a window refers to
the rectangular image sub-area used for local detec-
tion. Its dimensions in columns and rows are given as
input parameters. Then, in every considered window, the
elementary strips are detected as the most significant
unbounded strip(s), following Section 2.2. At the end of
this step, a new binary image is derived such that the
1-valued pixels are exclusively located in detected sig-
nificant local strips. In other words, the maximization
of significance at local scale (over each window) is used
as a filtering process which removes a part of the false

Algorithm 2: Crack estimation; I is the image of the
seeds, operator ∧ between two binary images is the
binary AND operator applied at pixel level
Data: Binary image: I; window size;
Result: Binary image IS of cracks approximated by

window strips;
1 Nc ← number of I columns; Nr ← number of I rows;
2 I ′ ← binary image of size Nc × Nr initialized with
false values;

3 Set of possible extremities for bounded strips: E ← ∅;
4 for every non-overlapping window W of I do
5 IW ← the restriction of I toW ;
6 SW ← output of Algorithm 1 having inputs: IW ,

Hough space having 1 bip axis andA the set of
any strip in IW ;

7 for every strip sk of SW do
8 Compute its restriction s′W ,k toW in I;
9 Set the pixels of s′W ,k to value true in I ′;

10 Add extremities of s′W ,k to E ;
11 end for
12 end for
13 SI′ ← output of Algorithm 1 having inputs: I ′ ∧ I,

cumulative space for bounded strips having 2 bip
axes andA the set of bounded strips having
extremities in E ;

14 IS ← binary image of size Nc × Nr initialized with
false values;

15 for every bounded strip bk of SI′ do
16 Set the pixels of bk to value true in IS ;
17 end for
18 IS ← IS ∧ I ′;
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positives present in the seed image. Besides, the extrem-
ities of local strips are also stored as possible extremities
of the bounded strips which are estimated in the next
step. Then, at image scale, the most significant bounded
strip(s) are detected following Section 2.2. Finally, the
cracks are approximated by the concatenation of the ele-
mentary strips (detected at local scale) that also belong to
a bounded strip detected at image scale.

4 Results and discussion
We have applied the proposed algorithm to the public
CrackTree dataset provided by [26], which illustrates our
approach very well since noisy texture and other degra-
dation artifacts are commonly present on the asphalt
surface.
Algorithm 2 inputs are the binary image of the seeds

and the window size used for local analysis. In CrackTree
dataset, the image size is 800 × 600 pixels. In Section 4.1,
we choose to divide each image dimension by 10, so that
the resulting window size is 80×60. In Section 4.2, we val-
idate more accurately this parameter’s choice. Regarding
the seed image, we use the same preprocessing step as in
[30]. Specifically, we use Algorithm 1 of [30] that includes
a final thresholding operation with respect to an auto-
matically derived threshold according to a NFA criterion
operating at grayscale pixel level. However, this algorithm
takes in input a standard deviation parameter that can be
either automatically estimated from the grayscale image,
or carefully chosen. This allows us to modulate the auto-
matic threshold estimation. In Section 4.1, we consider
the default value for this standard deviation, whereas in
Section 4.2 we also consider results obtained with an
alternative value to test the robustness of our results.
To evaluate quantitatively the obtained results, the pre-

cision and recall parameters are computed while distin-
guishing between the mis-detection and the mis-location
of a crack as follows. As in [27], the true positives and
the false positives are computed by comparing the detec-
tion results with incrementally dilated ground truth, while
the false negatives are computed comparing the ground
truth with an incrementally dilated version of the detec-
tion results. Then, varying the dilation radius allows us to
distinguish between errors due to a slight mislocation of
the crack and actual nondetections.

4.1 Analysis of the crack detection results
Table 2 presents the main statistical values on preci-
sion and recall indexes for the considered dataset and
increasing dilation radius. For comparison, in [26], the
mean precision-recall values were stated to be equal to
(0.79, 0.92) (accepting an imprecision of 2 pixels).We note
that precision is improved due to the fact that the analysis
at two successive scales allows us to filter most of the false
positives.

