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Abstract

Recent development on image categorization, especially scene categorization, shows that the combination of
standard visible RGB image data and near-infrared (NIR) image data performs better than RGB-only image data.
However, the size of RGB-NIR image collection is often limited due to the difficulty of acquisition. With limited data, it
is difficult to extract effective features using the common deep learning networks. It is observed that humans are able
to learn prior knowledge from other tasks or a good mentor, which is helpful to solve the learning problems with
limited training samples. Inspired by this observation, we propose a novel training methodology for introducing the
prior knowledge into a deep architecture, which allows us to bypass the burdensome labeling large quantity of image
data to meet the big data requirements in deep learning. At first, transfer learning is adopted to learn single modal
features from a large source database, such as ImageNet. Then, a knowledge distillation method is explored to fuse
the RGB and NIR features. Finally, a global optimization method is employed to fine-tune the entire network. The
experimental results on two RGB-NIR datasets demonstrate the effectiveness of our proposed approach in
comparison with the state-of-the-art multi-modal image categorization methods.

Keywords: Multi-modal image categorization, Knowledge distillation, Transfer learning, Deep learning

1 Introduction
In the past several decades, numerous computer vision
methods have been developed to process visible RGB
images. Recent studies demonstrate that if we have a
larger spectrum of radiation than RGB-only images, the
better performance would be obtained in many computa-
tional visual tasks, such as saliency detection [1, 2], scene
categorization [3, 4], and image segmentation [5, 6].
RGB-NIR image categorization is one of the most chal-
lenging tasks for two reasons. Firstly, the labeled RGB-
NIR images are scarce due to the difficulty of acquisition
and labeling. Some “shallow” features used in traditional
methods, e.g., Scale-Invariant Feature Transform (SIFT)
[7], Gist [8], and census transform histogram (CENTRIST)
[9], may do not need any labeled data. However, with
increased scene or object categories, these algorithms
gradually show their limitation [10]. Because in terms of
the biology of color vision, these features are correspond-
ing to the lowest level of processes in the hierarchically
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organized visual cortex. Different from these “shallow”
features, deep networks, especially convolutional neu-
ral networks (CNNs), are able to learn the representa-
tions of complex data with multiple levels of abstraction
[11-14]. However, these systems suffer from the so-called
overfitting problem if the training data are limited.

As one of the most fruitful techniques addressing this
problem, transfer learning (TL) methods are proposed
to transfer knowledge from some auxiliary source data.
Many researches demonstrated that deep architectures
with TL have great capacity of generating transferable
features [13, 14]. For example, the research in [10] pro-
posed deep convolutional activation feature (DeCAF),
which trained on different datasets with specific levels
of network fixed. The authors in [15] trained the lower-
layer and higher-layer features separately in supervised
and unsupervised manners; this training process made
the model achieved lower classification error rate in the
classification of uppercase-lowercase letters. The research
in [16] reused the different layers of features in a deep
CNN model and evaluated the generality and specificity
on both simulated and natural images. The research in
[17] demonstrated scene-centric datasets, e.g., Place365
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dataset, and tend to produce better features than object-
centric datasets, e.g., [ImageNet [18] dataset, for the scene
categorization. These works achieved significant progress
when the feature distribution of source domain is similar
to target domain. However, it is still a challenging problem
when the distributions of involved domains are greatly dif-
ferent, such as RGB and NIR images. In this paper, we
incrementally apply the existing TL theory to RGB-NIR
domains and propose a feasible and effective method for
learning effective RGB-NIR features.

Secondly, the statistical properties behind RGB-NIR
images are significantly different, and the relation between
them maybe highly non-linear. As a traditional method,
canonical correlation analysis (CCA) [19] aims to find
transformations for maximizing correlations between
modalities. Many researches have demonstrated it is
an efficiency technique for multi-modal feature fusion.
For example, the research in [20] used CCA to explore
the latent relation behind multi-modal features, e.g., co-
occurrence matrix, and Zernike moments. The authors
in [21] presented a three-view CCA model that explic-
itly incorporated the high-level semantic information as
the third view. The authors in [22] proposed a multi-
view semantic alignment process to address the projec-
tion domain shift problem. These methods are comprised
of stacking self-contained algorithmic components, i.e.,
feature extraction, feature fusion, and classifier training.
Consequently, the learned features are fixed once build,
which results in the process of feature extraction, and
fusion cannot benefit from the label information.

