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This study proposes a nonlocal total variation restoration method to address multiplicative noise removal problems.
The strictly convex, objective, nonlocal, total variation effectively utilizes prior information about the multiplicative
noise and uses the maximum a posteriori estimator (MAP). An efficient iterative multivariable minimization algorithm is
then designed to optimize our proposed model. Finally, we provide a rigorous convergence analysis of the alternating
multivariable minimization iteration. The experimental results demonstrate that our proposed model outperforms other
currently related models both in terms of evaluation indices and image visual quality.
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1 Introduction

Image deblurring is an important task with numerous
applications in both mathematics and image processing.
Image deblurring is an inverse problem that determines
the unknown original image u from the noisy image f.
Total variation (TV) regularization methods are efficient
for smoothing a noisy image while effectively preserving
the image textures and edges [1, 2]. In recent years, a
large number of TV methods have been extensively
studied for additive noise removal [3, 4], most of which
are convex variation models. The convex models can be
optimized using simple and reliable numerical methods,
such as the gradient descent [5], primal-dual formulation
[6], alternating direction method of multipliers [7], and
Bregmanized operator splitting [8].

Multiplicative noise often exists in many coherent im-
aging systems, such as ultrasonic imaging, optical coher-
ence tomography (OCT), synthetic aperture radar
(SAR), and so on [9-11]. Speckle is the most essential
characteristic of noisy images that are corrupted by
multiplicative noise. For example, a radar sends coherent
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waves, and then the reflected scattered waves are cap-
tured by the radar sensor. The scattered waves are cor-
relative and interfere with one another, resulting in the
obtained image, which is degraded by speckle noise.
Owing to the coherent characteristics of multiplicative
noise, despeckle is more difficult than additive noise re-
moval. If the statistical properties of multiplicative noise
are known, multiplicative noise can be removed effect-
ively. According to forming mechanism of multiplicative
noise, many statistical distribution patterns of noise are
found, such as Rayleigh noise model [12], Poisson noise
model [13], Gaussian noise model [14], and Gamma
noise model [15].

Over the last decade, some famous local TV ap-
proaches have been successfully used to remove multi-
plicative noise because of the edge-preserving property
of the local TV regularizer. Rudin, Lions, and Osher
(RLO) [14] proposed the first local total variational
method for multiplicative Gaussian noise removal.
Aubert and Aujol (AA) [15] composed a novel local TV
model based on multiplicative noise and use the max-
imum a posteriori (MAP) to remove multiplicative
Gamma noise. Shi and Osher (SO) [16] discussed the
statistical characteristics of multiplicative noise and pro-
posed a general local TV model for different multiplica-
tive noise reduction, but the fidelity term in the model is
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not strictly convex. In order to overcome this particular
drawback, Huang, Ng, and Wen (HNW) [17] utilized a
log transformation and constructed a strictly convex
local TV model that can be easily solved by the global
optimal solution. Furthermore, reference [18] integrated
a quadratic penalty function into local TV model and
proposed a new convex variational model for low multi-
plicative noise removal. Reference [19] designed a con-
vex model that is quite suitable for high multiplicative
noise removal by combining a data fitting term, a quad-
ratic penalty term, and a TV regularizer.

Unfortunately, owing to the local total variation
regularization framework, smeared textures and numer-
ous staircase effects frequently occur in the denoised
image [20, 21]. Exploiting nonlocal correlation informa-
tion of the image can improve performance of total vari-
ation and achieve better image denoising results [22, 23].
One of the well-known nonlocal-based methods is the
nonlocal means filter (NLM), which restores the image
by using the nonlocal similarity patches. Nonlocal con-
vex functions that were recently utilized as the
regularization terms have been successfully used for
multiplicative noise reduction [24, 25]. Reference [26]
applied the nonlocal total variation (NLTV) norm to the
AA model and proposed a new NLTV-based method for
multiplicative noise reduction. Unfortunately, this model
was nonconvex. Therefore, it is usually difficult to obtain
a global solution. Dong et al. proposed a convex nonlo-
cal TV model for multiplicative noise and introduced
minimization iterative algorithms corresponding to the
model [27]. Since the NLTV makes full use of
self-similarity and redundancy within images, it has good
image despeckling and denoising performance. However,
the NLTV for multiplicative noise reduction is still an
open area of research.

