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Abstract

Zero-shot learning (ZSL) models use semantic representations of visual classes to transfer the knowledge learned from
a set of training classes to a set of unknown test classes. In the context of generic object recognition, previous research
has mainly focused on developing custom architectures, loss functions, and regularization schemes for ZSL using word
embeddings as semantic representation of visual classes. In this paper, we exclusively focus on the affect of different
semantic representations on the accuracy of ZSL. We first conduct a large scale evaluation of semantic representations
learned from either words, text documents, or knowledge graphs on the standard ImageNet ZSL benchmark. We
show that, using appropriate semantic representations of visual classes, a basic linear regression model outperforms
the vast majority of previously proposed approaches. We then analyze the classification errors of our model to provide
insights into the relevance and limitations of the different semantic representations we investigate. Finally, our
investigation helps us understand the reasons behind the success of recently proposed approaches based on graph
convolution networks (GCN) which have shown dramatic improvements over previous state-of-the-art models.
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1 Introduction
Recent successes in generic object recognition have
largely been driven by the successful application of con-
volutional neural networks (CNN) trained in a supervised
manner on large image datasets. One main drawback
of these approaches is that they require a large amount
of annotated data to successfully generalize to unseen
image samples. The collection and annotation of such
dataset for custom applications can be prohibitively com-
plex and/or expensive which hinders their applications to
many real-world practical scenarios. To reduce the num-
ber of training samples needed for efficient learning, few-
shot learning techniques are being actively researched.
The zero-shot learning (ZSL) paradigm represents the
extreme case of few-shot learning in which recognition
models are trained to recognize instances of a set of target
classes without any training sample to learn from.
To recognize unseen classes, ZSL models use descrip-

tions of the visual classes, i.e., representations of the visual
classes in a non-visual modality. Research in ZSL has
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been driven by relatively small-scale benchmarks [1, 2]
for which human-annotated visual attributes are avail-
able as visual class descriptions. In the case of generic
object recognition, however, manually annotating each
and every possible visual class of interest with a set of
visual attributes is impractical. Hence, generalizing the
zero-shot learning approaches developed on such bench-
marks to the more practical case of generic object recog-
nition comes with the additional challenge of collecting
suitable descriptions of the visual classes.
Finding such description presents two challenges: first,

the collection of these descriptions must be automated so
as to not require an expensive human annotation process.
Second, the collected descriptions must be visually dis-
criminative enough to enable the zero-shot recognition of
generic objects.Word embeddings are learned in an unsu-
pervised manner from large text corpora so that they can
be collected in a large scale without human supervision.
Furthermore, their successful application to a number
of natural language processing (NLP) tasks has shown
that word embedding representations encode a number
of desirable semantic features, which have been naturally
assumed to generalize to vision tasks. For these desirable
properties, word embeddings have become the standard
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visual class descriptions used by recent zero-shot generic
object recognition models ([3–7]).
In addition to word embeddings, we argue that generic

objects can also be described by either text documents or
knowledge graph data that satisfy our requirements: these
descriptions both contain visually discriminative informa-
tion and are automatically collectible from the web in a
large scale, without requiring human intervention.
This paper aims to discuss the role and the affect of

semantic representations on zero-shot learning of generic
objects. To do so, we conduct an extensive empirical eval-
uation of different semantic representations on the stan-
dard generic object ZSL benchmark. We investigate the
use of both different raw descriptions (i.e., different text
documents and knowledge graphs collected from the web)
and different embedding models in each semantic modal-
ity (word, graph, and document embedding models).
The main result of our study is to show that a basic

linear regression model using graph embeddings outper-
forms previous the state-of-the art ZSL models based on
word embeddings. This result highlights the first-class
role of semantic representations in ZSL accuracy, a topic
that has been relatively little discussed in the recent lit-
erature. We believe that our results emphasize the need
for a better understanding of the nature of the informa-
tion needed from semantic representations to recognize
unseen classes. To shed some light on these results, we
then discuss the efficiency, relevance, and limitations of
different semantic representations.
Finally, our investigation allows us to better understand

the outstanding results recently presented in [8, 9]. In par-
ticular, we show that much of the improvement shown
by these models over the previous state of the art can
be attributed to their use of explicit knowledge about the
relationships between training and test classes as made
available by knowledge graphs.
The remainder of this paper is organized as follows:

Section 2 reviews the literature for related work, Section 3
presents the preliminaries to understand our results, and
Section 4 presents the methodology used in our experi-
ments. Section 5 is the main section of our paper in which
we present and discuss the results of our investigation.

2 Related work
While the majority of the works on zero-shot generic
object recognition have used word embeddings as seman-
tic features, some works have explored the use of different
semantic features, which we present in this section.
In [10], the authors use different linguistic resources

to derive semantic similarity scores between classes and
between classes and attributes and to automatically mine
attribute-classes correspondence. Similar to this work,
they automate the acquisition of semantic data from
knowledge bases, but they focus on deriving semantic

similarity scores and part attributes while we evaluate
graph embedding models.
Mensink et al. [11] uses visual class co-occurrence

statistics to perform ZSL. Given a training set of multi-
labeled images and similarity scores between known and
unknown labels, they use the co-occurrence distribution
of known labels to predict the occurrence of unknown
labels in test images. Their multi-label classification set-
ting differs from the ZSL setting in which input images are
classified into a unique class.
Mukherjee and Hospedales [12] question the limits of

using a single data point (word embedding vectors) as
semantic representations of visual classes because this
setting does not allow the representation of intra-class
variance of semantic concepts. They used Gaussian dis-
tributions to model both semantic and visual feature
distributions of the visual classes.
More related to this work, [13] investigates different

semantic representations for zero-shot action recognition.
They compare different representations of documents and
videos, while we investigate the application of word, doc-
ument, and knowledge graph embeddings to zero-shot
recognition of generic objects.
A series of works of [14–16] compares the zero-shot

classification accuracy obtained with semantic repre-
sentations derived from words, taxonomy, and manual
attribute annotations on fine-grained or small-scale ZSL
benchmarks. Our investigation differs in that we are con-
cerned with the more practical task of generic object
recognition, and we investigate a broader class of semantic
features.