Recent works have demonstrated that it is effective
to learn multi-modal features and the following classi-
fiers simultaneously. The authors in [23] proposed a large
margin multi-modal feature extraction (LM3FE) frame-
work for multi-tasks, i.e., feature selection, transformation,
and classification. In comparison with the “shallow” net-
works, the general method used in deep architecture is
intermediate fusion, i.e., a additional perception layer
is used to fully connect the flattened multi-modal fea-
tures and classifier [24]. The other promising work [25]
was to implement CCA with deep architecture, i.e., Deep
CCA (DCCA). Continuing along this line of research,
the authors in [26] combined the DCCA with auto-
encoders and proposed the deep canonically correlated
autoencoders (DCCAE). DCCAE was proposed to learn
multi-modal features that are capable of reconstructing
inputs as well as maximizing the correlation between
modalities. Based on this research, the authors in [27]
proposed to separately learn the modal-related features,
which are used for data reconstruction, and the modal-
invariable features, which are used for maximizing cor-
relation between modalities. These works demonstrated
that the prior knowledge of maximizing correlation across
modalities is effective for exploring the complementary
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information behind multi-modal data. However, these
architectures are still data-hungry models, which have not
considered the problem addressed in this paper, i.e., train
a deep network using very limited training data.

In the proposed training process, it is used as a sub-task
in the pre-training phase to maximize correlation between
RGB-NIR features. This idea was inspired by the work pre-
sented in [28], in which the authors assumed that there is
a training barrier involved in the nature of difficult tasks,
e.g., scene recognition. The experiments they conducted
demonstrated that it is effective to learn several interme-
diate easier tasks, which are decomposed from a difficult
task, rather than directly learn the difficult task. In order
to facilitate such easier tasks for RGB-NIR image classi-
fication, we proposed a feature fusion method based on
knowledge distillation (FFKD) in this paper. The knowl-
edge distillation algorithm [29] was firstly proposed by
Hinton for model compression. It transfers the knowledge
from a cumbersome model to a small model. To the best
of our knowledge, few researches have been conducted
to address the multi-modal feature fusion problem using
knowledge distillation architecture. The features gener-
ated by FFKD can be considered as an approximation
to the features generated by CCA and a weight regu-
larization. Despite its simplicity, we found it effective in
multi-modal image categorization task.

In this paper, we consider the multi-modal data catego-
rization problem in the context of images such that both
standard visible RGB channels and near infrared (NIR)
channels are available. The main contributions of this
paper include the following: (1) we propose a novel fea-
ture fusion algorithm FFKD, which is based on CCA and
knowledge distillation methods, and (2) we propose a
novel training methodology that combined TL and FFKD
methods. This allows us to bypass the burdensome label-
ing large image data to meet the big data requirements in
deep learning, in the way of introducing the prior knowl-
edge from auxiliary source data and classical models. The
paper is organized as follows: Section 2 introduces the
details of our proposed framework. Section 3 demon-
strates the experimental results. Then the conclusion is
given in Section 4.

2 Methods

Several studies have demonstrated that random initial-
ization of deep neural network can yield rather poor
results, while specifically targeted initialization can have
a drastic impact [17, 24]. Based on these observations,
we can deduce that the effective global minima obtained
using sufficiently large data also could be obtained using
less amount of data with proper guidance. Motivated
by such hypothesis, two types of pre-training methods,
transfer pre-training and distillation pre-training, are pro-
posed to provide good initialization for application that
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have small amount of training data. Transfer pre-training
transfers features learned from massive labeled source
data to unlabeled target data. Though this technique has
been popularly used in machine learning community, our
work provides an effective way to transfer features from
RGB data to NIR data. Distillation pre-training guides
the network to fuse RGB-NIR features with the knowl-
edge learned from a traditional model, which should be
selected as related to the final task, e.g., object or scene
categorization in this paper.