In this study, we concentrate on the Gamma-distrib-
uted noise and propose a new NLTV-based model for
multiplicative noise removal to overcome the drawbacks
in current NLTV-based models. First, we utilize prior in-
formation regarding multiplicative noise and use the
MAP estimation to formulate a novel, strictly convex
NLTV model. To efficiently optimize our proposed
model, we use split Bregman iteration method to design
an alternating multivariable minimization iteration to
optimize the convex model. We also provide a rigorous
convergence analysis of the alternating iteration method.
The experimental results demonstrate that the proposed
NLTV model has better performance than some other
NLTV-based models for multiplicative noise deblurring.

The following sections are organized as follows. The
related NLTV methods are reviewed in Section 2. In
Section 3, we propose a new NLTV-based model for
multiplicative noise deblurring and design an alternating
algorithm for optimizing our proposed model. In Section
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4, we applied the proposed model to image deblurring to
present its good performance. Finally, conclusions are
provided in Section 5.

2 Overview of NLTV algorithms for multiplicative
noise reduction

A blurred image contaminated by noise has higher total
variation than the clean original image. Minimizing the
total variation of noisy image can deblur the image and
reduce the noise. The total variation function can be de-
fined as

Jrv(u) = [Vul;. (1)

where Vu is the gradient of u. The first NLTV,
regularization-based image denoising was presented by
Gilboa and Osher [28] for additive noise removal, which
is described as follows:

. A
u =arg min (|VNLu\+§||f—u||§) (2)

Image denoising obtains the denoised image u" by
minimizing the above bounded energy function (2),
which is composed of total variation term and fidelity
term. Reducing the total variation term smooths the
noisy image and minimizing the fidelity term makes
denoised image similar to the original image. A is the
regularization parameter that adjusts the balance be-
tween the two terms above. To date, NLTV methods for
additive noise reduction have been extensively studied.
However, multiplicative noise reduction by NLTV
methods is still an open area of research. In this study,
we provide the definitions of NLTV and review NLTV
models for multiplicative noise reduction.

2.1 Nonlocal total variation

Let Q € R* be a bounded domain and % :Q — R denote a
real function. If (x,7)€Q x Q is a pair of points, then
the nonlocal gradient Vuyy («, -) at x can be defined by

Ve (x,y) = (u(x)-u(y)) v/ w(x,y) (3)

where w(x,y) is a symmetric weight function that indi-
cates the amount of similarity between the square
patches centered at the points x and y. It can be defined
by the following function

where G, is a Gaussian of standard deviation a, and # is
a filtering scale parameter. u(x + -) denotes a neighbor-
hood patch centered on pixel .
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Therefore, the norm of the nonlocal gradient, nonlocal
divergence, and graph Laplacian operators can be re-
spectively defined as follows:

Vs | = \/ / () -r)) 2w . (5)

div T ) = [ (e y)-utr)ywo)dy. (@

Aunt ZZ%diVNL(VuNL) = /Q(u(x,y)—u(y,x))wxy)dy.

(7)

2.2 NLTV method for multiplicative noise reduction
Multiplicative noise removal aims to find the original
image u from the observed noisy imagef. The image deg-
radation model can be mathematically described as

f=un (8)

where 7 denotes multiplicative noise. We assume that
f20 and u#>0. The multiplicative noise follows a
Gamma law with mean 1. Therefore, we obtain the
density function of the noise #

LL

&) = 5y

1 exp(-Ln) (%)

where I' is a Gamma-function and L is a positive integer.
The previous TV model for multiplicative noise removal
presented by Aubert and Aujol was the AA model [15],
which is the following minimization problem derived
from MAP estimation:

u = arg muin{|Vu|+)L<logu +£>} (10)

The AA model is efficient for multiplicative noise re-
moval. However, it has some problems since the local
total variation regularization framework is exploited,
such as smeared textures and the occurrence of staircase
effects.