3 Preliminaries
3.1 Semantic data acquisition
To conduct our study, we are heavily dependent on the
data available to us in the form of image/semantic descrip-
tion pairs (x, y). We use the ImageNet dataset as our
starting point as it has become the standard evalua-
tion benchmark for generic object ZSL. In ImageNet,
visual classes are indexed by WordNet [17] concepts,
which are defined by three components that correspond
to the three semantic modalities we investigate: their
lemmas (a set of synonym words that refer to the con-
cept), a definition in natural language, and a node con-
nected by a set of predicate edges to other concept
nodes of the WordNet knowledge graph. Figure 1 illus-
trates the different semantic descriptions provided by
WordNet.
In addition to the descriptions directly provided by

WordNet, we investigate the use of semantic descrip-
tions gathered from larger databases openly available on
the web. WordNet has been integrated to the linked
open data [18] cloud, which provides an interlinking
between resources of different open knowledge bases.
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Fig. 1 Illustration of the different description levels of generic object classes. ImageNet classes are indexed by WordNet concepts which are defined
by their lemmas (word level, in blue), definition (document level, in red), and structured data (graph level, in black)

These links define equivalences between WordNet con-
cepts and resources of other knowledge bases. Following
the links of the LOD cloud, as illustrated in Fig. 2, we are
able to collect descriptions of ImageNet classes from dif-
ferent knowledge bases in a fully automated process. In
our experiments, we use the BabelNet knowledge graph as
augmented graph-level descriptions and Wikipedia arti-
cles as augmented document-level descriptions. Table 1
summarizes a few statistics about these datasets. Both the

text and graph data collected from these datasets are con-
siderably larger than the original WordNet descriptions.

3.2 Word embeddings
Distributional semantic models (DSM) and neural word
embeddings are two related classes of models that learn
continuous distributed representations of words. These
models implement the distributional hypothesis that
states that the meaning of words can be defined by

Fig. 2 Illustration of our linking process. ImageNet classes are indexed by WordNet concepts. WordNet concepts are linked to BabelNet concepts.
BabelNet concepts are linked to DBPedia concepts. Each concept in DBPedia is linked to a Wikipedia article. Following links between linked open
datasets allow us to collect rich descriptions of ImageNet visual classes. Our evaluation focused on BabelNet graph embeddings and Wikipedia
articles embeddings but other knowledge bases such as Freebase or YAGO may be used interchangeably
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Table 1 Comparison of knowledge base statistics

Documents Graphs

Doc W/doc Nodes Edges Triples

WordNet 117 k 10 117 k 20 372 k

BabelNet – – 15 M 2.3 k 1.3 G

Wikipedia 5.6 M 630 – – –

(Left) number of document and average size (word per documents) of WordNet
definitions vs. Wikipedia articles. (right) number of nodes, edge types, and triples of
WordNet vs. BabelNet knowledge graphs

the context in which they occur. DSMs explicitly factor-
ize matrices of word co-occurrence statistics while neu-
ral word embedding models learn word representations
by stochastic optimization methods. The latter typically
samples individual words and their context from large
text corpora, maximizing a similarity score between co-
occurring words. These approaches have been extensively
studied both theoretically [19] and practically [20]. In [19],
the authors show that the skip-gram word2vec model
with negative sampling implicitly factorizes a shifted PMI
matrix, suggesting that both approaches are qualitatively
similar. For the sake of our discussion in Section 5, we
will consider that word embedding models do implic-
itly factorize matrices derived from word co-occurrence
statistics following [19]. While qualitatively similar, the
empirical study of [20] showed that neural embedding
approaches tend to outperform DSM models on standard
benchmarks. We evaluate three state-of-the-art embed-
ding models on our ZSL benchmark: GloVe [21], FastText
[22], and word2vec [23].

3.3 Graph embeddings
A knowledge graph can be formalized as a set of facts
G = {(s, p, o) ∈ E × R × E}. Each fact in the graph con-
sists of a predicate (edge) p ∈ R and two entities (nodes)
s, o ∈ E × E , respectively referred to as the subject and
object of the triple. Each triple denotes a relationship of
type p between the subject s and the object o. Knowledge
graph embedding models include tensor decomposition
and neural embedding models. In [24], the authors show
that simple neural embedding baselines such as DistMult
[25] tend to outperform more sophisticated approaches
on several benchmark knowledge base completion tasks,
which leads us to focus on baseline neural embedding
models. Neural embedding models learn d-dimensional
vector representations of entities

{
ei ∈ R

d , ∀i ∈ E
}
and

relations
{
ri ∈ R

d, ∀i ∈ R
}
by maximizing a scoring func-

tion ψ
(
es, rp, eo

)
for triples (s, p, o) ∈ G. Learning is

performed stochastically by minimizing a loss function L
over the score of randomly sampled triples:

e∗, r∗ = argmin
(
E(s,p,o)∈GL

(
ψ(es, rp, eo)