As described in Fig. 1, the proposed architecture con-
sists of three functional layers, the feature extraction layer,
the feature fusion layer, and the classifier. The feature
extraction layer contains two off-the-shelf deep models
for RGB and NIR data, which is introduced in Section 2.2.
The feature fusion layer is a single linear perceptron,
which is discussed in Section 2.3. The Softmax classifier
is used to explore the label information to jointly fine-
tune the feature extraction and fusion layers, which is
presented in Section 2.4. The three functional layers are
separately pre-trained before the global fine-tuning; the
proposed training process can be described as follows:
firstly, the two off-the-shelf deep models were pre-trained
on a large labeled dataset, i.e., ImageNet, and then fine-
tuned on our own RGB and NIR data respectively. After
that, the feature fusion layer, which half connected with
the RGB features and half connected with the NIR fea-
tures, merged RGB-NIR features into one feature vector.
Finally, a Softmax classifier was trained on the fused
RGB-NIR features.

2.1 Model formulation
Let ¢; be the number of source classes with 7, instances
S = {X;, Ys} and ¢; be the number of target classes with #;
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instances T = {V;, N, Y:}. The dimension of image vec-
tor both in source and target domains is d, X; € R™* d
V, € R"*4 and N, € R"*4. Y, and Y, are the label
vectors for source and target instances, respectively. The
source and target classes are disjoint in the problem we
addressed, Y; () Yz = 0.

Firstly, the transfer pre-training aims to transfer the
knowledge learned from vast labeled source data to tar-
get data. The knowledge in deep architectures is generally
presented as layer weights and could be considered as
a mapping function. f* denotes the mapping function
learned from the source labeled images and is used to map
source images into features. Since the training process on
source domain is surprised by sufficient data, it is reason-
able that f* is capable of mapping the source data into a
more discriminative feature space. Taking the similarity
between source and target data into account, f* should be
a good initialization for f, a good enough mapping func-
tion for target data. Specifically, the mapping function for
target RGB data f” and the mapping function for NIR data
f" should be fine-tuned from f°. We use F¥ and F” denote
the features generated from the two mapping functions.

Secondly, there are two models included in the distilla-
tion pre-training phase. One is the student model, which
is an one-layer perceptron, and the other is the teacher
model, which contains CCA and KCPA modules. During
this training phase, the teacher model learns two transfor-
mations W, and W}, to maximize the correlations between
RGB and NIR features. The student model also contains
two transformations: the weights G, connect RGB fea-
tures to the feature fusion layer, and the weights G, con-
nect NIR features to the feature fusion layer. The objective
of this training phase is to make the output of the student
model as similar to the output of the teacher model; this

Softmax Layer

]
| Off-the-shelf model |

 Feature Extraction Layer T

]
| Off-the-shelf model |
L

Visual RGB

4

Data

Visual RGB

4

Data

Fig. 1 The proposed architecture consists of three functional layers, the feature extraction layer, the feature fusion layer, and the classifier
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can be easily obtained by back-propagation algorithm to
minimize the metric between them.

After the two pre-training phases have been completed,
a global fine-tuning process is used to learn a global map-
ping function & : (Vi,Ny) —> Y; that maps the raw
images into its predicted labels.

2.2 Transfer pre-training

CNN s have been used in most state-of-the-art deep archi-
tectures for image recognition, detection, and segmen-
tation. CNN is a feed-forward architecture with three
main types of layers: (1) 2D convolution layers, (2) 2D
sub-sampling layers, and (3) 1D output layers. A convo-
lution layer consists of several adjustable 2D filters. The
output of each filter is a feature map that indicates the
presence of a feature at a given pixel location. In prac-
tice, a non-linear activation [30, 31], e.g., RELU [30] and
Sigmoid [32], is generally applied on the feature map
to enhance its representation ability. Batch normaliza-
tion (BN) [33] is used to normalize the feature map for
addressing the internal covariate shift problem. The sub-
sampling layer, e.g., mean pooling layer and max pooling
layer, is used as a bottleneck to reduce the dimension of
feature map. The fully connection layer maps the output
of stacked convolution-pooling layers into the predicted
labels.