Motivated by the AA model, Li replaced the TV with
the NLTV norm in the AA model and proposed the

nonlocal-AA model [26]:

u= arg min{|VNLu| —|—/1< logu —|—f> } (11)

u

Like the AA model, the nonlocal-AA model also per-
formed well for image denoising. However, it is convex
only for u € (0, 2f). As a result of the nonconvexity of the
nonlocal-AA model, it is usually difficult to obtain a glo-
bal optimal solution. Inspired by the SO model [16],
Dong et al. suggested the use of the log transformation
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(z=log u) to resolve the nonconvexity. The transformed
variational model then becomes

min <||VNLZ||1 +A/(Z—fe_z)>' (12)

Q

We note that the above TV function is strictly convex.
It is easy to obtain a global optimal solution and find the
unique minimizer z for the minimization problem. This
TV model is referred to as the exponential nonlocal-SO
model [27].

3 The proposed method—multiplicative denoising
nonlocal total variation model

In our study, we obtain a strictly convex NLTV model
for multiplicative noise removal and employ Bregman it-
eration to optimize it.

3.1 The proposed model

Assume the prior information about the mean and vari-
ance of the multiplicative noise are known in advance,
that is,

l/_l
N/

[ or=a

where N= [ 1. The mean of the noise is 1 and the vari-
ance equals ¢o”. In the aforementioned approaches, such
as (10, 11, 12), only the density function of the noisy
image is exploited for the MAP estimation to derive the
minimization problem. The two previous constraints
(mean and variance) are introduced into the nonlocal-
AA model, and we can improve the NLTV model and
obtain the following constrained optimization problem:

(13)

(14)

u= arg min{|VuNL|+)L<logu+£>} s.t

(s (i) =)
(15)

Our goal is to solve the above equality constrained
minimization  problem  (15). The  constrained
optimization problem is converted into an uncon-
strained formula:

u= arg n;in{\VuNL\Jr </11/ logu+£+)»z/£+)»3'/ <£—1>2)} .
(16)

The above constraint minimization problem can be
simplified as



Chen et al. EURASIP Journal on Image and Video Processing

u= arg rr;in{VNLu +A/<a£+§ (5)2 +c logu) }
(17)

where a, b, and ¢ are constrained 2pammeters that are
greater than 0. H(u) = /l(a% +5 (J—,:) + ¢ logu) is the fi-
delity term, which is continuous. We obtain

fZ

——c—.
u u

oHw) _ f
ou _aﬁ

+b (18)

The initial data satisfy #(0) =f, and H(x) has a mini-
mum at z = #(0). We can obtain c=a + b.

Unfortunately, this model is nonconvex. Similarly, we
use the variable z=1log u and, by replacing the regulari-
zer |Vapu| with |Vyzz|, we further convert (17) into the
following minimization problem:

u= arg minE;(z) = arg min|Vyz|
1> (afez + g Fe ¥ + (a+ b)z) .
(19)

3.2 Bregman iteration for the proposed model

The above constraint (19) can be optimized by the
iteration-based multivariable minimization algorithm.
Note that the fidelity term in (19) contains exponential
forms. Thus, we introduce an auxiliary variable p(p = z)
to split the problem into subproblems that are easier to
solve. Equation (19) is then rewritten as the following
constrained problem:

u= arg I;l;nEzz arg 1;1;n|VNLp|

+1 Z (afe"z + gfze‘k + (a+ b)z), st. p=z
(20)