))
(1)

Different embedding models differ in their choice of
scoring function ψ(es, rp, eo) and loss function L used for
training. Table 2 summarizes the scoring function of pop-
ular models we evaluate in Section 5. While experiment-
ing with these models, we found that a slight modification
to the TransE objective function to yield better accuracy.
We include these embeddings, denoted as TransE∗, in our
experiments.
Recently, a series of work have shown the merits of

hyperbolic geometry to embed structured data in a con-
tinuous space. The Poincarre embeddings [28] have been
successfully applied to embed the WordNet hierarchy,
dramatically reducing the reconstruction error compared
to previous embedding approaches based on Euclidean
geometry. We include their model in our evaluation for
the impressive results they report.

3.4 Textual embeddings
In this section, we present embedding models for text
documents. As different models are concerned with docu-
ments of different scale, we separately present embedding
models for short, sentence-like documents (i.e., WordNet
definitions) and models concerned with full-text docu-
ments (i.e., Wikipedia articles).
Sentence embeddings—universal sentence embedding

models learn continuous distributed representations of
sentences. Different embedding models differ in their
architecture and the objective function they use for
training. Most current state-of-the-art universal sentence
embedding models use either a bag of words (BoW) or a
recurrent neural network (RNN) architecture. As training
objectives, these models are either trained in an unsuper-
vised or supervised manner on auxiliary task. Supervised
objectives include natural language inference [29], image
captioning [30], or the regression of word embeddings
from dictionary definitions [30]. Unsupervised models
can be classified into intra-sentence and inter-sentence
training objectives. Intra-sentence objective models [31]
learn sentence embedding based only on the words con-
tained in the sentence. Inter-sentence objectives [32, 33]
use the ordering of sentences in large text corpora as
training signal, in a similar fashion to word embeddings.
Table 3 summarizes the characteristics of the different
embedding models evaluated in our study.

Table 2 Neural embedding scoring and loss functions

Model ψ(es , rp , eo) L
TransE [26] ‖es + rp − eo‖ L2

DistMult [25] 〈es , rp , eo〉 Ranking

ConvE [27] f (vec(f ([ es ; rp] ∗w))W)eo BCE

TransE∗ 〈es + rp , eo〉 Triplet
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Table 3 Sentence embedding models’ architecture and
objectives

Model Architecture Objective

Infersent [29] RNN SNLI

DictRep [30] BoW Word embedding regression

CapRep [30] BoW Image captioning

Sent2Vec [31] BoW Intra

SkipThought [32] RNN Inter

FastSent [33] BoW Inter

Document embeddings—two of the most popular
methods for embedding documents are latent semantic
indexing [38] and latent Dirichlet allocation [39]. Latent
semantic indexing performs singular value decomposition
on a matrix of term/document occurrence. The TF-IDF
model was introduced as a weighting factor to reduce the
impact of frequently occurring words and has been shown
to improve search results on document retrieval tasks.
In Section 5, we evaluate Wikipedia article embeddings

based on these models and apply sentence embedding
models to WordNet definitions.

3.5 Graph convolution networks
Graph convolution networks (GCN) were first introduced
in [34] for the task of semi-supervised classification on
graph structured data. The work of [9] first adapted this
model to zero-shot learning, and [8] proposed a number
of improvements to their original method. These works

cast the ZSL problem as a regression task in which the
model learns to regress the weights of a softmax classifier
on the set of unknown test classes. They use word embed-
dings as input features to the model and the WordNet
hierarchy as graph structure. Through the local actions of
the GCN layers, input features are propagated along the
WordNet hierarchy until the top layer that regresses the
weights of the test set classifier.
It should be noted that these works slightly differ from

our study as they use visual supervision from the weights
of a pretrained ResNet classifier to learn a similarity mea-
sure between semantic descriptions and images, while we
restrict our study to semantic features learned indepen-
dently from the visual and core ZSL modules to structure
our results.
However, these works have shown impressive improve-

ment over previous models: successfully combining graph
and word embeddings, they have more than doubled the
classification accuracy obtained by previous state of the
art accuracy. In Section 5, we use the results of our
investigation to explain these impressive results.

4 Method
The general architecture of ZSL models can be seen as the
combination of three modules {V , S,E}, as illustrated in
Fig. 3. The visual module V extracts high-level visual fea-
tures V (x) from raw input images x; the semantic module
S extracts semantic features S(y) from raw descriptions y
of the visual classes, and the core ZSL module E computes

Fig. 3 Illustration of ZSL models architecture. The general architecture of ZSL can be seen as the combination of a visual module V, a semantic S, and
a core ZSL module E
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a similarity score E(V (x), S(y)) between semantic and
visual features.
ZSL models aim to generalize the classification ability

of traditional image classifiers to out-of-sample classes for
which no image sample is available to learn from. To eval-
uate the out-of-sample recognition ability of models, ZSL
benchmarks split the full set of classes C into disjoint
training and test sets.

Ctrain ∪ Ctest ⊂ C (2a)
Ctrain ∩ Ctest = ∅ (2b)
Tr = {(x, yc), c ∈ Ctrain} (2c)
Te = {(x, yc), c ∈ Ctest} (2d)

Learning is performed by minimizing a loss function L
over the regularized similarity score of the set of training
samples with respect to the model parameters θ .

