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Abstract

Multi-frame super-resolution recovers a high-resolution (HR) image from a sequence of low-resolution (LR) images. In
this paper, we propose an algorithm that performs multi-frame super-resolution in an online fashion. This algorithm
processes only one low-resolution image at a time instead of co-processing all LR images which is adopted by state-
of-the-art super-resolution techniques. Our algorithm is very fast and memory efficient, and simple to implement. In
addition, we employ a noise-adaptive parameter in the classical steepest gradient optimization method to avoid noise
amplification and overfitting LR images. Experiments with simulated and real-image sequences yield promising results.
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1 Introduction
Images with higher resolution are required in most elec-
tronic imaging applications such as remote sensing, med-
ical diagnostics, and video surveillance. For the past
decades, considerable advancement has been realized in
imaging system. However, the quality of images is still lim-
ited by the cost and manufacturing technology [1]. Super-
resolution (SR) is a promising digital image processing
technique to obtain a single high-resolution image (or
sequence) from multiple blurred low-resolution images.
The basic idea of SR is that the low-resolution (LR)

images of the same scene contain different information
because of relative subpixel shifts; thus, a high-resolution
(HR) image with higher spatial information can be recon-
structed by image fusion. Subpixel motion can occur due
to movement of local objects or vibrating of imaging sys-
tem, or even controlled micro-scanning [2, 3]. Numerous
SR algorithms have been proposed since the concept was
introduced by Tsai and Huang [4] in the year of 1984.
Most of them operate in batch mode, i.e., a sequence of
images are co-processed at the same time. Thus, these
algorithms require a high memory resource to store the
LR images and temporary data, and need a high com-
puting resource as well. These disadvantages limit their
practical application.
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There are a variety of SR techniques, including multi-
frame SR and single-frame SR. Readers can refer to Refs.
[1, 5, 6] for an overview of this issue. Our discussion below
is limited to work related to fast multi-frame SR method,
as it is the focus of our paper.
One SR category close to our alogorithm is dynamic SR

which means estimating a sequence of HR images from a
sequence of LR images. A natural approach is to make an
extension of the static SR methods, as is adopted by some
video SR algorithms [7, 8]. Although these batch-based
dynamic SR algorithms have the ability to enhance the
resolution of images/videos, the high memory and com-
putational requirements restrict their practical use. Farsiu
et al. [9] proposed a fast and memory-efficient algorithm
for dynamic demosaicing and color SR of video sequences.
They first got a blurry HR image by shifting and adding
each LR frame recursively based on the Kalman filter,
then the blurry HR image was deconvolved based onmax-
imum a posteriori (MAP) technique. To make Farsiu’s
algorithm more robust, Kim et al. [10] proposed a mea-
surement validation method based on Mahalanobis dis-
tance to eliminate the LR images whosemotion estimation
errors were larger than a threshold. Recently, researchers
pay more attention to SR methods based on neural net-
work (NC)[11, 12], which can be trained from data to
approximate complex nonlinear functions, while these
algorithms require significant computational resources to
achieve real-time throughput. Graphic processing unit
(GPU) is used to accelerate, as done by Hu et al. [13–16].
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Stefan Harmeling et al. [17] are the first to propose a
blind deconvolution algorithm for astronomical imaging
working in online mode. Instead of minimizing the total
overall cost function for all blurry images, they just mini-
mized the cost function for one image at each time and the
current deblurred image was used as the initial estimate
for the next time recursively. Thus, the deblurred image
was refined gradually along with the image capturing.
Hirsch et al. [18] extended the online blind deconvolution
algorithm by incorporating super-resolution. The differ-
ent information contained in different LR images results
from blurring with different blur kernels. Both online
blind deconvolution (OBD) and its SR extension (OBDSR)
get the HR image estimate by minimizing an auxiliary
function rather thanminimizing the cost function directly
to avoid image overfitting, while sometimes the strategy
failed, especially when the noise of LR images is large.
Stimulated by the online blind deconvolution algorithm