The minimization problem (20) is shown to be equiva-
lent to (19). The constrained minimization function (20)
can be transformed to the following unconstrained,
multi-variable optimization function:

u= arg minEy, = arg min\VNLp|+ﬁHp—z||§
zp zp 2

b
+A Z <afez + Efze‘zz + (a+ b)z)
(21)
There are two variables in the regularization function
(21). Inspired by the core ideas of the split Bregman al-

gorithm, we use the alternating minimization scheme
and obtain the following two subproblems:
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{ min, £, (p) = | Vauply +5 o213
: -z b -2z ’
min.Ex.(p) = Sllp-2l} +1 Y (afe™ +5 1% + (a+b)2))
(22)

To solve the p subproblem, Vy;p is replaced with d
and the constraint is forced using the Bregman iteration
process as follows:

(pkﬂ,dkH) = arg I;,lziinmle +g||d—VNLp_[ng§ +g||p—z”§>,
(23)

bk+l _ bk + VNka+l_dk+l (24)

where b is an auxiliary variable. The solution of (23) is
obtained by performing the following alternative
minimization subproblems:

P = arg rr;in%”dk—VNLp_kai

-2 25

. 2
g1 — arg rr;ln”le +}—2/||d—VNka+1_ka2. (26)

To minimize function (25) by gradient descent, we de-
rive the following optimality equation for p**!

~y divng (d* -V p-b")-u(p-2*) = 0. (27)

Using a Gauss-Seidel iterative scheme, pk+1

sented as

is repre-

1

K+l _
Aty wy

7 (r>owih + uek-0 >/ (di-b-dl + 8] ) ).
(28)

To solve d***, we use the soft-shrinkage formula [29]
as follows

dk+1 B VNka+1 +bk

1
= ME T Varp ! b"——,0>.
|Varp ! + b max(‘ A Y
(29)

Optimizing Z°*! is equivalent to solving the following
Euler-Lagrange equation:

u(z-p") + A((a + b)-afe*-bf*e ™) = 0. (30)
The Newton method is used to yield a fast solution:

s - Zk_ﬂ(z_pk+1) +A((g + b)—ﬂfe_z—bfze*h)
u+ A(gfefz T 2bf26’25) .

(31)
All of these equations are combined and summarized
in the algorithm that follows:
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3.3 Bregman iteration for NLTV minimization
Initialization: #° =log f, p° =2° b°=d’ =0, k=0 and A, y,
y, tol

While 12" = ZXllo/11241l, > tol

Pt = ”—Jr TS (r>o wir +udk-9 S vy (df-t-dj + 1)),

Ve ket + bk 1
dktt = —Nka 1+ T max(‘VNkaH-i-bk’——,O)a
|Varp*t + b Y

bk+1 — bk + VNka+1—dk+1,

A u(z-p"*1) + A((a + b)-afe*-bf*e )

+1_
2 p+ Aafe™ + 2bf e‘2z)

b

End

3.3.1 Convergence analysis

We first analyze the convexity of the objective function
to simplify our proof for the convergence of the
minimization iteration schemes of our proposed model.
We then prove that the sequence generated by the alter-
native iteration scheme converges to the minimum point
of (21).

For the transformation z =logu, it is obvious that the
second derivative of the fidelity term in (21) is af
exp(-2) + bf* exp(-2z), which is always greater than zero.
Therefore, this term is strictly convex in z.Next, we
prove that the first term |V ;2| is also convex.

Assuming Vky, ky >0, ky + ky = 1, Vz1, 25, we obtain

1

|V (kizi + k2Z2)\ = <Z (klzlj + k2Z2jk121ik2Z25)2sz>
J

3 3
Skl (Z (21/‘—21,')2W,'}'> + kz (Z (Zz,'—Zz,')2Wij> .
J J

= k1|Vezil; + k2| Vaezal;

= k1 |Vni(kiz1)| + ko| Var (koz2)|
(32)

Since the first term is also convex, (21) is strictly con-
vex for all z. We obtain the denoised image z* by minim-
izing the function and obtaining the global minimum
point. We prove that the above alternative optimization
subproblem algorithms converge to the global minimum
point. Some fundamental criteria and properties of the
alternative iteration minimum that are used to provide
the convergence are displayed in [30, 31]. The alternative
optimization subproblems are defined as

P =58() = S(RE"Y),

(33)

Zk+1 :R(pkﬂ) _ R(S(zk)).