Table 2 Main statistical values on precision and recall indexes
achieved on the CrackTree dataset [26]

Dilation radius 1 2 3

(Precision %, recall %)
mean values

(86.8, 86.4) (89.5, 88.7) (90.7, 89.8)

(Precision %, recall %)
median values

(87.8, 86.3) (90.4, 88.9) (91.6, 89.7)

(Precision %, recall %) 75th
percentile

(90.6, 91.2) (93.4, 93.3) (95.0, 93.9)

(Precision %, recall %) 25th
percentile

(82.5, 82.3) (85.8, 85.1) (86.6, 86.9)

In order to perform a comparison with a similar
approach, we focus on the recent work [27] that is also
based on modeling the crack as a group of line seg-
ments (marked points). Like in our model, the cracks are
assumed to be piecewise fine rectilinear structures, so
that the favorable configurations correspond to close and
alignedmarked points. In [27], the authors show that their
approach outperforms simple approaches such as [24] that
are efficient only on non-textured surfaces, but also robust
alternative approaches such as [26, 30], even though at
the expense of a much higher running time (few min-
utes instead of few seconds for [26]). Figure 4 provides
a comparison with [27] results (called MPP), computing
performance index histograms on exactly the same data
subset (of 32 images). In terms of precision values, the
main difference is the presence of a very bad result in the
MPP case and, even not considering this outlier result, a
slightly more compact histogram for our approach: about
equal mean values (92.5 instead of 92.7), for a smaller
standard deviation (5.1 instead of 13.1). In terms of recall
values, the histograms are rather close with a modest
advantage of our approach: slightly higher mean value
(83.3 instead of 82.1) and smaller standard deviation (8.1
instead 10.8). In summary, our approach provides compa-
rable or slightly better performance with respect to MPP.
However, it is worth noting that it implies a much lower
computation time.
Now, to provide a deeper and more specific analysis of

the obtained results, we have selected some typical exam-
ples of results that are shown in the next figures. We
selected these examples to illustrate the efficiency of the
multi-scale approach, but also its behavior with respect to
crack feature assumptions and to shadow presence. Note
that since some of them correspond also to [26] Fig. 7,
this allows the reader to refer to this figure for a qualita-
tive comparison. In these figures, the first column shows
the original images; the second column shows in the blue
channel the seed image obtained automatically follow-
ing [30], whereas the results of the local (window based)
strip detection appear in red with the window grid in
green. The third column shows in red the final strips (i.e.
the strips belonging to a significant alignment at global
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Fig. 4 Quantitative evaluation of performance. Comparison of the proposed approach with respect to Marked Point Process (MPP), in terms of
a precision and b recall histograms

scale), overlaid with ground truth in blue. In the last col-
umn, we show the results of a simple post-processing step
which connects the 1-valued pixels validated by the final
strips using minimum cost paths and possibly remove the
obtained path based on its average cost value. Note that
this post-processing is not the object of our study, but it
was necessary to extract the final cracks (for instance for
quantitative evaluation).

Figure 5 illustrates how the proposed approach is able to
cope with cracks of different width and depth (making the
crack more or less dark) and with background texture.
Due to the camera tilt, the background textons aremuch

more prominent in the lower part of the image (cf. 1st line
example for instance) creating numerous false alarms at
pixel level (blue pixels in the images of the second column
of Fig. 5). The local analysis captures the non stationarity

Fig. 5 First set of results of crack detection. We highlight the efficiency of the multi-scale approach for these cracks presenting different width and
depth values, as well as background texture: original image (1st column), seeds and results of window level detection (2nd column), comparison
between ground truth and image level detection (3rd column), fine crack detection after post-processing (4th column)
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of such a noise (caused by textons) by selecting the most
significant elementary strips within local windows (red
segments in the images of the second column of Fig. 5).
However, most of the elementary strips are false alarms at
global scale. Then, the global analysis allows for their fil-
tering by checking their consistency at image scale (red
segments in the third column versus the second column
in Fig. 5). Finally, having detected the rough shape of the
cracks, the post-processing step allows for a finer estima-
tion of the shape as well as removal of some isolated false
alarms. Note also that the local analysis is important not
only to improve the resilience to texture nonstationarity,
but also to crack width variations. For instance, the sec-
ond row illustrates the ability of the method to recover not
only the main cracks, but also the thinner ones: the win-
dow scale step allows for local significance maximization,
whereas the sole use of a global measure would have esti-
mated thin cracks to be insignificant relatively to wider
cracks.
On Fig. 6, examples have been chosen to illustrate the