proposed by Stefan Harmeling et al. [17], we propose
a multi-frame super-resolution algorithm operating in
online mode which we name as online SR (OSR). Differ-
ent from the OBDSR, the different information provided
by different LR images in our algorithm results from rel-
ative motion between each other instead of different blur
kernels. Another difference is that we employ a modified
steepest gradient optimizationmethod to estimate the HR
image instead of an auxiliary function, which is proved to
be more robust to noise. In this paper, the LR images are
assumed to be obtained in a streaming fashionwith a com-
mon space-invariant blur, and the relativemotion between
each other can be modeled as translation. At each time,
we get an LR image, and we immediately use it to improve
the current HR image estimate.
The rest of this paper is organized as follows. Section 2

addresses the formulation of the SR problem. In Section 3,
we lay out the details of our algorithm and make it com-
patible with color images. In Section 4, we present exper-
imental results with simulated and real-image sequences.
The paper will conclude in Section 5with a brief summary
and future work plan.

2 Problem statement
To study the super-resolution problem, we first formu-
late the observation model. For notational simplicity, the
image in our method is represented as a lexicographically
ordered vector. Let us consider the desired HR image of
size LM×LN , where L denotes the down-sampling factor
in the observation model andM and N are the number of
rows and columns of the LR images. The most commonly
used observation model is given by

yt = DtBtMtx + nt , for t = 1, 2, ...,T (1)

where x denotes the lexicographically ordered HR image
of size L2MN × 1, Mt is the subpixel motion matrix of

size L2MN × L2MN , Bt represents blur matrix of size
L2MN × L2MN ,Dt denotes the down-sampling matrix of
sizeMN×L2MN , nt is the lexicographically ordered noise
vector, and yt represents the lexicographically ordered LR
image vector of sizeMN × 1.
Mathematically, the SR problem is an inverse problem

whose objective is to estimate an HR image from multiple
observed blurry LR images. MAP estimator is a powerful
tool to solve this type of problem. The MAP optimization
problem can be represented by

x̂MAP = argmax
{
lnP(

{
yt

} |x) + lnP(x)
}

(2)

where
{
yt

}
means all LR images, and P(x) represents a pri-

ori knowledge of the HR image. However, some complex
priori models used by the MAP estimator may increase
the computational burden remarkably. If we omit the
priori term, the MAP estimator degenerates to a maxi-
mum likelihood (ML) estimator. Under the assumption
of independent and identical Gaussian distributed image
noise with zero mean, ML optimization problem can be
simplified as a least square problem, i.e.,

x̂ML = argmin
T∑

t=1

∥∥yt − DtBtMtx
∥∥2 (3)

Generally, due to the ill-posed nature of SR inverse prob-
lem, the MAP estimator is superior to the ML estima-
tor. For both MAP estimator and ML estimator, all LR
images should be stored in memory; thus, a high memory
resource is required.

3 The proposedmethod
3.1 The loss function
In our OSR algorithm, when we get a new LR image in
the data stream, we retrieve the new information immedi-
ately and add it to the HR image estimate. The process is
realized by minimizing the loss function incurred at time
t instead of overall loss. The problem can be expressed as
a non-negatively constrained problem:

x̂t = min
x≥0

Jt(x; yt) = min
x≥0

∥∥yt − DtBtMtx
∥∥2 (4)

ThemotionmatrixMt could vary in time, while the down-
sampling matrix Dt and blur matrix Bt remain constant
over time for most situations (i.e., B = Bt , D = Dt). We
further assume the relative motion between LR images
can be modeled as pure translation. Above assumptions
are valid in staring imaging and some videos during a cer-
tain period of time. The matrices D, B, and M are quite
huge with few non-zero elements, thus can be constructed
as sparse matrices. A faster and more memory-efficient
way is to interpret them as image operators without
explicitly constructing the sparsematrices [19, 20]. Setting
Wt = DBMt , Eq. (4) can be rewritten as
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x̂t = min
x≥0

Jt(x; yt) = min
x≥0

∥∥yt − Wtx
∥∥2 (5)

Blurring may be caused by optical aberrations, out of
focus, diffraction, finite detector size, etc. The blur kernel
in this paper is assumed to be of Gaussian shape, and its
standard deviation is estimated by a blind deconvolution
algorithm based on regularized ML [21] in advance.
Essentially, the loss function is in the form of maximum

likelihood (ML). We just decompose the overall ML lost
function to many parts to save memory and computation
resources. The drawback is the reconstructed image may
be not the optimal because the optimization of the loss
function for one LR image should be terminated earlier to
avoid overfitting.