Some recent researches demonstrated that CNNs pre-
trained on large datasets contain general purpose features,
which are transferable to many other tasks [10, 15, 17].
These works inspired us to fine-tune the off-the-shelf
CNN-based architectures, e.g., VGGNet [34], ResNet [35],
and Inception Net [12], on our own RGB and NIR data.
To employ this fine-tuning process, we may need to select
the fixed layer number. In general, the number of layers
to freeze is determined by learning task. Some classi-
cal works [13, 16, 24] utilized the fine-tuning rule to
decide the number of layers to freeze. Our experimen-
tal results are consistent with the latter, that is the less
layers should be fixed to avoid the negative transfer if
the dissimilarity between source and target datasets is
large. Thus, we set m = 4 > n = 2 to be consis-
tent with the rule, where m and » are the fixed layer
number set for RGB and NIR fine-tuning process. The
fine-tuning process could be spited as following three
steps:

e Step 1: Train the off-the-shelf deep model on a
large-scale database, i.e., ImageNet.

e Step 2: Remove the classification layer from the
pre-trained off-the-shelf deep model and preserve the
rest parts as the initial model of RGB and NIR data.

® Step 3: Fine-tune feature extractor on RGB data with
first m layers frozen, while first n layers are frozen in
fine-tuning NIR feature extractor.
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After the fine-tuning process, the classification layer is
removed, and we call the rest part as fine-tuned RGB and
NIR feature extractors.

2.3 Distillation pre-training

There are two models included in the distillation pre-
training phase, i.e., the teacher model and the student
model. The feature vectors that generated from the fea-
ture extraction layer, i.e., f and f*, are fixed and used as
inputs of this phase. Assemble each vectors ¥ into the
row of matrix F” and similarly place f* into matrix F”.
The process of distillation pre-training can be described
as follows.

The proposed teacher model is an approach based on
kernel principal components analysis (KPCA) [36] and
CCA. KPCA is an extension of PCA using techniques of
kernel methods. In this paper, the cosine kernel is selected
to reduce the dimensions of F” and F”, and the generated
low-dimension features are denoted as F¥ and F”, respec-
tively. Each row in F " is denoted as f* similarly each row
in F” is denoted as "',

FY = KPCAcosine {F*} (1)
and
F" = KPCAcosine {F"} 2

Then, CCA method is used to maximize the corre-
lation between RGB and NIR features by learning two
transformations W, and W,,. CCA is a statistical method
used to investigate relationships among two or more
variable sets, each of them consists of at least two vari-
ables. The literature contains a number of sophisticated
methods for multi-view learning, e.g., CCA/Kernel CCA
(KCCA)/DCCA [25, 37, 38], metric learning [39], and
large-margin formulations [40]. We found that the basic
CCA formulation already gave very promising results for
RGB-NIR image categorization without having to pay the
price of increased complexity for learning and inference.
The objective function of CCA can be formulated as
follows:

(FV/WV, F”/wn>

p = max ; ; 3)
wyv, wo ||[EY wy|[[[F” wy|
Hence, it can be rewritten as:
/
w, C,y W
0 = max v v n (4)

/ /
Wy, Wn \/wv Copw Wy W, Cpyyy Wi

where C,, and C,;, are the covariance matrices, and C,,
and C,, are the between-sets covariance matrices of RGB
and NIR features. Since the choice of re-scaling is arbi-
trary, the corresponding Lagrangian can be written as
follows:
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A
LA, wy, wn) = W(, Cvn Wn — ?V (Wir Cow Wy — 1)
An
2

Taking derivatives in respect to wy and wy, then make
them equal to zero, we have:

(5)
(V\/n Cun Wn — 1)

A Wy Cuy Wi — Ay Wy Gy Wy = 0 (6)

which together with the constraints implies that A, — X, =
0, let . = A, = XA,,. Assuming Cy,, is invertible, we have:

Con C;;nl Cow Wy = 22 Cix Wy (7)

As the covariance matrices C,, is symmetric positive
definite, it can be decomposed into a lower triangu-
lar matrix R,, and its transpose R,, using a complete
Cholesky decomposition [41]:

va = va . R:/V (8)
Finally, we get wy by solving the equation as follows:
Ry} Con Cpt Cuw RV R, Wy = 22 R, wy 9)

After wy is obtained, the wy could be obtained using
following equation:

—1
Ci Cov Wy

S (10)

Wp =
At last, we assemble the top k projection vectors wi, in to
columns of matrix W,, and similarly place w}, into matrix
W, then concatenate the feature transformed by W}, and

W, as the output of teacher model:
Oteacher = concatenation(f‘/ Wv,f", W) (11)

In order to transfer the knowledge from the teacher
model to the proposed architecture, the feature fusion
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layer (student model) and FFKD is proposed. As illus-
trated in Fig. 2, the student model is an one-layer per-
ceptron that half connects with the RGB features and half
connects with the NIR features. FFKD is designed to make
the output of student and teacher models as similar as
possible. The object function of FFKD can be formulated
as follows:

(12)

Loss = [|Oteacher — Ostudentll2 + [1Grll2 + Gy 2

where Oteacher and Ogtudent denote the outputs of the
teacher model and the student model, respectively. G, and
G, are weights connected with NIR and RGB features. As
shown in Fig. 2, the process of FFKD can be split into three
steps:

e Step 1: Randomly select a batch of RGB and NIR data
as the inputs of teacher and student models and get
the outputs from both models.

e Step 2: Calculate the residual error using Eq. 12.

e Step 3: Update the weights of the student model by
back propagating the residual error, until the residual
error is small enough.

After the distillation pre-training, the feature fusion
layer is well initialized. In spite of its simplicity, the exper-
imental results show an evidence that the distillation
method can improve the performance significantly.

2.4 Global fine-tuning

As an optimization technique, global fine-tuning is com-
monly used in deep learning. The works in [16] demon-
strated that when layers were fine-tuned, the performance
slightly improved with more layers; however, when lay-
ers were frozen (fixed, without fine-tuning), the perfor-
mance degraded with more layers. This observation is
very similar to human vision system; some evidences

/I‘

Output: Oteqacher

I OUtPUt: Ostudent

KPCA + CCA

(teacher model)

/ Back propagation
|

Feature fusion layer
(student model)

OQO--- OO

Feature
extraction layer

Fig. 2 The flowchart of FFKD method. The teacher model consists the KPCA and CCA modules; the student model is an one-layer perceptron. The
FFKD methods is proposed to transfer the knowledge from the teacher to the student model

[OO0:+- OO ]
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have suggested that humans construct high-level fea-
tures for different visual tasks by altering the combination
of different low-level features. Inspired by these works,
we fine-tuned the whole network which was initialized
by transfer (Section 2.2) and distillation (Section 2.3)
pre-training. The process of global fine-tuning can be
described as follows:

e Step 1: Randomly select a batch of training data as
input to the pre-trained architecture.

e Step 2: Update the network by back propagating the
classification error, with the first four layers of both
RGB and NIR feature extractors frozen, until the
error is small enough. Otherwise, go to step 1.

3 Results and discussion

3.1 Datasets and experimental setting

We evaluated the proposed method on both scene and
object categorization dataset, i.e., EPFL [7] and 4-classes
dataset [42, 43]. The statistics of the two datasets are
illustrated in Table 1.