limits of the proposed approach. Three main phenomena

induce adverse conditions for cracks detection: the short-
ness of some crack subparts, the thinness of the crack,
and an apparent partial occlusion of the crack. The first
phenomenon is illustrated for instance on the two first
rows of Fig. 6, where some branches of a main crack are
missed because they do not present a sufficient length
to be considered as significant. The second phenomenon
is illustrated on the two last rows of Fig. 6, where the
thinness of some crack subparts makes them almost invis-
ible. However, in these examples (as in many others,
although it is not always the case), the post-processing
allows for the reconnection of the actually detected crack
subparts. The third phenomenon is illustrated on the third
and the fifth rows of Fig. 6, where in some places the
crack has been partially filled by the background mate-
rial inducing a kind of occlusion of the crack. Then, like
in the case of the crack of extreme thinness, some crack
parts are missed at the end of the global scale analysis.
Note also that the fifth row case is particularly adverse
since it combines both thinness and partial occlusion
problems.

Fig. 6 Second set of results on difficult cracks. These cases push the boundaries of the proposed approach with respect to either sub-crack
shortness, or crack thinness or occlusion of crack subparts: original image (1st column), seeds and results of window level detection (2nd column),
comparison between ground truth and image level detection (3rd column), fine crack detection after post-processing (4th column)
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Figure 7 presents results on images with a shadow
introducing an adverse effect which increases from first
to last rows. Indeed, in the 1st and 2nd line cases, the
presence of the shadow affects only the global distribu-
tion of gray level values which, according to the shown
results, does not actually impact the algorithm perfor-
mance. The result shown on the 3rd row allows us to
check the robustness to illumination non stationarity
induced by the shadow, whereas the result shown on
the 4th row stresses the limit of this robustness. Indeed,
in the 3rd row case, the local analysis is still able to
detect the crack in the shadowed part (because local con-
trast remains even if attenuated), while in the 4th row
case the darkness of the shadow removes some subparts
of the crack that cannot be recovered based on align-
ment criterion because of the “alligator-skin” feature of
the crack. This cases are particularly challenging since
alligator cracks tend to form complex patterns in terms
of crack directions with ramifications which partially
contradicts our assumption that cracks are fine, linear
structures.
In summary, we evaluate our algorithm with respect

to five adverse phenomena for crack detection: two phe-
nomena that are independent of the cracks themselves,
namely the background texture and the shadow presence,
and three phenomena that characterize the cracks, namely
the thinness, the length of secondary branch(es), and the

partial filling (behaving like partial occlusion). The anal-
ysis of the results shows that, even in presence of these
adverse phenomena, the algorithm is able to detect almost
every strip that composes the actual cracks, and follow
their jagged behavior. The window level detection allows
us to remove most false alarms introduced at pixel level
(seeds), but introduces some window level false alarms
(on average, one detection per window is not related to an
actual crack) which are then removed by the image scale
detection, unless they are found to belong to a significant
strip at image level.

4.2 Impact of the scale on the local analysis
In Algorithm 2, the scale of the local analysis is driven by
the window size. This parameter depends on the image
resolution as well as on the sinuosity of the structures to
detect, so that it is up to the user to define its value. How-
ever, to illustrate its importance, we study its impact with
respect to our specific application and data.
Figure 8 illustrates the influence of different choices of

window sizes, firstly on the elementary strip detection
and then on the significant straight chain detection. As
expected, for large windows (160×120), elementary strips
are able to capture the underlying crack with an approxi-
mation which is rather coarse yet robust. On the contrary,
in the presence of small windows (40 × 30), elementary
strips succeed in better following the crack sinuosity but