3.2 Update strategy
Equation (5) can be easily solved by some gradient-based
optimization methods. But if it is not handled properly, it
may result in overfitting yt . To solve this problem, we can
introduce an auxiliary function similar to OBDSR [18]:

Lt(x, x̃) = yTt yt − 2yTt Wtx + x̃TWT
t Wt

(
x � x
x̃

)
(6)

where � denotes elementwise product and division is
elementwise as well.
The HR image estimate xt at time t can be obtained

by solving ∇xLt(x, xt−1)|x=xt = 0, which yields a simple
multiplicative update,

xt = xt−1 � WT
t yt

WT
t Wtxt−1

(7)

The update equation naturally fulfills non-negative con-
straint on x if a non-negative initial image estimate is used.
The usage of auxiliary function decreases the convergence
rate of x, thus reducing the probability of overfitting one
specific LR image.
However, experiments show that the strategy of “aux-

iliary function” may fail, especially when the LR images
have a low signal to noise ratio (SNR). An optional solu-
tion to Eq. (5) is using the steepest descent method. We
impose the non-negative constraint by reparameterizing
xt as

xt = φ2
t (8)

The gradient of the loss function with respect to φt is
given by

∇φJt(x; yt)
∣∣
φ=φt

= −4φt �
(
WT

t yt − WT
t Wtφ

2
t

)
(9)

The gradient descent update for φ can be expressed as

φt,k = φt,k−1 − α ∇φJt(x; yt)
∣∣
φ=φt,k−1

(10)

for k = 1, 2...K , and φt,0 = φt−1,K . The parameter α rep-
resents the step size, which should be small enough to

prevent divergence and large enough to provide reason-
able convergence rate. The maximum iteration index K
should have an appropriate value for the same reason. In
our paper, K is set to 3 empirically.
The update strategy given by Eq. (10) can yield an

approving SR result if the step size is selected carefully.
However, two main drawbacks are obvious as well. One
drawback is that the step size is constant for each iter-
ation; thus, it may be too large or too small for some
iterations. The other drawback is the step size is selected
manually, which is not friendly to non-professional users.
To avoid these drawbacks, we propose an adaptive step
size strategy. According to the steepest gradient optimiza-
tion algorithm, the optimal step size can be calculated by
minimizing

Jt(xt ; yt) = Jt
(
xt−1 − α ∇xJt(x; yt)

∣∣
x=xt−1

; yt
)

(11)

with respect to α. The gradient of the loss function with
respect to x is given by

∇xJt(x; yt) = −2WT
t yt + 2WT

t Wtx (12)

By solving ∇αJt(xt ; yt) = 0, we get

α = − (yt − Wtxt−1)
t Wtgt

(Wtgt)TWtgt
(13)

gt = ∇xJt(x; yt)
∣∣
x=xt−1

(14)

We find that if α is used as the update step size directly,
the solution may overfit LR images. Thus, we employ a
parameter to control the convergence rate.When the SNR
of the LR images is low, the parameter should decrease
the convergence rate to avoid noise amplification. On the
other hand, when the SNR of the LR images is high, the
parameter should be selected to increase the convergence
rate. The parameter is empirically given by

β = −0.006σ 2
n + 0.5 (15)

where σ 2
n is the noise variance, which can be estimated

by a noise level estimation algorithm proposed by Liu
et al. [22] in advance. The modified update expression of
the HR image converts to

xt = xt−1 − βαgt (16)

It can be seen that the noise-adaptive step size update
strategy is fully automatic. However, the update expres-
sion cannot guarantee the non-negativity of the HR image;
thus, the pixels whose intensity is less than 0 are set to zero
after each time step.

3.3 Color SR
Color SR can be achieved by simply incorporating each
channel into the loss function. The modified loss function
is given by
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Fig. 1 Reconstructed HR images for different noise levels. Top row: one bicubic-interpolated LR image with up-sampling factor equal to 3 for each
noise level, the noise variances are 0, 10, 20, 30, 40, and 50 respectively from left to right. Bottom row: corresponding final HR images reconstructed
by OSR with up-sampling factor equal to 3 for each noise level

Jt(x; yt) =
∑

l=R,G,B
‖yt,l − DBt,lMxl‖2 (17)

The blur kernel may be different for each color channel,
so it may need to be estimated separately.