θ∗ = argminθE(x,y)∈TrL(Eθ (V (x), S(y)) + �(θ) (3)

At test time, an image xtest can be classified among the set
of unseen test classes by retrieving the class description y
of highest similarity score.

c = argmaxc∈CtestE(V (xtest), S(yc)) (4)

The visual and semantic modules can either be learned
jointly with the core ZSL module in an end-to-end pro-
cedure by back-propagation of the error signal from the
core ZSL module to the two lower modules, or they can
be learned independently on unsupervised or auxiliary
supervised tasks (e.g., pretraining the visual module on
the ILSVRC classification task and pretraining the seman-
tic module as an unsupervised word embedding model).
Our work focuses exclusively on the semantic module:

we question what raw descriptions y and embeddingmod-
ule S provide semantic features S(y) that are most visu-
ally discriminative so as to enable zero-shot recognition
of generic objects. We restrict our study to embedding
models S learned independently from the other modules,
without visual supervision from the ZSL module.
We use the top layer activations of a pretrained

ResNet50 as visual feature representations V (x). We
investigate different embedding models S and raw seman-
tic descriptions y in the form of words, text documents,
and knowledge graphs as semantic features S(y). Our ZSL
module consists of a ridge regression from the visual
feature space to the semantic feature space.
Let us denote by (X,Y ) the matrix representation of

stacked visual and semantic features of the training set, we
learn a projection matrix W from visual feature space to
semantic feature space as:

W ∗ = minW
(||XW − Y ||2 + λ||W ||2) (5a)

W =
(
XXT + λI

)−1
XYT (5b)

At test time, similarity scores are given by the Euclidean
distance between the projection of test images x in
semantic space and the test class semantic features

c∗ = argminc∈Ctest ||V (x)W − S(yc)|| (6)

We use the simplest ZSL module possible for inter-
pretability, to emphasize the importance of the semantic
features, although we found qualitatively similar results
with more sophisticated models. Previous works [35] have
shown that the Hubness problem negatively impact the
ZSL accuracy of the ridge regressionmodel.We found this
to be a non-problem as normalizing semantic features to
unit norm solves the distance concentration in semantic
space.
Following previous works [3–7], we use the 1000 classes

of the ILSVRC 2012 image classification dataset as train-
ing set and evaluate the accuracy of different semantic
embeddings on the 2-hop, 3-hop, and all test splits pro-
posed in [5].
When openly available, we always prefer the ref-

erence implementation of the semantic modules we
evaluate. We re-implement the models for which no
open implementation has been released. All imple-
mentations are made available on the GitHub page
of the project1. Detailed hyperparameters and train-
ing settings are also accessible on the project page.
Experiments with word embeddings were performed
using the pretrained vectors as released by the original
papers.

5 Results and discussion
In this section, we first present the evaluation of the
different semantic embeddings on the standard Ima-
geNet zero-shot learning benchmark in Section 5.1. In
Section 5.2, we conduct an error analysis on the 2-hop
test split to shed some light on the good performance
of graph embeddings. Section 5.3 discusses the results of
the recently proposed models of [8, 9] and relate their
results to our study. Finally, Section 5.4 discusses the rel-
evance of word embeddings and quantify some of their
limitations.

5.1 Standard evaluation
Table 4 presents the results of our evaluation on standard
test splits used in previous works [3–7].
State of the art—the bottom section of the table presents

the state-of-the art results obtained using word2vec
embeddings as reported in [4], as well as the recent results
of GCN-based approaches [8, 9]. As mentioned in the
previous sections, [8, 9] have brought dramatic improve-
ments to previous states of the art.
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Table 4 Results on the standard ImageNet ZSL test splits

2-hop 3-hop All

ZSL module Description Semantic module Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

Ridge reg. WordNet lemmas word2vec 7.66 21.00 29.90 3.08 9.35 13.78 0.89 2.70 4.23

FastText 12.98 32.35 41.68 2.96 9.01 13.20 1.30 4.00 6.01

Glove 13.47 32.96 42.99 3.08 9.35 13.78 1.34 4.15 6.30

Ridge reg. WordNet graph TransE 5.77 8.73 10.16 1.07 1.71 1.99 0.42 0.65 0.76

DistMult 16.94 37.61 43.85 3.28 9.57 12.39 1.35 3.91 5.08

TransE∗ 20.13 48.32 58.06 3.65 11.84 17.05 1.51 4.90 7.21

ConvE 3.23 9.12 12.46 1.30 2.14 3.26 0.42 1.72 3.10

Poincarre 11.81 28.86 37.53 2.02 5.93 8.79 0.79 2.32 3.46

Ridge reg. BabelNet graph TransE 2.82 5.11 7.16 1.03 1.41 1.75 0.37 0.88 1.01

DistMult 8.42 20.31 27.33 1.82 5.14 7.64 0.78 2.23 3.40

TransE∗ 17.76 42.46 53.47 3.62 10.82 15.65 1.53 4.69 6.97

Ridge reg. WordNet definitions InferSent 4.06 12.37 18.52 1.18 3.91 6.15 0.49 1.66 2.67