The EPFL scene classification dataset (EPFL) contains
477 images distributed in 9 categories as follows: coun-
try (52), field (51), indoor (56), forest (53), mountain (55),
old building (51), street (50), urban (58), and water (51).
Although the number of images in this dataset is small, the
image classes are challenging. To the authors’ best knowl-
edge, this is the only public benchmark dataset for scene
categorization that provides both RGB and NIR channels
for every image. Figure 3 shows several examples in order
to demonstrate the complexity of this dataset.

The 4-classes object classification dataset (4-classes)
contains 1464 images distributed in 4 categories: cam-
ouflage tanks (390), camouflage artillery (350), non-
camouflage tanks (400), and vehicles (360). This is a
unmanned aerial vehicle (UAV) aerial image dataset that
includes both RGB and NIR channels for each image.

To facilitate the comparison, we follow the same exper-
iment setup as in [7, 43] and [42], which is described as
follows:

e EPFL: randomly selecting 99 images for testing (11
images per category) and the rest for training.

e 4-classes: randomly selecting 200 images for training
and the rest for testing.

In all our experiments, we repeat 10 trials with a ran-
domly selected training/test split and calculate the mean

Table 1 Statistics of the two datasets

Dataset Type No. of example No. of feature No. of class
EPFL Scene 477 89,401 9
4-classes Object 1464 89,401 4
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of the recognition rates (fraction of correct matches) over
all 10 trails.

3.2 Comparison with other methods on object
categorization

In order to demonstrate the effectiveness of the proposed

method, we compared our method with seven classifica-

tion methods on object database (4-classes), which are

described as follows.

1 Linear discriminant analysis (LDA) [44]: LDA
maximizes the ratio of the between-class scatter to
the within class scatter then find out the projection
of samples so that samples can be separated. We
concatenated RGB and NIR image pixels as input to
LDA.

2 Histogram of oriented gradients (HOG) [45]: HOG
describes the distribution of gradient strength and
gradient direction of object region in image; it is
good at representing the appearance and shape of
object. We used HOG descriptor as input of support
vector machine (SVM)[46].

3 Speeded-up robust feature (SURF) [47]: SUPF is a
variation of SIFT and it has good adaptability for the
scale and rotation changes of objects. We used SURF
descriptor as input of SVM.

4 Dictionary learning (DL) [48]: DL finds some basic
elements for the image data then uses the linear
combination of these basic elements to represent the
image data approximately. We used DL features as
input of SVM.

5 Kernel dictionary learning (KDL) [49]: KDL is
proposed to learn over-complete dictionary from the
training data set, and it is a non-linear dictionary
learning method. We used KDL features as input of
SVM.

6 DL+LDA: this method feeds DL feature to LDA as
recommended in [42].

7 KDL+LDA: this method feeds KDL feature to LDA as
recommended in [42].

As shown in Table 2, the global descriptor, i.e.,, HOG,
performed better than the local descriptor, i.e., SURF,
for object categorization task. We also noticed that the
model-driven methods, i.e., HOG and SURF, performed
better than the data-driven methods, i.e., DL and KDL,
when the training data is insufficient as the problem
addressed in this paper. However, the proposed model,
Inceptionv3-proposed model, achieved the best perfor-
mance, though it is a data-driven method. It could be
taken as an evidence that the proposed method leveraged
the data-driven model by introducing the prior knowl-
edge from auxiliary source data and other model-driven
methods.
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Fig. 3 Examples from EPFL database, each example includes visible image and its corresponding NIR image

3.3 Comparison with other methods on scene
categorization

The scene categorization task is generally considered to be
more difficult than the object categorization task due to it
contains more abstract concept. In this section, we further
compared our method with seven classification methods
on scene database (EPFL). The seven classification meth-
ods are SVM using seven popular scene descriptors, which
are described as follows.

1 Hierarchical model and X (HMAX) [50]: HMAX is
inspired by a computational model of object
recognition in cortex. We calculated the HMAX
descriptors for each channel independently then
concatenated them as one feature vector.

2 Multi-channel Gist (mGist) [7]: Gist descriptor was
proposed in [51]; its coarse to fine processing was
believed to be very similar to human vision. mGist
was proposed to concatenate Gist descriptor from all
channels.