3.4 Algorithm
A summary of the OSR algorithm using adaptive step size
is provided in Algorithm 1. Other update strategies can
also be used within a similar framework. The motion vec-
tor is estimated by a very fast subpixel image registration
technique based on cross-correlation which is proposed
by Feng et al. [23]. The registration result is verified by
a measurement validation method based on Mahalanobis
distance [10]; thus, the LR images with large registration
error are eliminated. At each time step t, we align the cur-
rent LR image with the initial LR image rather than the
current HR image estimate because the first several HR
image estimates may contain large amount of artifacts.
Experiments show that multiple iterations on xt at each
time step do not yieldmuch improvement, so xt is updated
only once when adaptive step size update is adopted.
Our online SR algorithm has two main advantages: (1)

The algorithm is very fast and memory efficient. During
the process of HR image reconstruction, only the initial
LR image, the current LR image, and the current esti-
mated HR image need to be stored, which need much
less memory and computing resource compared to batch-
mode algorithms. (2) The algorithm is very simple and
friendly to users. In our algorithm, we only use one param-
eter to control the fitting degree of each LR image, and the
parameter is noise-adaptive; thus, our algorithm is easy
to handle.

4 Experimental results and discussion
We first test our OSR method with simulated data to
study the performance under different conditions. Then,

Algorithm 1: Proposed OSR algorithm.
Input: LR images {yt}, blur kernel h for each color

channel, SR scale L, noise variance σ 2
n .

Output: HR image.
t ← 1 ;
y0 ← y1 ;
x0 ← up-sampled y1 with scale L ;
β ← −0.006σ 2

n + 0.5 ;
while the LR image yt+1 available do

t ← t + 1 ;
xt ← xt−1 ;
estimate motion vector

[
dx, dy

]
between y0 and yt ;

if registration invalid then
continue;

end
gt ← ∇xJt(x; yt)

∣∣
x=xt ;

update α using Eq. (13) ;
xt ← xt − βαgt ;
xt ← max(xt , 0)

end

we apply our method to real-image sequences generated
by different cameras. Our algorithm is implemented using
MATLAB R2014b, and all the experiments are carried out
using an Intel Core i7-4790 CPU PC with 16GB RAM.

4.1 Simulated data tests
The first experiment is to test the noise robustness
of our algorithm. The simulated LR images are gener-
ated following the observation model given by Eq. (1).
The subpixel translation along horizontal and vertical
direction is uniformly distributed within (− 2.5, 2.5) in
high-resolution grid, and the blur kernel is of Gaussian
shape with the standard deviation equal to 1. To test
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Fig. 2 RMSE of HR images reconstructed by OSR for different noise levels. The data along with the legend are noise variances

the robustness of our method under different noise lev-
els, we generate 15 LR images with varying noise vari-
ances σ 2

n ∈ {0, 10, 20, 30, 40, 50} respectively. The HR
image is a standard test image “goldhill” [24] of size
576 × 720 in gray mode, and the size of LR images is
153 × 192 after clipping the boundary with a down-
sampling scale equal to 3. The estimated standard devia-
tion of the Gaussian blur kernel is 1.07, and the estimated
noise variances are 0.8, 10.2, 20.3, 32.4, 42.4, and 51.7
for each noise level respectively. The top row of Fig. 1
shows one of the bicubic-interpolated LR images with
increasing σ 2

n from left to right, and the bottom row

shows the final reconstructed HR image for each noise
level. Note that we just display a common part of
each image to see the detail more clearly. For each
noise level, the reconstructed HR image is more clear
than the bicubic-interpolated image, and the SNR is
higher as well. Figure 2 shows how root mean square
error (RMSE) evolves as the time step t for each noise
level. From a general view, the RMSE reduces as t
increases, which means the HR images are improved as
the algorithm progresses. Experimental results also show
that the algorithm’s performance is better with lower
noise level.