DictRep 6.06 18.74 27.28 1.52 5.58 9.05 0.63 2.32 3.84

CapRep 3.45 10.86 16.37 1.13 2.97 4.35 0.21 0.56 1.01

Sent2vec 5.93 17.57 25.57 1.65 5.60 8.92 0.67 2.36 3.85

FastSent 1.82 5.31 9.86 0.82 2.11 3.21 0.19 0.43 0.75

SkipThought 0.50 1.38 2.11 0.17 0.46 0.67 0.06 0.17 0.26

Ridge reg. Wikipedia articles TFIDF 9.03 26.53 37.31 - - - - - -

State of the art

SYNC [6] WordNet lemmas word2vec 9.26 - - 2.29 - - 0.96 - -

CONSE [7] 7.63 2.18 0.95

ESZSL [36] 6.35 1.51 0.62

ALE [16] 5.38 1.32 0.5

LATEM [15] 5.45 1.32 0.5

SJE [14] 5.31 1.33 0.52

DEVISE [5] 5.25 1.29 0.49

CMT [37] 2.88 0.67 0.29

GCNZ [9] Lemmas and graph Glove&GCN 19.8 53.2 65.4 4.1 14.2 20.2 1.8 6.3 9.1

ADGPM [8] 26.6 60.3 72.3 6.3 19.3 27.7 3.0 9.3 13.9

The upper part of the table shows our results using a ridge regression model with different semantic representations. The bottom part of the table shows the state-of-the-art
results as reported in [4], with the additional entries of [8, 9]. Bold entries represent the best results obtained in each category

Word embeddings—Table 4 highlights striking differ-
ences in the performance between the word2vec embed-
dings used in previous works [3–7] and both GloVe and
FastText embeddings. GloVe embeddings almost dou-
ble the word2vec the top-1 accuracy of the 2-hop split,
effectively outperforming previous states of the art using
word2vec, as presented in [4]. However, even the best-
performing embeddings, GloVe, fall behind the graph
embedding results. In Section 5.4, we further discuss the
application of word embeddings to zero-shot learning and

highlight some of their limitations that partially explain
their relatively poor performance.
Sentence embeddings —we expected sentence embed-

dings to provide strong representations as sentence
embedding has been a very active research topic for
the past years. Surprisingly, sentence embedding models
performed poorly, even slightly underperforming the
word2vec embeddings. We observe that models trained
with supervised training signals tend to perform relatively
better than modes trained in an unsupervised manner.
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Among unsupervised models, models trained with intra-
sentence signals like Sent2vec seem to perform better than
SkipThought or FastSent that use inter-sentence training
signal.
Graph embeddings—graph embeddings performed

remarkably well. In particular, the TransE∗ model out-
performed the best performing word embedding model
by an absolute 6.66% in top-1 accuracy on the 2-hop split
(20.13% vs. 13.47%).
The Poincarre embeddings are learned from the Word-

Net hierarchy alone so that they do not embed explicit
visual information such as object part attributes. It is
remarkable that they outperform word2vec.
ConvE embeddings performed poorly in contrast. This

result seems to make sense: the ConvE model uses a
non-linear similarity function which is not designed to
learn linearly separable embeddings whereas we use a lin-
ear model to measure the similarity between visual and
semantic features.
In the next section, we further discuss the results of

graph embeddings by analyzing the errors of the TransE∗
embeddings on the 2-hop dataset.
Data augmentation—Wikipedia document embeddings

performed better than sentence embeddings. However,
one major limitation of this approach is that many
links between WordNet concepts and Wikipedia arti-
cles could not be recovered from LOD data. Only
60% of visual classes were successfully matched to a
Wikipedia article. Hence, we manually recovered the
missing links for the 2-hop set (623 missing classes),
but we did not recover the missing links for classes
of larger test splits as manual linking is very time
consuming.

Surprisingly, augmenting the WordNet knowledge
graph with BabelNet did not improve on the model’s
accuracy.

5.2 Error analysis on the 2-hop test split
To better understand the results presented in Table 4, we
conduct an error analysis on the 2-hop test split. We are
particularly interested in the 2-hop test split because its
configuration allows for a trivial solution against which
we can compare the output of our model. As illustrated
in Fig. 4, the 2-hop split consists of the set of test classes
that are directly connected to at least one of the training
classes in the WordNet hierarchy. In other words, every
test class of the 2-hop split is either a child class of one of
the training classes or the parent class of at least one of the
training classes.
In this section, we first introduce a simple procedure

using the explicit information of the WordNet hierarchy
to classify images into the 2-hop test set. We then show
that the action of this procedure can be simulated by a
trivial semantic embedding of the visual classes within our
linear regression framework. Finally, we compare the clas-
sification output of this trivial solution to the output of
different semantic embeddings. In Section 5.2.3, we elab-
orate on this comparison to get a better understanding
of the reasons behind the high classification accuracy of
graph embeddings.

5.2.1 Trivial algorithm
The configuration of the 2-hop test split, illustrated in
Fig. 4, allows us to derive a simple procedure to classify
test images into the 2-hop test set in two steps: first, clas-
sify a test image x into a class c′ of the training set and then

Fig. 4 Illustration of the 2-hop test set configuration. This figure illustrates the configuration of test classes ({c1, c5, c6, c7} ∈ Ctest in green) in
relationship to training classes ({c2, c3, c4} ∈ Ctrain in blue) in the WordNet hierarchy. Test classes are directly connected to the training classes. This
leads to two possible configuration. a On the right, test classes are direct parent of one or more training class: Tr(c1) = {c2, c3} and
Te(c2) = Te(c3) = {c1}. b On the left, test classes are direct children of one training class. There may be one or more children test classes for a given
training class: Tr(c5) = Tr(c6) = Tr(c7) = {c4} and Te(c4) = {c5, c6, c7}
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perform the final classification by randomly assigning x
to one of the child/parent test class c of c′. Denoting by
Te(c′) the set of child/parent test classes of a given train-
ing class c′ (see Fig. 4b), we formalize this procedure in
Algorithm 1.