Fig. 7 Third set of results on shadowed cracks. We underline the proposed approach robustness with respect to shadows: original image (1st

column), seeds and results of window level detection (2nd column), comparison between ground truth and image level detection (3rd column), fine
crack detection after post-processing (4th column)
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Fig. 8 Qualitative impact of the window size. Illustration on elementary strips (1st line, red borders) and on significant straight chains of elementary
strips (2nd line, red pixels): data image and ground truth are shown in 1st column; window size varies in {160 × 120; 80 × 60; 40 × 30} from 2nd to
4th column; also shown: seed pixels (1st line, blue color), post-processing result (2nd line, blue pixels)

are prone to lack of significance. For instance, the zig-zag
shape of the crack in the lower left part of the image is not
captured at a coarse window resolution (while being well
followed using finer windows), and the less contrasted
crack in the right part of the image is missed using too
small window resolution (while being well detected using
larger windows). Finally, the post-processing step results,
obtained by cost path minimization strongly guided by
straight chain approximation (blue curves in the second

line of Fig. 8), present a final refinement and correct some
local misdetections.
In order to add also a quantitative evaluation of scale of

local analysis, Fig. 9 shows the performance indices (pre-
cision and recall) obtained considering five window sizes,
namely {40 × 30; 50 × 40; 80 × 60; 100 × 75; 160 × 120}.
Besides, two different seed images have been consid-
ered to draw more robust conclusions. These two seed
images correspond to more or less strict criteria in the

Fig. 9 Quantitative impact of the window size. Precision versus Recall performance indices when varying the window size in [40 × 30, 160 × 120];
for each window size, two different seed maps are considered. Average values obtained on a set of 50 images are reported
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Fig. 10 Running time evaluation. Statistics (in terms of percentiles) versus the window size parameter for the two main steps of Algorithm 2:
a detection of elementary strips (window level) and b detection of significant straight chains of elementary strips (image level)

preprocessing step [30] so that the number of seeds in the
binary image input of Algorithm 2 varies. Each plotted
point corresponds to the average performance computed
on a set of 50 images. We note that results are glob-
ally in agreement with qualitative comments derived from
Fig. 8: smaller window detections lead to few false pos-
itives (but possibly more false negatives), thus resulting
in better precision value than recall value, whereas using
larger windows allow for low false-negative rate and thus
higher recall value. However, we note that very similar
performances have been obtained for medium window
sizes (∈ {80 × 60; 100 × 75}), and even for an unoptimal
window size, the algorithm exhibits a desirable behavior
of graceful degradation in performance.
Finally, Fig. 10 presents the variation of running time

versus window size parameter. We distinguish between
the two main steps of the proposed crack detection algo-
rithm, namely the detection of elementary strips (step 1)
and the detection of significant straight chains of elemen-
tary strips (step 2). Even if step 1 could be parallelized in
an optimized implementation, as the operations at win-
dow level are performed independently, the windows are
processed sequentially in our implementation. However,
despite this absence of parallel processing, the running
time values are less than a few seconds with a weak depen-
dency on the window size: there exists indeed an almost
linear dependency between the window size and the time
needed for its processing, but at the same time, we observe
an inverse proportionality with respect to the number of
window to process. Regarding step 2, the window size
has a strong impact on the running time, e.g., the median
value increases exponentially from 0.8 to 60 s according
to our experiments. However, for the chosen window size
parameter (80× 60 pixels, cf. Section 4), the running time
is also in the range of a few seconds. Finally, we under-
line that these processing times have been obtained on
a standard laptop computer (Core i7 2670QM@2.2Ghz,

4Go RAM), and that better running time perfor-
mance may be expected after code optimization and
parallelization.

5 Conclusion
In this paper, a generic method for the NFA criterion com-
putation for pattern detection is proposed. We consider
that relying on an advantageous grouping of parame-
ters in the engendered cumulative space is applicable to
a wide variety of problems and may facilitate the use
of a-contrario based algorithms for various applications
involving parametric pattern detection. Our technique
was applied to a crack detection task, which naturally
fits the problem as cracks can be seen as a deviation
from the naive model in a heterogeneous background,
allowing us to illustrate the pertinence and the benefit
of re-parametrization and multi-scale a-contrario analysis
for complex patterns.
Future work will be devoted to accelerating the accu-

mulation tasks, since most cumulative space operations
are inherently independent and could therefore take
advantage of parallel architectures. On such architectures
(GPU, FPGA), the available memory resources are often
more constrained than on generic systems. However, the
reduced memory footprint resulting from our algorithm
should be directly beneficial in such scenario.
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NFA: Number of false alarms
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