Fig. 3 The final reconstructed HR images using different update strategies. Top row: using multiplicative update strategy. Middle row: using manual
step size update strategy. Bottom row: adaptive step size update strategy. The noise variances of corresponding LR images are 0, 10, 20, 30, 40, and
50 respectively from left to right



Xu et al. EURASIP Journal on Image and Video Processing        (2018) 2018:136 Page 6 of 10

Fig. 4 Comparison of results of different reconstruction methods. From left to right: origin original HR image, reconstructed HR image using bicubic
interpolation, LI, OSR, and MAP. Top row: images reconstructed with a up-sampling factor of 3 (except for the origin original image). Bottom row:
images reconstructed with a up-sampling factor of 2 (except for the origin original image)

The second experiment conducts a comparison of the
three update strategies mentioned in Section 3. For con-
venience, the update strategies using Eqs. (7), (10), and
(16) are named as multiplicative update, manual step
size update, and adaptive step size update, respectively.
Figure 3 shows the final HR images reconstructed by dif-
ferent update strategies. The step size for manual step size
strategy is set to {0.004, 0.004, 0.003, 0.002, 0.002, 0.002}
as the noise variance increases from 0 to 50. The step
size is selected via multiple trials, thus is nearly optimal.
Compared to adaptive step size update, the HR images
reconstructed by manual step size update have similar
visual effects, while the HR images reconstructed by mul-
tiplicative update have larger noise which we believe is
caused by overfitting LR images.
The third experiment studies the performance of our

algorithm compared with lucky imaging (LI) and MAP-
based SR algorithm [25, 26]. The lucky imaging algorithm
first aligns and adds all up-sampled LR images with reg-
istration validation, then deconvolves the resulting image
using Wiener filter. We generate 15 LR images with the
same noise variance equal to 20, and other experimental
settings are the same with the first experiment. Experi-
mental results are shown in the top row of Fig. 4. We
generate another 15 LR images with a down-sampling
factor of 2 and use them to reconstruct an HR image
with an up-sampling factor of 2. The results are shown
in the bottom row of Fig. 4. Note that Fig. 4 just shows

a common selected region of all images in order to be
seen more clearly. For these data sets, we have visual qual-
ity MAP>OSR > LI > Bicubic. MAP-based method gets
better HR image than OSR method because it tries to
find a global optimal solution with all LR images pro-
cessed at one time. Table 1 shows the performance of
different methods evaluated in RMSE and elapsed time.
It takes our method much less time to reconstruct an HR
image compared with MAP-based SR. Additionally, the
elapsed time of our method is related to the size of the
HR image, rather than the LR image, for most of image
operators act on the HR image, or up-sampled LR images.
Our method can process at a speed over 11 fps to recon-
struct a HR image of size 459 × 576 in gray mode. Note
that our MATLAB-implemented algorithm has not been
optimized for speed. The computation speed can be fur-
ther improved by using other more efficient programming
languages or GPU-based computing technique, while it is
beyond the scope of this article.
Experiments with another 3 standard test images

(Lenna, Monarch, and Boats) are also performed. Fif-
teen LR images are used to reconstruct an HR image
respectively, and the SR scales are set to 3. The recon-
structed results are shown in Fig. 5, and the RMSE and
elapsed time are shown in Table 2. Also, the MAP-
based SR yields better results in image quality than
OSR, while much less computation time is needed
by OSR.

Table 1 Comparison of performance of different SR methods in RMSE and elapsed time

RMSE Average elapsed time (ms/frame)

L LR image size Bicubic LI OSR MAP Bicubic LI OSR MAP

3 153× 192 12.60 12.37 7.27 6.58 – 58 88 688

2 230× 288 9.49 8.96 6.30 5.88 – 57 88 979

The RMSE of bicubic-interpolated images is the average of 15 bicubic-interpolated images. L is the up-sampling factor



Xu et al. EURASIP Journal on Image and Video Processing        (2018) 2018:136 Page 7 of 10

Fig. 5 Comparison of results of different reconstruction methods with different test images. From left to right: origin original HR image,
reconstructed HR image using bicubic interpolation, MAP, and OSR; From top to bottom: Lenna, Monarch, and Boats

To study the influence of the initial values and the
order of the LR frames, we randomly permute the order
of obtaining the input frames. The LR images and other
experiment parameters are the same with the first experi-
ment. Figure 6 shows the RMSE curves evolving with the
time step for a fixed noise variance of 20. As can be seen,
all RMSE curves have a same evolving trend and converge
to a similar value finally.