Algorithm 1 Trivial solution algorithm
INIT Associate to each training class the subset of test
classes to which they are directly connected within the
Wordnet hierarchy:
Te : Ctrain → C ⊂ Ctest

For all test image x
Step 1: Classify x into a class c′ ∈ Ctrain using the
pretrainedResNet classifier.
Step 2: Randomly assign x to a test class c ∈ Te(c′)
associated to c′.

End For

It should be noted that this algorithm simply exploits a
trivial solution by taking advantage of the configuration
of the test split. As such, it does not represent an inter-
esting end solution to the problem of zero-shot generic
object recognition; rather, we introduce this algorithm as
a mean to understand the good results obtained by graph
embeddings.

5.2.2 Trivial embeddings
Interestingly, Algorithm 1 can be emulated within our
framework using the following trivial semantic embed-
ding scheme.
First, we assign randomly generated d-dimensional

vectors as semantic embeddings to the training classes.
Second, we assign to test classes the same semantic
embedding as their child/parent training class. In the case
where a test class c is the parent class of several training
classes, we assign to c the mean of its children training
class embeddings.
Denoting byTr(c) the set of child/parent training classes

of a given test class c (see Fig. 4a), we formalize this
embedding scheme as follow:

Tr : Ctest → C ⊂ Ctrain (7a)
Tr : c → {c′1, ..., c′N } (7b)

yc′ ∼ N (0, 1) ∈ R
d , ∀c′ ∈ Ctrain (7c)

yc = 1
|Tr(c)|

∑

c′∈Tr(c)
yc′ + ec ∀c ∈ Ctest (7d)

ec ∼ N (0, 1 × 10−8) ∈ R
d, ∀c ∈ Ctest (7e)

where yc′ denotes the randomly generated semantic vec-
tors of training classes, and yc denotes the semantic
vectors of test classes.
By assigning to test classes the same semantic embed-

ding as their related training class, we effectively equate
them to the same class. Hence, test images that are cor-
rectly classified into their child or parent training class are
correctly classified into their actual test class.
ec represents a small Gaussian noise we add to the test

class embeddings to differentiate between children test
classes of the same training class (Fig. 4b). This is neces-
sary to get deterministic classification results at test time.
Otherwise, classification (Eq. 6) would result in undefined
behavior as several test classes share the same semantic
embedding.

5.2.3 Result analysis
In this section, we compare the classification outputs of
our model, using different semantic embeddings, to those
of the trivial solution. To compare both outputs, we look at
the Pearson correlation between their class-wise accuracy
results. For readability, we only report the results of the
best performing embedding of each semantic modality:
Glove, Sent2vec, and TransE∗ in Table 5.
First, we observe that the trivial solution performs

remarkably well. Compared to to the results presented in
Table 4, the trivial solution outperforms all previous work
on ZSL with the notable exception of [8, 9]. Second, and
most interestingly, we observe that the classification out-
puts of graph embeddings are strongly correlated to the
trivial solution.
To understand why this is, we need to consider the

nature of the information contained in the knowledge
graphs. Child/parent relationships between the train-
ing and test classes are explicitly stored in the knowl-
edge graphs. Consequently, graph embeddings of the test
classes are explicitly optimized to be close to their related
training class in the semantic space.
The trivial solution precisely consists of the ideal

case where test class embeddings are equal to their
child/parent training class. If the child/parent relation-
ships between test and training classes were the only
information contained in the knowledge graph, graph
embeddings would essentially converge to the solution

Table 5 Correlation between the trivial and semantic
embeddings class accuracy on the 2-hop split obtained

Semantics Top-1 Top-5 Top-10 ρtrivial

Trivial 20.30 51.94 62.23 1.00

TransE∗ 20.13 48.32 58.06 0.84

Sent2vec 5.48 16.46 23.94 0.19

Glove 11.47 29.22 38.72 0.44
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where the test class embeddings are equal to their
child/parent training class embeddings, similar to the
trivial embeddings.
However, knowledge graphs also contain information

about other properties of the visual classes, such as their
part attributes. This additional information further con-
strains the graph embedding representations, but does it
provide useful visual clues to increase zero-shot recogni-
tion accuracy? This is difficult to assess, but two different
observations suggest otherwise: First, no graph embed-
ding outperform the trivial solution; second, BabelNet is a
much larger knowledge graph than WordNet, i.e., it con-
tains many more such properties about the visual classes,
in addition to the hierarchical information. Despite this
rich information, BabelNet embeddings perform poorly,
in comparison to the WordNet embeddings (see Table 4).
These observations suggest that the main reason behind

the graph embedding efficiency is that they explicitly
model the hierarchical relationships between training and
test classes. Word embeddings and sentence embeddings,
on the other hand, do not explicitly model these relation-
ships, which explains their lower correlation to the trivial
solution.

5.3 Graph convolutional networks
In this section, we relate the results of our study to
the recently proposed methods based on GCN [8, 9]
(cf. Section 3.5). To do so, we first conduct an ablation
study on a vanilla 2-layer GCN model. We first replace
the GloVe embeddings by randomly generated vectors as
input features to the GCN model. This allows us to evalu-
ate the accuracy of the GCNmodel due only to the explicit
information of the WordNet hierarchy. We then evaluate
the full GCN model with GloVe input features, as pro-
posed in the original work. Table 6 shows the classification
accuracy of both models, as well as their Pearson corre-
lation score to the trivial solution, similar to Section 5.2.
In addition, we show the training time of these models to
highlight the relative simplicity of our model.