Table 2 Comparison of performance on object categorization
on 4-classes data

Method Recognition rate (%)
LDA 95.5

HOG 9591

SURF 94.25

DL 80.52

KDL 82.21

DL+LDA 94.61

KDL+LDA 97.79
Inceptionv3-proposed 99.3

3 Multi-channel SIFT (mSIFT) [52]: mSIFT descriptor
concatenates SIFTs from all channels in the bag of
visual words (BOV) framework [52].

4 Multi-spectral SIFT (msSIFT) [7]: msSIFT
concatenates SIFTs from all channels with PCA
post-processing.

5 Fisher Vector [53]: This method was proposed in
[53] , which used local patch-based Fisher Vector
image representation to encode both the texture and
color information.

6 Multi-channel CENsus TRansform hISTogram
(mCENTRIST) [3]: mCENTRIST was proposed to
jointly encode the information within multi-channel
images.

7 Concatenate CENTRIST (conCENTRIST) [3]:
conCENTRIST was an intuitive way to extend
CENTRIST [9] to multiple channels, it concatenates
CENTRISTS from all channels.

As shown in Table 3, CENTRIST-based methods
performed much better than the traditional descrip-
tor, i.e., mSIFT, msSIFT, mGist, and HMAX. Among
three CENTRIST-based methods, multi-channel joint
information encoding made mCENTRIST better than
its direct concatenation variant, conCENTRIST. The
third best accuracy was yielded by Fisher Vector,
which appended mSIFT with channel intensity sta-
tistical features. However, the Fisher Vector tech-
nique seemed to be the key to its performance
improvement, which also suffered from the limited
labeled data.

We also compared the proposed method against the
reused or fine-tuned state-of-art deep architectures, i.e.,
Inceptionv3, ResNetvl, and ResNetv2. All the reused and
fine-tuned models were pre-trained on ImageNet dataset;
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Table 3 Comparison of performance on scene categorization on

EPFL data

Method Recognition rate (%)
HMAX 59.2
mGist 69.9
mSIFT 80.4
msSIFT 75.2
Fisher Vector 879
mCENTRIST 84.5
conCENTRIST 81.7
Inceptionv3-reused 723
Inceptionv3-finetuned 79.5
ResNetv1-reused 63.3
ResNetv1-finetuned 74.6
ResNetv2-reused 753
ResNetv2-finetuned 80.2
Inceptionv3-proposed 90.2
ResNetv2-proposed 90.8

the difference is that in the reused models, only the
classifier was trained, but both the features and the
classifier were retrained in the fine-tuned models. The
fine-tuned deep models significantly improved the per-
formance of reused deep models; however, the improve-
ment was decreasing as the model complexity increases,
i.e., the number of parameters within three models are
ResNetv2 > Inceptionv3 > ResNetvl; the performance
improvements generated from fine-tuning for three models
are ResNetv2 < Inceptionv3 < ResNetvl.

We replaced the traditional fine-tuning approach with
the proposed training approach for Inceptionv3 and
ResNetv2 architectures, i.e., Inceptionv3-proposed and
ResNetv2-proposed. The improvements are obvious on
both architectures, which achieved the best and second-
best accuracy. As suggested in [54], the relation behind
the RGB and NIR data is highly non-linear, the more
sophisticated solutions probably capture the highly com-
plex relations. But in our experiment, we noticed that the
Inceptionv3-proposed model achieved comparable per-
formance to RestNetv2-proposed model, which usually
should have much higher accuracy. We also tried to use
non-linear activation in the feature fusion layer, i.e., RELL,
Sigmoid, to enhance its non-linear representation abil-
ity. But the performance of Inceptionv3-proposed model
and ResNetv2-proposed model was decreased to 89.6 and
88.3, respectively. This may be caused by the small num-
ber of our training samples, which is not enough to fully
explore the advantage of too complicate models, such as
ResNetv2.
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3.4 Experimental analysis

In order to further investigate the reason behind the
performance improvement made by the proposed train-
ing process, we separately analyzed the performance
improvement made by the transfer pre-training, distilla-
tion pre-training, and global fine-tuning on scene (EPFL)
dataset. Since the Inceptionv3 had the best balance
between performance and computational complexity, the
model based on Inceptionv3 was selected for the following
analysis.