4.2 Real data tests
The first real data set is a color video with a size of 91 ×
121 [27]. These frames approximately follow the global

Table 2 Comparison of performance of different SR methods in
RMSE and elapsed time with different test images

Image name Resolution
of LR images

Methods RMSE Elapsed time
(ms/frame)

Lenna 136 × 136 Bicubic 9.2 –

MAP 4.7 454

OSR 6.1 58.9

Monarch 204 × 136 Bicubic 12.2 –

MAP 5.3 750

OSR 7.6 88.9

Boats 192 × 153 Bicubic 9.3 –

MAP 4.4 739

OSR 6.2 98.9

The RMSE of bicubic-interpolated images is the average of 15 bicubic-interpolated
images. The SR scales are all set to 3

translation motion model. The estimated standard devi-
ation of Gaussian blur kernel is 1.6 for each color chan-
nel, and the estimated noise variance is 2.3 which is the
average of three color channels. It takes 3.0 s to recon-
struct the HR image from 20 LR frames with an
up-sampling factor equal to 4, and image registration
occupies 1.4 s. Figure 7 shows one bicubic-interpolated
LR image and the final reconstructed HR image. The
improved definition and sharpness demonstrate the good
performance of our method.
The second real data set is a color video captured by a

digital single lens reflex (DSLR). We extract a region of
interest (ROI) of size 134× 182. These LR frames approx-
imately follow the global translation motion model. The
estimated standard deviation of Gaussian blur kernel is 0.8
for each color channel, and the estimated noise variance
is 1.3 which is the average of three color channels. It takes
0.65 s to reconstruct theHR image from 10 LR frames with
an up-sampling factor equal to 2, and image registration
occupies 0.3 s. Figure 8 shows one bicubic-interpolated LR
image, the final reconstructed HR image and the ground-
truth image. It can be seen that the aliasing effect is
decreased by our OSR method.
The third real data set is ten 5-band Gaofen-4 remote

sensing images without ortho-rectification [28]. The
images were captured on March 3, 2017, from 11:10:20
to 11:20:21. We chip crop the ROI with a size of 44× 78.
The estimated standard deviation of Gaussian blur ker-
nel is 1.2, and the estimated noise variance is 1.1. It takes
59.7 ms to reconstruct the HR image, and image regis-
tration occupies 26.9 ms. To validate our reconstructed
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Fig. 6 The RMSE evolving with the time steps in random orders. The noise variances of all LR images are 20. Each line corresponds to a different
order of the LR images

(a) (b)
Fig. 7 Super-resolution of bookcase images. a One bicubic-interpolated LR image with an up-sampling scale equal to 4. b Reconstructed HR image
by OSR with an up-sampling scale equal to 4

(a) (b) (c)
Fig. 8 Super-resolution of building images. a One bicubic-interpolated LR image with an up-sampling factor equal to 2. b Reconstructed HR image
by OSR with an up-sampling factor equal to 2. c Ground-truth image
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(a) (b) (c)
Fig. 9 Super-resolution of Gaofen-4 images. a One bicubic-interpolated LR image with an up-sampling factor equal to 2. b Reconstructed HR image
by OSR with an up-sampling factor equal to 2. c Image chipped cropped from Google Earth

HR image, we chip crop an image of the same zone
from Google Earth, which was captured on September
16, 2015. Figure 9 shows one bicubic-interpolated LR
image, the final reconstructed HR image by OSR and
MAP, and the image chipped cropped from Google Earth.
It can be seen that the reconstructed HR image is clearer
and contains more details which corresponds to Google
Earth.

5 Conclusions and future work
In this paper, we propose a multi-frame super-resolution
algorithm which operates in online mode. The algorithm
is simple and memory efficient and needs much less
computing resource compared to batch-mode methods.
Additionally, we employ a noise-adaptive parameter in
classical steepest gradient optimization algorithm to avoid
noise amplification and the overfitting of LR images. Our
method is also compatible with color images. Experimen-
tal results on simulated and real-image sequences show
that our online SR method has a good performance in
restoring the details andmissing information in LR images
and has a real-time application prospect.
Image super-resolution naturally requires large comput-

ing resources. A good choice is to just process the region
of interest which can also simplify the motion model.
The work to incorporating a tracking system and more
complex motion model into the online SR framework is
ongoing.
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