(34)
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E»u(z,p) is convex and separately differentiable with
respect to z and p. Suppose the unique minimizer of
E,,(z,p) is (z,p). We note that

aEZﬂ (23;5) _
oz

aEZﬂ (275)
op

(35)
=0

This implies that (z,p) is the minimizers of E,,. This
signifies that Z = R(p) = R(S(z)) and p = S(z) = S(R(p)
). Therefore, z and p are the fixed points.

Since R(S(:)) is an alternative to the minimizer of
E,.(z,p) and R(S(})) is convex and nonexpansive, we
obtain

12441 =2| = ||R(S (")) -R(s(2))]|
IR(s(2))-2| < |=* 2]
This implies that ||z¥-Z|| is monotonically decreasing

(note that z* is a bounded sequence). Therefore, we de-
duce that zZ* converges to a limit point z, such that

(36)

klim =z (37)
Similarly, we obtain p*, which converges to a limit
point

Jim p = p. (38)

The denoised image z" is the unique minimizer of the
constraint problem E;(z). Let p" =27, p” and 2" represent
the minimizers of the constraint problem E,(z, p). Sup-
pose subsequence {z6}C{z¢},_, and {p*}S{p*},_, are
convergent, which is a solution to minimize the energy
of E5,(z, p). The following inequality is combined as

Ex(29,01) = Ea(2)

+ 5P <Eale p) = Ea(e' ).

(39)
When k; — oo,
o213 < 2(152(2,@)—52@*710*))- (40)
Since ¢ > 0, then
Ex(2,p)<Ex(2",p"). (41)

Since z",p" is the unique solution to the minimization
function E,(z, p), we can deduce

(z",p").

Hence, Eq. (40) can be expressed as

E2(2u’9) =K (4'2)
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lim [p-213 = 0. (43)
This implies
p=z (44)

Combining equations (37, 42, 44), we conclude that

klim F=z2=27". (45)
In Eq. (45), we conclude Z converges to z', which is
the unique minimizer of E;(z).

4 Experiment results and discussions

4.1 Experimental setting

In this subsection, we present some experimental results
to demonstrate the effectiveness of our proposed model.
We experiment on classical grayscale images and coher-
ent imaging images contaminated by artificial multiplica-
tive Gamma noise. Our proposed model is compared
with several recent NLTV-based models, namely the
nonlocal-AA and nonlocal-SO model. All simulations
are performed in MATLAB9.0 on an Intel 17 PC with
4 GB of memory.

To reduce to the computation complexity, we only
compute the ten best neighbors in the 21 x 21 nonlocal
searching window and four nearest neighbors in the 5 x
5 patch. We set the stopping criterion tol =0.001 to ter-
minate iteration. The regularization parameters are
fixed: ©=0.1, 1 =10, and y =20. To objectively estimate
the quality of the denoised image, the peak
signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) are used, which are defined as

2552 x M x N
PSNR(dB) = 10 log,, =2~ %

)

[l

Zuﬁ/’tu (20'ﬁu + Cz)

SSIM =
(,u% +uZ+ c1> (aﬁ + 0% + cz>

where M x N is the size of the image, while # and U are,
respectively, the original image and the recovered image.
“y and y, are the mean values of them; o and o, de-

note their standard deviations; o is the covariance of

u and u; and ¢, ¢, are predefined constants.

4.2 Results on classical grayscale images with artificial noise

We use classical grayscale images with artificial multi-
plicative Gamma noise for the first test. Figure 1 shows
four test images with resolutions of 256 x 256 x 8, which
are used in our experiments. The original noise-free im-
ages in Fig. 1 are contaminated by multiplicative noise
followed by the Gamma distribution of mean 1 and vari-
ance 0. In our proposed model, we set a=b=0.5 to
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effectively utilize the prior information about mean and
variance of the noise.