5.3.1 Random input features
The results of our ablation study are appealing. Even
with random input features, the GCNmodel outperforms
previous approaches based on word embeddings. Inter-
estingly, the accuracy of the GCN model with random

Table 6 Comparison of GCN

Semantics Top-1 Top-5 Top-10 ptrivial Training time

Trivial 20.30 51.94 62.23 1 ≈ 1 s

TransE∗ 20.13 48.32 58.06 0.84 ≈ 1 s

GCN − random 20.87 51.93 63.26 0.79 ≈ 30 min

GCN − GloVe 23.47 56.10 67.61 0.82 ≈ 30 min

input features plateaus around the accuracy of the triv-
ial solution, with strong correlation. This suggests that the
GCN model with random input features learns a similar
solution to the trivial solution.
The graph convolution layers of a GCNmodel have been

shown to perform a Laplacian smoothing operation [38].
In other words, graph convolution operations effectively
draw the internal representations of neighboring nodes
closer together in feature space. Hence, the semantic rep-
resentation of test classes are drawn closer to the semantic
representations of their child/parent training class. The
trivial solution corresponds to the ideal case in which test
class embeddings are equal to their child/parent training
class, which explains why, with random input features, the
GCN seems to fit the trivial solution.

5.3.2 Glove features
As expected, using GloVe embeddings instead of random
input features improves the accuracy of the GCN model.
However, it is surprising that the correlation coefficient
with the trivial solution does further increases with GloVe
input features. This observation suggests that the impact
of GloVe embeddings are twofolds.
First, the GloVe embeddings of a parent and its child

classes are statistically closer in the semantic space than
randomly generated vectors, because these concepts are,
by definition, semantically close. Hence, using GloVe
embeddings instead of random input features facilitates
the Laplacian smoothing between training classes and
their parent/child classes by assigning input features that
are already close to each other in the semantic space. As
input features of neighboring nodes are already close to
each other, the hidden features of test classes are easier to
fit their parent/child training class representations. As a
consequence, GloVe embeddings help the GCN model fit
the trivial solution, as illustrated by the increase in their
correlation score.
Second, the implicit information provided by word

embeddings seems to provide a strong heuristic to
break ties between test classes that share a common
training class parent. The trivial solution randomly
breaks ties between children test classes of the same
training class (step 2 of Algorithm 1), which is sub-
optimal. Instead, GloVe vectors provide better visual
clues to differentiate between different neighboring test
subclasses.
In conclusion, we showed that most of the improvement

that GCN have brought over previous state of the art can
be attributed to the use of the explicit WordNet hierarchy
information. We showed that, without word embeddings,
the GCN model converges toward a solution similar to
the trivial and graph embedding solutions. However, the
GCN model also efficiently combine the implicit infor-
mation of word embeddings to the explicit relationships
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of the WordNet hierarchy. In the next section, we further
discuss the visual clues embedded in word embeddings.

5.4 Word embeddings
It is surprising that complex ZSL models using word
embeddings as semantic features are largely outperformed
by a simple regression model using graph embeddings as
semantic features. To conclude this paper, we discuss the
relevance of word embeddings in the context of ZSL. We
then highlight and quantify some of their limitations that
partially explains their poor performance.

5.4.1 Relevance
In NLP, word embeddings are implementations of the
distributional hypothesis, which suggests that the mean-
ing of words can be inferred from the context in which
they occur. In contrast, ZSL models using word embed-
dings as semantic features make the assumption that the
appearance of generic objects can be characterized by
the context in which their lemmas occur. Table 7 shows
the co-occurrence frequency of a few common visual
class lemmas with words that explicitly characterize visual
attributes. This table shows that visual class lemmas tend
to share high co-occurrence frequency with either their
part attributes (i.e., both car and truck co-occur more
frequently with wheel than bird and cassowary do) or
with other lexical forms that implicitly impacts the shape
of these objects (i.e., both cars and trucks are “drivable”
vehicles). This suggests that the co-occurrence patterns
of words in large text corpora indeed contain implicit
information regarding distinctive visual features shared
among classes. A particular exception that stands out
from Table 1 is the word cassowary, a species of bird,
which we discuss below.

5.4.2 Limitations
We conjecture that while coarse-grained visual classes are
well defined by common words such as “car,” “truck,” and

Table 7 Lemmas co-occurrence with visually discriminative
words

Car Truck Bird Cassowary

Wheel 1.3 × 10−4 1.6 × 10−4 2.0 × 10−6 0.0

Drive 1.0 × 10−3 1.0 × 10−3 2.2 × 10−5 2.4 × 10−3

Wings 4.0 × 10−6 0.0 1.6 × 10−4 0.0

Beak 0.0 0.0 5.2 × 10−5 0.0

Occ. 4.7 × 105 7.8 × 104 1.4 × 105 7.9 × 102

Statistics presented in this table were gathered from the English Wikipedia corpus
with a context window size of five words. The columns correspond to visual class
lemmas, and rows correspond to visually discriminative words. The last row shows
the number of occurrence of the visual class lemmas in the corpus. Upper rows show
the frequency of occurrence of visually discriminative words within the context of
visual class lemmas. For example, the upper left value denotes p(wheel|car)