As shown in Fig. 4, the reused Inceptionv3 model sim-
ply concatenated the RGB-NIR features and used the
fixed features to train a softmax classifier. The transfer
pre-training model fine-tuned the Inceptionv3 model on
EPFL data using transfer pre-traing method (Section 2.2);
then, the fine-tuned RGB and NIR features were concate-
nated together to train a Softmax classifier. The distilla-
tion pre-training model used the distillation pre-training
method (Section 2.3) to fuse the features that generated
from transfer pre-traing model; then, the fused RGB-
NIR features were used to train a Softmax classifier.
The global fine-tuning model used the global fine-tuning
method (Section 2.4) to fine-tuning the whole network,
which was initialized by transfer and distillation pre-
training. By comparing these four models, we noticed
that the three training processes, transfer pre-training,
distillation pre-training, and global fine-tuning, gradually
improved the model’s performances. For example, distil-
lation pre-training model started with a relative higher
recognition rate, ended with a better performance, and
reached convergence faster than the model without using
it, i.e., transfer pre-training model. The same experimental
results also could be observed when the transfer pre-
training and global fine-tuning methods were used. These
observations demonstrate the effectiveness of the pro-
posed methods, especially when the training data are very
limited.

In Fig. 5 we evaluated the performance of the
RGB and NIR features that learned in different train-
ing phases. After each training phase, we additionally
trained a Softmax classifier for each modality. The fea-
tures generated from the last layer of feature extrac-
tor, i.e., the inputs of feature fusion layer, was used
as input. Since in the phase of distillation pre-training
the feature extractors were fixed, we did not show the
evaluation results after this phase. But we compared
the training process using distillation pre-training, i.e.,
RGB-FFKD and NIR-FFKD, against the training process
without using it, i.e., RGB-RI and NIR-RI. The two train-
ing processes were evaluated on the same architecture,
as illustrated in Fig. 1, but the random initialization
was used to replace the FFKD method for initializing
the feature fusion layer in RGB-RI and NIR-RI training
process.



Peng et al. EURASIP Journal on Image and Video Processing (2018) 2018:149 Page 9 of 11

95

Recognition Rate

0 500 1000 1500 2000 2500 3000
Iteration

—e—Reused Inceptionv3 Model = —e=Transfer Pre-training Model

—e—Distillation Pre-training Model —e—Global Fine-tuning Model

Fig. 4 Recognition rate of reused Inceptionv3 model, transfer pre-training model, distillation pre-training model, and global fine-tuning model
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demonstrated that the distillation pre-training was not
trivial; the well initialized fusion layer can help the model
learn effective NIR features from RGB data and label
information.

4 Conclusions

RGB-NIR image categorization is one of the most chal-
lenging computer vision tasks. Several studies have found
that approaches based prior knowledge are promising.
Continuing along this line of research, two pre-training
approaches are proposed in this paper: (1) trans-
fer pre-training, which transfers features from source
data to alleviate the demand of labeled target data,
and (2) distillation pre-training, which introduces an
intermediate concept from a teacher model to guide
student model to effectively fuse RGB-NIR features.
Experimental results have demonstrated that the pro-
posed approach gives better performance than existing
methods.

However, there are still some research issues to be
explored. For example, we employed the Inceptionv3
model pre-trained on Place365 to replace the Inceptionv3
model pre-trained on ImageNet. The experimental results
showed the performance was increased to 92.3. This
observation inspired us to wonder if we use the near-
infrared database to train NIR features, will the model’s
performance increase as well, and if there are other con-
cepts that can reduce the complexity more efficiently than
maximizing multi-modal’s correlation. These questions
will be addressed, studied, and hopefully answered in our
further research on this topic.
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