Table 1 lists the PSNR and SSIM values to measure
the denoising performance of different NLTV-based
models on the test images blurred by different levels of
Gamma noise. The highest PSNR and SSIM values are
highlighted in italic font. From Table 1, it is apparent
that our proposed NLTV model almost always attains
the highest PSNR and SSIM values among all the
NLTV-based multiplicative noise removal models. The
nonlocal-AA fails to be competitive with the other two
methods for most cases. This is attributable to the fact
that the nonlocal-AA is nonconvex and it is difficult to
compute the minimal point. The nonlocal-SO almost
has lower PSNR and SSIM than our method because
nonlocal-SO is not effective to consider the noise prior
information about the mean and variance. Table 1 fur-
ther shows that our proposed NLTV method effectively
utilizes prior information about the multiplicative noise,
and gains higher objective criteria values than the other
methods.

To evaluate visual quality of the different models
above, we present the denoised images that were re-
stored by the different models on the noisy Lena image,
which was blurred by adding multiplicative noise with a
variance of 0.05. The restored images are inspected in
Fig. 2. We find that the image (Fig. 2b) restored by the
nonlocal-AA  method produces undesired white
point-like artifacts and suffers a loss of details and edges,
the textures in the hat, and the facial region are seriously
destroyed. The nonlocal-SO method can reserve image
structures and edges. However, it over-smooths image
textures and eliminates details (see the wrinkles on hat
in Fig. 2¢). From the restored image (Fig. 2d) using our
method, we note that our method reduces more multi-
plicative noise and better preserves textures and details
than other methods-the curly hair and the wrinkles on
hat can be well distinguished. In Fig. 3, the 200th lines
of the clean, noisy, and deblurred images that occur in
Fig. 2 are presented. We observe that the line con-
structed by our method (Fig. 3d) is closer to the original
line than those restored by the other methods.

To highlight the competitive visual performance of
our proposed model for multiplicative noise removal,
parts of the denoised images Cameraman and Woman
are presented to measure the texture-preserving prop-
erty of different models in Figs. 4 and 5, respectively. To
further evaluate the performance of noise reducing and
texture preserving, we also present the method noise im-
ages that are the difference between original image and
denoised images in Figs. 4 and 5. The nonlocal-AA re-
sults contain numerous white point and staircase effects
in the smooth areas (Figs. 4b and 5b). The residual noise
and the lost textures in the method noise images of
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Fig. 1 Original images for experiments. a Lena image. b Women image. ¢ Baboon image. d Cameraman image
A

nonlocal-AA method (Figs. 4h and 5h) reveal that the
nonlocal-AA method provided limited noise suppression
and detail damage. The nonlocal-SO method (Figs. 4c
and 5c) reduces the staircase effect and effectively
removes noise (see smooth region Figs. 4c and 5c), but it

Table 1 Comparisons of the results using different models
based on different images

Nonlocal-AA
PSNR  SSIM
Lena 002 289757 0.7974
005 263467 0.7530
0.1 246380 06816
Woman 002 279584
0.05 25599
0.1 248337
Cameraman 0.02 284807
0.05 261229
0.1 24.0989
Baboon 0.02 251895
0.05 239535
0.1 219093