“bird,” several difficulties arise when considering more
fine-grained visual classes such as “cassowary” or “moving
van.”
N-grams—different from coarse-grained concepts, fine-

grained concepts are often not best described by single
words but by composition of words (e.g., n-grams such
as “polar bear” or “blue jeans” vs. their unigram parent
class “bear” and “trousers”). Figure 5 shows that 54.2% of
ImageNet class lemmas are actually not single words but
n-grams.
In a first experiment, we evaluate the impact of n-grams

on the classification accuracy of our model. To do so, we
split the ImageNet dataset class-wise into two subsets:
one consisting of visual classes whose lemmas are single
words and one with n-grams classes only. We train our
ZSL model on the ILSVRC training set, as done in the
previous experiments, and evaluate the accuracy of the
model separately on the n-gram and unigram test class
splits. For each split, we randomly sample 200 classes and
evaluate the accuracy of the model on a 200 class classi-
fication problem. As different randomly sampled test sets
yield different results, we repeat this operation 20 times
per split with different randomly sampled test class sets,
and we present the mean, first quartiles, and extrema
of each split’s top-1 accuracy in Fig. 5. N-gram embed-
dings were computed as the mean of their individual word
embeddings.
Against our expectations, ZSL accuracy does not seem

to suffer from the “n-gram-ness” of visual class lemmas as
n-gram lemmas even outperform single word lemmas by
an average of 2%.
Rare words—we found that fine-grained visual classes

that are correctly defined by a single word tend to be
defined by rare words (e.g., the rare lemma “cassowary”
vs. the common lemma “bird” of its parent class). Word
embeddings are learned from their co-occurrence statis-
tics in large text corpora.While visual clues are embedded
in word co-occurrence patterns, a considerable amount of
noise (i.e., non-visually discriminative information) stems
from random word co-occurrences. The example of cas-
sowary is illustrated in Table 7. The word “cassowary”
only occurs 792 times in the English Wikipedia cor-
pus in which it does not co-occur once with the visual
bird-like attributes “wings” or “beak.” Instead, “cassowary”
randomly co-occurs once with the word “drive.” We con-
jecture that frequently occurring words provide more
visually discriminative representations than rare words
because of the higher “visual signal-to-noise ratio” of their
co-occurrence statistics. Figure 6a shows the occurrence
count distribution of ImageNet lemmas in the English
Wikipedia corpus. This figure shows a large number of
visual classes are defined by rare words. For example, we
found that 9.7% of ImageNet lemmas appear less than 10
times in Wikipedia.
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Fig. 5 Evaluation of ZSL accuracy of n-gram classes vs. unigram classes. Left—n-gram vs. unigram class lemmas distribution. Right—classification
accuracy per lemmas type. a Distribution of n-gram vs. unigram lemmas. b ZSL accuracy results

To quantify the impact of lemma scarcity, we split
the ImageNet dataset class-wise into 5 artificial subsets
according to Fig. 6a. Each split k contains visual classes
whose lemmas appear between 10k and 10k+1 times in the
English Wikipedia corpus. We evaluate each split individ-
ually on 20 randomly sampled subsets of 200 test classes,
following the same protocol as the n-gram experiment.
Our results highlight a strong correlation between

lemmas’ frequency and classification accuracy (Fig. 6b).
The first two splits (rare words) strikingly underperform
mid-frequency terms with 6% and 7% mean accuracy
compared to the 14% accuracy of the best performing
splits. On the other hand, we found that very frequent
words also show lower classification accuracy, which was
unexpected.

Homonyms—finally, natural languages contain many
homonyms which makes it difficult to uniquely identify
visual classes with a single word. For example, a “(river)
bank” and a “(financial) bank” share similar representa-
tions in a word embedding space while being two differ-
ent visual concepts. The consequences of homonymy are
twofolds: first, the semantic representation of homonym
classes is learned from the co-occurrence statistics of
the different meanings of the lemma which results in
noisy embeddings; second, a mechanism to break ties
between homonym visual classes must be given. We
found that 13% of the ImageNet lemmas are shared with
at least one other class and 38% of ImageNet classes
share a lexical form with at least one other class. A rig-
orous evaluation of the impact of homonymy on ZSL

Fig. 6 Evaluation of ZSL accuracy by test class lemmas occurrence frequency. Left: visual class lemmas occurrence count distribution in the English
Wikipedia corpus. Right: classification accuracy per occurrence count. a Lemmas occurence count distribution. b ZSL accuracy results
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accuracy involves evaluating different heuristics to break
ties between homonym classes which is beyond the scope
of this work so we only mention it for completeness.

6 Conclusion
Zero-shot learning has the potential to be of great
practical impact and to facilitate the wide-spread use
of object recognition technologies. Despite almost a
decade of active research [39], the accuracy of ZSL mod-
els on standard generic object recognition benchmarks
remains too low to be considered for practical applica-
tions. In this paper, we presented a large-scale investi-
gation of semantic representations applied to zero-shot
recognition of generic objects. Our main result was to
show that, given appropriate semantic embeddings, a
basic linear regression model can outperform previous
state-of-the-art models. In particular, we showed that
explicit information about class relationships, as made
available by knowledge graphs, provides strong empir-
ical performance. Through these results, our investiga-
tion also indirectly lead us to a better understanding of
the impressive gains in performance reported by recent
works using GCN. We believe that these results call
for a deeper discussion on the role of semantic rep-
resentations and the nature of the information needed
from these representations to achieve practical solu-
tions to the problem of zero-shot recognition of generic
objects.

Endnote
1 https://github.com/TristHas/ZSL-semantics.
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