Nonlocal-SO
PSNR  SSIM
296365 0.8355
27.3785 0.7750
258112 07279

Our method
PSNR  SSIM
296522 08377
274042 07768
258365 07310

Image o

0.7741
0.7014
0.6884
0.8027
0.7584
0.6549
0.6904
05718
04388

28.5441
26.6301
25.0348
284787
26.0631
243225
26.2700
24.3048
23.0813

0.8044
0.7477
0.7002
0.7969
0.7380
0.6911
0.7380
06257
0.5216

285547
266229
25.1303
28.7461

263612
24.6099
26.3582
24.2040
23.1622

08132
0.7436
0.7059
08172
0.7693
0.7308
0.7442
06154
05324

blurs image edges and textures (camera’s edges in Fig. 4c
and the hood’s texture in Fig. 5c are barely visible). Our
proposed method exhibits the best visual appearance
among all the NLTV-based methods so that the camera’s
edges in Fig. 4d and the hood’s texture in Fig. 5d are
clearly visible. Additionally, comparing the method noise
images in Figs. 4 and 5, we can observe that our pro-
posed method produces less residual noise and preserves
more textures than other methods. The results shown in
Figs. 4 to 5 let us conclude that our proposed model
removes multiplicative noise while simultaneously
reconstructing more image textures and details than the
other model.

4.3 Results on images acquired by coherent imaging
system

Since multiplicative Gamma noise often occurs in the
coherent imaging systems, we compare the performance
of our proposed model with other models on more com-
plicated images acquired by coherent imaging technique
where it is not easy to discern the foreground from the
background. In this section, we use ultrasonic image,
OCT image, and SAR image to verify the effectiveness of
our proposed method.
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-

Fig. 2 Results of different models on the Lena image degraded by a Gamma noise of level with o= 0.05.

and d proposed method

a Noisy image, b nonlocal-AA, ¢ nonloca-SO,

.

T
— Original image
—Nonlocal-AA

Fig. 3 The 200th lines of the clean, noisy, and deblurred images of different methods. a Noise and clean lines. b Deblurred line by nonlocal-AA

method. ¢ Deblurred line by nonlocal SO-method. d Deblurred line by the proposed method
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\

; b ‘ c
e f g

Fig. 4 Zoomed version of the denoised image Cameraman of different methods degraded by a Gamma noise with variance 0.1. a Noisy image,
b nonlocal-AA method, ¢ nonlocal-SO method, d proposed method, e noise image, f method noise image of nonlocal-AA method, g method
noise image of nonlocal-SO method, and h method noise image of proposed method

h

Figure 6 shows visual comparisons of denoised images
processed by different NLTV-based methods. The ori-
ginal ultrasonic image (resolution is 256 x 256 x 8) is
added multiplicative Gamma noise with variance 0.1.
Figure 4c—g respectively shows the denoised images
using nonlocal-AA method, nonlocal-SO method, and
our method. A texture region marked by red-lined box
is selected for visual comparison. Observing the edges
and details in the red-lined box, similar effects appeared
in the above examples are regarded here. The
nonlocal-AA method cannot adequately remove the
multiplicative Gamma noise. Some residual noise exists

in the denoised image and the artifacts obscure the
edges. The nonlocal-SO method shows better perform-
ance than the nonlocal-AA method, but some edges in
the red-lined box are seriously obscured or invisible.
Our proposed method attains almost the highest PSNR
and SSIM values and exhibits the best visual quality
among all the methods, allowing the edges in the
red-lined box to clearly recovered and the residual noise
is difficult to find.

Moreover, we use OCT (resolution is 128 x 128 x 8)
and SAR (resolution is 128 x 128 x 8) images, which
are contaminated by multiplicative Gamma noise

Fig. 5 Zoomed version of the denoised image Woman of different methods degraded by a Gamma noise with variance 0.02. a Noisy image, b
nonlocal-AA method, ¢ nonlocal-SO method, d proposed method, e noise image, f method noise image of nonlocal-AA method, g method
noise image of nonlocal-SO method, and h method noise image of proposed method
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Fig. 6 Recovered ultrasonic images via different methods. a Original image, b noisy image (PSNR =29.2360, SSIM = 0.8174), ¢ nonlocal-AA
method (PSNR =31.2127,5SIM = 0.8488), d nonlocal-SO method (PSNR = 32.3298, SSIM = 0. 8878), and e proposed method

C €

(PSNR =32.6496, SSIM = 0.8994)

J

with, respectively, variance 0.1 and 0.08, to further
verify the effectiveness of our proposed method. To
distinguish the differences in edge preservation and
texture contrast enhancement between the different
methods, a square region that contains salient edge
and complicated texture is selected for enlarging
views. The original and denoised images and the
zoomed versions of the selected region marked with a
red box are presented in Figs. 7 and 8. The noisy im-
ages (Figs. 7b and 8b) show that speckle noise re-
duces the image visual quality, resulting in
barely-visible textures and blurred edges. The results
of the nonlocal-AA method (Figs. 7c and 8c) cannot
effectively reduce noise or obscure edges. The results

of the nonlocal-SO method (Figs. 7d and 8d) elimin-
ate the artificial effect and improve the properties of
nonlocal-AA method, but blurs still exist in the
denoised image, especially in the edges (see the
zoomed version of (Figs. 7d and 8d). Since our
method makes full use of prior information for noise
and is an extension of the nonlocal-SO method, it is
more effective in removing the noise and preserving
image details than the nonlocal-SO method. The tex-
tures deblurred by our method (Figs. 7e and 8e) are
clearer and more distinct than the textures deblurred
by the nonlocal-SO method. Additionally, our pro-
posed method obtains larger PSNR and smaller MSE
values the other methods, again indicating that the

Fig. 7 Recovered OTC images and zoomed square region marked by red-lined boxes via different methods. a Original image, b noisy image
(PSNR = 20.8433, SSIM = 0.6984), ¢ nonlocal-AA method (PSNR = 21.5102, SSIM = 0.7621), d nonlocal-SO method (PSNR = 22.0345, SSIM = 0.8315),
and e proposed method (PSNR = 22.4348, SSIM = 0.8879)
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and e proposed method (PSNR = 27.0234, SSIM = 0.8513)

Fig. 8 Recovered SAR images and zoomed square region marked by red-lined boxes via different methods. a Original image, b noisy image
(PSNR = 24.4431, SSIM = 0.7095), ¢ nonlocal-AA method (PSNR = 25.9805, SSIM =0.7919), d nonlocal-SO method (PSNR = 26.1081, SSIM = 0.8423),

superiority of our proposed method in removing
multiplicative Gamma noise is very appropriate for
complicated images.

5 Conclusion

This study utilizes prior information and proposes a
strictly convex NLTV-based multiplicative noise removal
model based on the maximum prior estimate frame-
work. Based on the split Bregman iteration algorithm,
we design an efficient alternating minimization iteration
to optimize our proposed NLTV model. We also prove
that the alternative minimization iteration converges to
a fixed point, which is the unique solution of the original
minimization problem. Finally, results compared with
related NLTV-based multiplicative noise removal models
indicate that our proposed NLTV method effectively
removes multiplicative noise and outperforms other re-
lated NLTV models.

The proposed method is suitable for multiplicative
noise removal and successfully implements the coherent
imaging system. However, a large number of predefined
constants and parameters involved in the alternative it-
eration algorithm, values of these constants, as well as
their parameters are important factors influencing the
denoising result of the proposed method. In our experi-
ment, these values are manually set. In later works,
adaptively adjusting these parameters to obtain better
denoising results will be a future research direction.

It is worth mentioning that the proposed method can-
not be directly applied to other types of noise removal
problems, such as mixed noise. For example, in the elec-
tronic microscopy imaging system, the captured images
are usually contaminated by Gaussian and Poisson
noises, which are combined as a superposition. Future
research is required to make use of NLTV for different

types noise removing, especially for mixed noise. On the
other hand, the proposed method can be successfully
implemented on video sequences, which is not present
in this paper due to space limitations. However, we have
simply focused on utilizing the correlation information
in a single image for noise removal and have not consid-
ered similar content and correlation information in dif-
ferent images. There is a great correlation and a large
number of redundant information existing between the
adjacent frames in the video sequences. Accordingly,
utilizing similar and redundant information in the video
sequences to improve our proposed method is another
direction for future research.
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